The Mechanism and Therapeutic Prospect of Autophagy in Metabolic Dysfunction-Associated Steatotic Liver Diseas

Authors

  • Xiaoning Zuo School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Yuhan Wang Suzhou Medical College, Soochow University, Suzhou 215123, China
  • Ning Yao The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Xin Wang School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Jinhui Xu School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Ying Qin School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Xin Wang The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Yajie Chen School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Yunjuan Wu School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Ying Su School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China

DOI:

https://doi.org/10.53469/jcmp.2024.06(08).61

Keywords:

MASLD, Autophagy, MASH, Pathogenesis, Treatment

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease in the world. Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of MASLD, which can further develop into cirrhosis and hepatocellular carcinoma. With the global prevalence of metabolic syndrome, obesity and diabetes, the prevalence of MASLD is increasing year by year, which has brought an increasingly heavy burden to the global economy. Although steady progress has been made in understanding the epidemiology and pathogenesis of the disease, it is still the slowest progress in the treatment field. At present, there is a lack of approved specific therapeutic drugs. Therefore, it is urgent to further analyze the pathogenesis of MASLD and explore new therapeutic targets. In recent years, the role of autophagy in the pathogenesis of MASLD is being extensively studied. It is mainly involved in the occurrence and progression of the disease by regulating multiple factors such as lipotoxicity, mitochondrial dysfunction, oxidative stress, insulin resistance (IR), endoplasmic reticulum stress (ERS), inflammasome activation, and intestinal flora imbalance.

References

Rinella M E, Lazarus J V, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. Hepatology, 2023, 78 (6): 1966-1986.

Riazi K, Azhari H, Charette J H, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7 (9): 851-861.

Wong R J, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States[J]. Gastroenterology, 2015, 148 (3): 547-55.

Buzzetti E, Pinzani M, Tsochatzis E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J].Metabolism, 2016, 65 (8): 1038-48.

Keam S J. Resmetirom: First Approval[J]. Drugs, 2024, 84 (6): 729-735.

Yang Y, Klionsky D J. Autophagy and disease: unanswered questions[J]. Cell Death Differ, 2020, 27 (3): 858-871.

Jin S, Li Y, Xia T, et al. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease[J]. J Adv Res, 2024.

Tabibzadeh S. Role of autophagy in aging: The good, the bad, and the ugly[J]. Aging Cell, 2023, 22 (1): e13753.

Yu L, Chen Y, Tooze S A. Autophagy pathway: Cellular and molecular mechanism[J]. Autophagy, 2018, 14 (2): 207-215.

Nakatogawa H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21 (8): 439-458.

Wong S Q, Kumar A V, Mills J, et al. Autophagy in aging and longevity[J]. Hum Genet, 2020, 139 (3): 277-290.

Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19 (1): 12.

Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis[J]. Antioxid Redox Signal, 2023, 38 (7-9): 550-580.

Klionsky D J, Petroni G, Amaravadi R K, et al. Autophagy in major human diseases[J]. Embo j, 2021, 40 (19): e108863.

Zheng Y, Wang S, Wu J, et al. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy[J]. J Transl Med, 2023, 21 (1): 510.

Ramanathan R, Ali A H, Ibdah J A. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease[J]. Int J Mol Sci, 2022, 23 (13).

Meex R C R, Blaak E E. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD[J]. Mol Nutr Food Res, 2021, 65 (1): e1900942.

Tsuji A, Yoshikawa S, Ikeda Y, et al. Tactics with Prebiotics for the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease via the Improvement of Mitophagy[J]. Int J Mol Sci, 2023, 24 (6).

Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease[J]. Transl Gastroenterol Hepatol, 2021, 6: 4.

Mittal M, Siddiqui M R, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20 (7): 1126-67.

Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9[J]. J Clin Invest, 2016, 126 (3): 859-64.

Alim Al-Bari A, Ito Y, Thomes P G, et al. Emerging mechanistic insights of selective autophagy in hepatic diseases[J]. Front Pharmacol, 2023, 14: 1149809.

Ma X, Mckeen T, Zhang J, et al. Role and Mechanisms of Mitophagy in Liver Diseases[J]. Cells, 2020, 9 (4).

Yao Z, Li X, Wang W, et al. Corn peptides attenuate non-alcoholic fatty liver disease via PINK1/Parkin - mediated mitochondrial autophagy[J]. Food Nutr Res, 2023, 67.

Li R, Xin T, Li D, et al. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy [J]. Redox Biol, 2018, 18: 229-243.

Senft D, Ronai Z A.UPR, autophagy, and mitochondria crosstalk underlies the ER stress response[J]. Trends Biochem Sci, 2015, 40 (3): 141-8.

Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases[J]. Front Genet, 2014, 5: 242.

González-Rodríguez A, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD[J]. Cell Death Dis, 2014, 5 (4): e1179.

He Y, Su J, Lan B, et al. Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment[J]. Onco Targets Ther, 2019, 12: 1857-1865.

Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress[J]. J Cell Physiol, 2017, 232 (11): 2977-2984.

Tanaka S, Hikita H, Tatsumi T, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice[J]. Hepatology, 2016, 64 (6): 1994-2014.

Ding S, Jiang J, Zhang G, et al. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats[J]. PLoS One, 2017, 12 (8): e0183541.

Kuchay M S, Choudhary N S, Mishra S K. Pathophysiological mechanisms underlying MAFLD[J]. Diabetes Metab Syndr, 2020, 14 (6): 1875-1887.

