Vascular Dementia: from Pathogenesis to Treatment

Authors

  • Mingyue Cui Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
  • Leilei Wang Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China
  • Tingting Wang Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China
  • Yanwen Yang Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China
  • Kaiqiang Si Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China
  • Zhixing Chen Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China
  • Youxiang Cui Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou 061000, China

DOI:

https://doi.org/10.53469/jcmp.2025.07(02).32

Keywords:

Vascular dementia, Epidemiology, Pathogenic factors, Pathogenesis, Treat

Abstract

Vascular dementia is the second most common type of dementia and a preventable disease, but its complex etiology and difficult diagnosis make it occupy a high status in the field of neuroscience and geriatrics. At present, modern medicine mainly takes oral donepezil and other drugs to control vascular risk factors and improve cognitive function (non-) drugs; summarizes the epidemiology, related factors, pathogenesis, treatment plan and future direction of vascular dementia.

References

M. Knapp M. Guerchet M. Prince. 2014. Dementia UK: update. health services & population research (2014).

C. Jiao, S. Wei, T. Liu, X. Bao, W. Chen, Z. Liao, W. Peng, W. Wei, and Z. Liu. 2021. The Prevalence of Vascular Dementia in China: A Systematic Review and Meta-Analysis from 2009-2019. Iran. J. Public Health (2021), 11-23. DOI 10.18502/ijph.v50i1.5068

P. A. Dharmasaroja, C. Limwongse, and T. Charernboon. 2020. Incidence and risk factors of vascular dementia in Thai stroke patients. J. Stroke Cerebrovasc. Dis. (2020), 104878. DOI 10.1016/j.jstrokecerebrovasdis. 2020. 104878

G. Roman. 2003. Vascular dementia: a historical background. Int. Psychogeriatr. (2003), 11-13. DOI 10.1017/S1041610203008901

X. S. Chen. 1992. [Application of ischemic score of Hachinski in differentiation of multi-infarct dementia]. Zhonghua Shen Jing Jing Shen Ke Za Zhi (1992), 334-337, 382-383.

J. M. Orgogozo, J. van Drimmelen-Krabbe, W. G. Bradley, A. L’Hours, and N. Sartorius. 1994. [The international classification of WHO diseases (ICD-10) and its application in neurology (ICD-10 NA)]. Rev. Neurol. (1994), 813-822.

S. Di Legge and V. Hachinski. 2010. Vascular cognitive impairment (VCI): Progress towards knowledge and treatment. Dement Neuropsychol (2010), 4-13. DOI 10.1590/S1980-57642010DN40100002

M. B. Paradise and P. S. Sachdev. 2019. Vascular Cognitive Disorder. Semin. Neurol. (2019), 241-250. DOI 10.1055/s-0039-1678582

H. C. Chui, J. I. Victoroff, D. Margolin, W. Jagust, R. Shankle, and R. Katzman. 1992. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology (1992), 473-480. DOI 10.1212/wnl.42.3.473

T. Erkinjuntti. 1994. Clinical criteria for vascular dementia: the NINDS-AIREN criteria. Dementia (1994), 189-192. DOI 10.1159/000106721

S. C. Bir, M. W. Khan, V. Javalkar, E. G. Toledo, and R. E. Kelley. 2021. Emerging Concepts in Vascular Dementia: A Review. J. Stroke Cerebrovasc. Dis. (2021), 105864. DOI 10.1016/j.jstrokecerebrovasdis. 2021. 105864

W. M. van der Flier, I. Skoog, J. A. Schneider, L. Pantoni, V. Mok, CLH Chen, and P. Scheltens. 2018. Vascular cognitive impairment. Nat. Rev. Dis. Primers (2018), 18003. DOI 10.1038/nrdp.2018.3

T. Nagashima, T. Oshima, Y. Hiroshima, T. Yokose, T. Woo, Y. Rino, M. Masuda, Y. Miyagi, H. Ito, and H. Nakayama. 2020. Clinical Significance of Tumour CD44v and MIST1 Expression in Patients with Non-small-cell Lung Cancer. Anticancer Res. (2020), 6407-6416. DOI 10.21873/anticanres.14662

A. Jimenez-Ruiz, V. Aguilar-Fuentes, N. N. Becerra-Aguiar, I. Roque-Sanchez, and J. L. Ruiz-Sandoval. 2024. Vascular cognitive impairment and dementia: a narrative review. Dement Neuropsychol (2024), e20230116. DOI 10.1590/ 1980-5764-DN-2023-0116

