Research Progress of the Crosstalk between Neutrophil Extracellular Traps and Other Cells During CIRI Progression
DOI:
https://doi.org/10.53469/jcmp.2025.07(02).35Keywords:
Neutrophil Extracellular Traps, Ischemic Stroke, Microglia, Platelets, Endothelial Cells, Neuronal CellsAbstract
Ischemic stroke, also known as cerebral infarction, is a disease caused by cerebral vascular occlusion or arterial stenosis, leading to ischemia and hypoxia in brain tissue, which subsequently causes local brain tissue necrosis or softening. The main symptoms include sudden fainting, hemiplegia, facial deviation, sensory disturbances, and aphasia [1]. Ischemic stroke is characterized by high incidence, recurrence, disability, and mortality rates [2]. China has the highest incidence of ischemic stroke in the world, which is the leading cause of disease-related death in the country [3]. The pathological features of ischemic stroke mainly include neuroinflammation, thrombosis, neuronal injury, and disruption of the blood-brain barrier (BBB) integrity. Ischemia and hypoxia in brain tissue can disrupt the integrity of the BBB, increase vascular permeability, and allow peripheral immune cells (such as monocytes, B cells, and T cells) to infiltrate brain tissue, thereby further triggering neuroinflammatory responses and promoting thrombosis [4]. These pathological processes interact with each other and collectively exacerbate disease progression. Neutrophils are essential innate immune cells in the human immune system and the primary defense against infections [5]. Under normal physiological conditions, they patrol the bloodstream, ready to respond to infection signals. Once pathogens invade, neutrophils are rapidly activated and migrate to the site of infection, where they eliminate pathogens through phagocytosis and release antimicrobial peptides and enzymes to directly kill pathogens. In pathological conditions, the function of neutrophils changes, and over-activated neutrophils release large amounts of inflammatory mediators and proteases, leading to tissue damage and exacerbated inflammatory responses [6]. Neutrophil extracellular traps (NETs) are a unique web-like structure formed by activated neutrophils. Studies have shown that NETs can interact with microglia, endothelial cells, platelets, and neurons, thereby exacerbating pathological processes such as neuroinflammation, thrombosis, neuronal injury, and disruption of BBB integrity [7]. By studying the role of NETs in ischemic stroke, inhibiting the over-activation of neutrophils and the excessive formation of NETs to reduce post-stroke inflammatory responses and tissue damage has become a new therapeutic strategy for ischemic stroke, providing new treatment options and improving patient prognosis [8]. This article first explores the formation mechanisms of NETs, then summarizes the interactions between NETs and microglia, platelets, endothelial cells, and neurons in relation to ischemic stroke, and finally reviews the research progress on inhibiting NETs in ischemic stroke, providing new therapeutic targets for ischemic brain injury.
References
Nguyen T G, Green R E, Mecsas J, et al. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance[J].Frontiers in Cellular and Infection Microbiology, 2017, 7373.
Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology. 2021 Nov 16;97(20 Suppl 2): S6-S16.
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 Oct;20(10):795-820.
Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010 Jun;17(3): 197-218.
Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol. 2019 Aug;15(8):473-481. doi: 10.1038/ s41582-019-0221-1. Epub 2019 Jul 1. PMID: 31263257.
Lahoz-Beneytez J, Elemans M, Zhang Y, Ahmed R, Salam A, Block M, et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016;127:3431-8.
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther. 2024 Sep 20;9(1):235. doi: 10.1038/ s41392-024-01933-x. PMID: 39300084; PMCID: PMC11415080.
Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of Neutrophil Extracellular Trap Formation and Regulation in Cancers. Int J Mol Sci. 2023 Jun 17;24(12):10265. doi: 10.3390/ijms241210265. PMID: 37373412; PMCID: PMC10299318.
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria [J]. Science, 2004, 303(5663):1532-1535.
Hiroshi Takei, Akemi Araki, Hiroshi Watanabe, Akitada Ichinose, Fujiro Sendo, Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis, Journal of Leukocyte Biology, Volume 59, Issue 2, February 1996, Pages 229-240.
Qian H, Zhang HN, Gao T, Wang XS, Wang X, Yu MY, Li MK, Huang J. Upregulation of TRPC1 in microglia promotes neutrophil infiltration after ischemic stroke. Brain Res Bull. 2024 Mar;208:110894.
Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019 May 16;133(20):2178-2185. doi: 10.1182/ blood -2018-11-844530. Epub 2019 Mar 21. PMID: 30898862.
Qian C, Lu Z, Xiang L, et al. Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications [J]. Cancers, 2021, 13(11): 2832-2832.
Long D, Mao C, Xu Y, et al. The emerging role of neutrophil extracellular traps in ulcerative colitis[J]. Frontiers in Immunology, 2024, 151425251-1425251.
Yuxin C, Lulu H, Xiaoyan Q, et al. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice [J]. Frontiers in Oncology, 2021, 11766636-766636.