Enooku K, Tsutsumi T, Kondo M, et al. Hepatic FATP5 expression is associated with histological progression and loss of hepatic fat in NAFLD patients[J]. J Gastroenterol, 2020, 55 (2): 227-243.

Arab J P, Arrese M, Trauner M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease[J]. Annu Rev Pathol, 2018, 13: 321-350.

Ipsen D H, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75 (18): 3313-3327.

Branković M, Jovanović I, Dukić M, et al. Lipotoxicity as the Leading Cause of Non-Alcoholic Steatohepatitis [J]. Int J Mol Sci, 2022, 23 (9).

Flessa C M, Kyrou I, Nasiri-Ansari N, et al. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/ MAFLD) [J]. J Cell Biochem, 2022, 123 (10): 1585-1606.

Carotti S, Aquilano K, Zalfa F, et al. Lipophagy Impairment Is Associated With Disease Progression in NAFLD[J]. Front Physiol, 2020, 11: 850.

Song Y M, Lee Y H, Kim J W, et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase - independent pathway[J]. Autophagy, 2015, 11 (1): 46-59.

Li L, Li Q, Huang W, et al. Dapagliflozin Alleviates Hepatic Steatosis by Restoring Autophagy via the AMPK-mTOR Pathway[J]. Front Pharmacol, 2021, 12: 589273.

Zhang Q, Liu Q, Niu C Y. [Liraglutide alleviates lipotoxic liver cell damage and promotes autophagy to improve non-alcoholic fatty liver] [J]. Zhonghua Gan Zang Bing Za Zhi, 2021, 29 (5): 456-461.

Sinha R A, Farah B L, Singh B K, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy - lysosomal pathway in mice[J]. Hepatology, 2014, 59 (4): 1366-80.

An L, Wirth U, Koch D, et al. Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD[J]. Metabolites, 2023, 13 (1).

Gao Y, Zhang W, Zeng L Q, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J]. Redox Biol, 2020, 36: 101635.

Wang Q, Ou Y, Hu G, et al. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice[J].Br J Pharmacol, 2020, 177 (8): 1806-1821.

De Carvalho Ribeiro M, Szabo G. Role of the Inflammasome in Liver Disease[J]. Annu Rev Pathol, 2022, 17: 345-365.

Yu L, Hong W, Lu S, et al. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment[J]. Front Pharmacol, 2022, 13: 780496.

Biasizzo M, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy [J]. Front Immunol, 2020, 11: 591803.

Weng Z, Xu C, Zhang X, et al. Autophagy mediates perfluorooctanoic acid-induced lipid metabolism disorder and NLRP3 inflammasome activation in hepatocytes [J]. Environ Pollut, 2020, 267: 115655.

Saha S, Ray S, Mandal A, et al. Enhanced inflammasome - mediated inflammation and impaired autophagy in peripheral blood mononuclear cells is associated with non-alcoholic fatty liver disease severity [J]. Life Sci, 2023, 329: 121911.

Loomba R, Seguritan V, Li W, et al. Gut Microbiome - Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease[J]. Cell Metab, 2017, 25 (5): 1054-1062.e5.

Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications [J]. Int J Mol Sci, 2020, 21 (15).

Hu H, Lin A, Kong M, et al. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives [J]. J Gastroenterol, 2020, 55 (2): 142-158.

Hsieh Y C, Lee K C, Wu P S, et al. Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury[J]. Cells, 2021, 10 (6).

Larabi A, Barnich N, Nguyen H T T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16 (1): 38-51.

Benjamin J L, Sumpter R, Jr., Levine B, et al. Intestinal epithelial autophagy is essential for host defense against invasive bacteria[J]. Cell Host Microbe, 2013, 13 (6): 723-34.

Schwenger K J, Clermont-Dejean N, Allard J P.The role of the gut microbiome in chronic liver disease: the clinical evidence revised[J].JHEP Rep, 2019, 1 (3): 214-226.

Ding H, Ge G, Tseng Y, et al. Hepatic autophagy fluctuates during the development of non-alcoholic fatty liver disease[J]. Ann Hepatol, 2020, 19 (5): 516-522.

Ramos V M, Kowaltowski A J, Kakimoto P A. Autophagy in Hepatic Steatosis: A Structured Review[J]. Front Cell Dev Biol, 2021, 9: 657389.

Liu H Y, Han J, Cao S Y, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin[J]. J Biol Chem, 2009, 284 (45): 31484-92.

Frendo-Cumbo S, Tokarz V L, Bilan P J, et al. Communication Between Autophagy and Insulin Action: At the Crux of Insulin Action-Insulin Resistance? [J]. Front Cell Dev Biol, 2021, 9: 708431.

Yan S. Role of TFEB in Autophagy and the Pathogenesis of Liver Diseases[J]. Biomolecules, 2022, 12 (5).

Zhang H, Yan S, Khambu B, et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply[J]. Autophagy, 2018, 14 (10): 1779-1795.

Park H W, Park H, Semple I A, et al. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers[J]. Nat Commun, 2014, 5: 4834.

Koga H, Kaushik S, Cuervo A M. Altered lipid content inhibits autophagic vesicular fusion[J]. Faseb j, 2010, 24 (8): 3052-65.

Downloads

Published

2024-08-27

How to Cite

Zuo, X., Wang, Y., Yao, N., Wang, X., Xu, J., Qin, Y., … Su, Y. (2024). The Mechanism and Therapeutic Prospect of Autophagy in Metabolic Dysfunction-Associated Steatotic Liver Diseas. Journal of Contemporary Medical Practice, 6(8), 303–309. https://doi.org/10.53469/jcmp.2024.06(08).61