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. [J]. International immunopharmacology, 2024, 133112085-112085.
ilva P C G, Medina M J, Paschoaletto L, et al.Leishmania amazonensis-derived extracellular vesicles (EVs) induce neutrophil extracellular traps (NETs).[J].Journal of leukocyte biology, 2024,
Haruna F N, Politanska Y, Connelly R A, et al. scRNA-seq profiling of human granulocytes reveals expansion of developmentally flexible neutrophil precursors with mixed neutrophil and eosinophil properties in asthma. [J]. Journal of leukocyte biology, 2024
Jing Q, Liu R, Jiang Q, et al. Staphylococcus aureus wraps around Candida albicans and synergistically escapes from Neutrophil extracellular traps[J]. Frontiers in Immunology, 2024, 151422440-1422440.
Takuto T, Akane I, Haruka S, et al. Oxidized Phospholipids and Neutrophil Elastase Coordinately Play Critical Roles in NET Formation [J]. Frontiers in Cell and Developmental Biology, 2021, 9718586-718586.
Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017 Aug;82(2):223-232.
Vallés J, Lago A, Santos MT, Latorre AM, Tembl JI, Salom JB, Nieves C, Moscardó A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost. 2017 Oct 5;117(10):1919-1929.
Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, Shi MJ, Tian Y, Fan W, Zhao BQ. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020 May 19;11(1):2488. doi: 10.1038/s41467-020-16191-y. PMID: 32427863; PMCID: PMC7237502.
Qian K, Hu J, Wang C, Xu C, Chen Y, Feng Q, Feng Y, Wu Y, Yu X, Ji Q. Dynamic change of neutrophil-to-lymphocyte ratio and its predictive value of prognosis in acute ischemic stroke. Brain Behav. 2024 Jul;14(7):e3616.
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015 Jun;35(6):888-901.
Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, Shi MJ, Tian Y, Fan W, Zhao BQ. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020 May 19;11(1):2488.
Lei S, Peng X, Lei H, et al. ADSCs-exosomal miR-21-5p modulates neuroinflammatory response by targeting STAT3 in cerebral infarction[J]. Journal of Drug Delivery Science and Technology, 2023, 89
Xu J, Liu X, Yu H, et al. Tanshinone IIA inhibits the apoptosis process of nerve cells by upshifting SIRT1 and FOXO3α protein and regulating anti- oxidative stress molecules and inflammatory factors in Cerebral Infarction Model. [J]. Immunopharmacology and immunotoxicology, 2024, 47(1):11-13.
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin. 2017 Apr;38(4):445-458. doi: 10.1038/aps.2016.162. Epub 2017 Mar 6. PMID: 28260801; PMCID: PMC5386316.
Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013 Feb 1;190(3): 1217-26.
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021 May;18(5):1141-1160.
Sorbara MT, Girardin SE. Mitochondrial ROS fuel the inflammasome. Cell Res. 2011 Apr;21(4):558-60.
Kong R, Peng L, Bao H, Sun L, Feng Y, Li H, Wang D. The role of Gαq in regulating NLRP3 inflammasome activation. Inflamm Res. 2024 Dec;73(12):2249-2261. doi: 10.1007/s00011-024-01961-x. Epub 2024 Oct 26. PMID: 39455437.
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol. 2023 May;45(3):389-410. doi: 10.1007/ s00281-023-00994-4. Epub 2023 Jun 5. PMID: 37273022; PMCID: PMC10241149.
Gao X, Zhao X, Li J, Liu C, Li W, Zhao J, Li Z, Wang N, Wang F, Dong J, Yan X, Zhang J, Hu X, Jin J, Mang G, Ma R, Hu S. Neutrophil extracellular traps mediated by platelet microvesicles promote thrombosis and brain injury in acute ischemic stroke. Cell Commun Signal. 2024 Jan 17;22(1):50. doi: 10.1186/ s12964-023 - 01379-8. PMID: 38233928; PMCID: PMC10795390.
Wu S, Ren XS, Shi Y. Early and enduring: Targeting the endothelium for blood-brain barrier protection. J Cereb Blood Flow Metab. 2024 Sep;44(9):1674-1676. doi: 10.1177/0271678X241264086. Epub 2024 Jun 21. PMID: 38907363; PMCID: PMC11418723.
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci. 2021 Sep 13;15:661838. doi: 10.3389/fncel.2021.661838. PMID: 34588955; PMCID: PMC8475767.
Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, Hafner M, Kaplan MJ. RNA Externalized by Neutrophil Extracellular Traps Promotes Inflammatory Pathways in Endothelial Cells. Arthritis Rheumatol. 2021 Dec;73(12):2282-2292. doi: 10.1002/art.41796. Epub 2021 Oct 22. PMID: 33983685; PMCID: PMC8589882.
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 2022 Feb;49(2):15. doi: 10.3892/ijmm.2021.5070. Epub 2021 Dec 8. PMID: 34878154; PMCID: PMC8711586.
Shi G, Liu L, Cao Y, Ma G, Zhu Y, Xu J, Zhang X, Li T, Mi L, Jia H, Zhang Y, Liu X, Zhou Y, Li S, Yang G, Liu X, Chen F, Wang B, Deng Q, Zhang S, Zhang J. Inhibition of neutrophil extracellular trap formation ameliorates neuroinflammation and neuronal apoptosis via STING-dependent IRE1α/ASK1/JNK signaling pathway in mice with traumatic brain injury. J Neuroinflammation. 2023 Sep 30;20(1):222. doi: 10.1186/s12974-023-02903-w. PMID: 37777772; PMCID: PMC10543875.
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci. 2023 Jul 25;24(15):11902. doi: 10.3390/ijms241511902. PMID: 37569277; PMCID: PMC10419139.
Brás JP, Bravo J, Freitas J, Barbosa MA, Santos SG, Summavielle T, Almeida MI. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death Dis. 2020 Jun 2;11(6):415. doi: 10.1038/s41419-020-2626-6. PMID: 32488063; PMCID: PMC7265562.
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol. 2021 Oct;61(2):194-211. doi: 10.1007/ s12016-020 - 08804-7. PMID: 32740860; PMCID: PMC7395212.
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007 Jan;8(1):57-69. doi: 10.1038/nrn2038. PMID: 17180163.
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol. 2025 Jan 6;224(1):e202403104. doi: 10.1083/jcb.202403104. Epub 2024 Nov 5. PMID: 39500490; PMCID: PMC11540856.
Pir GJ, Parray A, Ayadathil R, Pananchikkal SV, Mir FA, Muhammad I, Abubakar A, Amir N, Hussain S, Haroon KH, Muhammad A, Imam Y, Patro SN, Akhtar N, Zakaria A, Kamran S. Platelet-Neutrophil Association in NETs-Rich Areas in the Retrieved AIS Patient Thrombi. Int J Mol Sci. 2022 Nov 21;23(22):14477. doi: 10.3390/ijms232214477. PMID: 36430952; PMCID: PMC9694992.
Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R, Dyer MR, Neal MD, Majersik JJ, Yost CC, Campbell RA. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest. 2022 May 16;132(10):e154225. doi: 10.1172/JCI154225. PMID: 35358095; PMCID: PMC9106355.
Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023 Aug 1; 548: 117487. doi: 10.1016/ j.cca.2023.117487. Epub 2023 Jul 11. PMID: 37442359.
van Buul JD, van Rijssel J, van Alphen FP, Hoogenboezem M, Tol S, Hoeben KA, van Marle J, Mul EP, Hordijk PL. Inside-out regulation of ICAM-1 dynamics in TNF-alpha-activated endothelium. PLoS One. 2010 Jun 28;5(6):e11336. doi: 10.1371/ journal. pone.0011336. PMID: 20596527; PMCID: PMC2893160.
Li Z, Sun S, Xiao Q, Tan S, Jin H, Hu B. Neuron Derived Cold-Inducible RNA-Binding Protein Promotes NETs Formation to Exacerbate Brain Endothelial Barrier Disruption after Ischemic Stroke. Aging Dis. 2024 Feb 9. doi: 10.14336/AD.2024.0204-1. Epub ahead of print. PMID: 38377019.
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci. 2024 Mar 28;25(7):3787. doi: 10.3390/ijms25073787. PMID: 38612596; PMCID: PMC11011604.
Shi G, Liu L, Cao Y, Ma G, Zhu Y, Xu J, Zhang X, Li T, Mi L, Jia H, Zhang Y, Liu X, Zhou Y, Li S, Yang G, Liu X, Chen F, Wang B, Deng Q, Zhang S, Zhang J. Inhibition of neutrophil extracellular trap formation ameliorates neuroinflammation and neuronal apoptosis via STING-dependent IRE1α/ASK1/JNK signaling pathway in mice with traumatic brain injury. J Neuroinflammation. 2023 Sep 30; 20(1): 222. doi: 10.1186/s12974-023-02903-w. PMID: 37777772; PMCID: PMC10543875.
Cui Y, Cui M, Wang L, Wang N, Chen Y, Lv S, Zhang L, Chen C, Yang Y, Wang F, Wang L, Cui H. Huanglian Jiedu decoction alleviates ischemia-induced cerebral injury in rats by mitigating NET formation and activiting GABAergic synapses. J Cell Mol Med. 2024 Aug;28(15): e18528. doi: 10.1111/jcmm.18528. PMID: 39099086; PMCID: PMC11298410.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mengying Sun, Feitian Min, Ruihaogeng Wang, Tong Li, Lizhen Wang, Leilei Wang, Tingting Wang, Yanwen Yang, Youxiang Cui

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.