T. Ngandu, J. Lehtisalo, A. Solomon, E. Levalahti, S. Ahtiluoto, R. Antikainen, L. Backman, T. Hanninen, A. Jula, T. Laatikainen, J. Lindstrom, F. Mangialasche, T. Paajanen, S. Pajala, M. Peltonen, R. Rauramaa, A. Stigsdotter-Neely, T. Strandberg, J. Tuomilehto, H. Soininen, and M. Kivipelto. 2015. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (2015), 2255-2263. DOI 10.1016/S0140-6736 (15) 60461-5

H. Kuang, Z. F. Zhou, Y. G. Zhu, Z. K. Wan, M. W. Yang, F. F. Hong, and S. L. Yang. 2021. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis. (2021), 308-326. DOI 10.14336/AD.2020.0427

T. Yang, Y. Sun, Z. Lu, R. K. Leak, and F. Zhang. 2017. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev. (2017), 15-29. DOI 10.1016/j.arr.2016.09.007

K. Washida, Y. Hattori, and M. Ihara. 2019. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. Int. J. Mol. Sci. (2019). DOI 10.3390/ijms20246176

K. Sinha, C. Sun, R. Kamari, and K. Bettermann. 2020. Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov. Today (2020), 793-799. DOI 10.1016/j.drudis.2020.01.003

H. Y. Zhu, F. F. Hong, and S. L. Yang. 2021. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int. J. Mol. Sci. (2021). DOI 10.3390/ijms22094540

J. H. Kim, A. H. Jung, D. Jeong, I. Choi, K. Kim, S. Shin, S. J. Kim, and S. H. Lee. 2016. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J. Neurosci. (2016), 5314-5327. DOI 10.1523/ JNEUROSCI.4333-15.2016

X. Bai and M. Zhang. 2021. Traditional Chinese Medicine Intervenes in Vascular Dementia: Traditional Medicine Brings New Expectations. Front. Pharmacol. (2021), 689625. DOI 10.3389/fphar.2021.689625

K. Horsburgh, J. M. Wardlaw, T. van Agtmael, S. M. Allan, MLJ Ashford, P. M. Bath, R. Brown, J. Berwick, M. Z. Cader, R. O. Carare, J. B. Davis, J. Duncombe, T. D. Farr, J. H. Fowler, J. Goense, A. Granata, C. N. Hall, A. H. Hainsworth, A. Harvey, C. A. Hawkes, A. Joutel, R. N. Kalaria, P. G. Kehoe, C. B. Lawrence, A. Lockhart, S. Love, M. R. Macleod, I. M. Macrae, H. S. Markus, C. McCabe, B. W. McColl, P. J. Meakin, A. Miller, M. Nedergaard, M. O’Sullivan, T. J. Quinn, R. Rajani, L. M. Saksida, C. Smith, K. J. Smith, R. M. Touyz, R. C. Trueman, T. Wang, A. Williams, SCR Williams, and L. M. Work. 2018. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology. Clin. Sci. (Lond). (2018), 851-868. DOI 10.1042/ CS20171620

M. Kawahara, Y. Sadakane, K. Mizuno, M. Kato-Negishi, and K. I. Tanaka. 2020. Carnosine as a Possible Drug for Zinc-Induced Neurotoxicity and Vascular Dementia. Int. J. Mol. Sci. (2020). DOI 10.3390/ijms21072570

R. N. Kalaria, R. Akinyemi, and M. Ihara. 2016. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta (2016), 915-925. DOI 10.1016/j.bbadis.2016.01.015

V. Calabrese, J. Giordano, A. Signorile, Ontario M. Laura, S. Castorina, C. De Pasquale, G. Eckert, and E. J. Calabrese. 2016. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res. (2016), 1588-1603. DOI 10.1002/jnr.23925

B. R. Price, C. M. Norris, P. Sompol, and D. M. Wilcock. 2018. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J. Neurochem. (2018), 644-650. DOI 10.1111/jnc.14273

Y. Liu, X. Chen, Q. Gong, J. Shi, and F. Li. 2020. Osthole Improves Cognitive Function of Vascular Dementia Rats: Reducing Abeta Deposition via Inhibition NLRP3 Inflammasome. Biol. Pharm. Bull. (2020), 1315-1323. DOI 10.1248/bpb.b20-00112

P. Bhatia, G. Kaur, and N. Singh. 2021. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vasc. Pharmacol. (2021), 106827. DOI 10.1016/ j.vph.2020.106827

A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat, P. Mouton, S. Alamowitch, V. Domenga, M. Cecillion, E. Marechal, J. Maciazek, C. Vayssiere, C. Cruaud, E. A. Cabanis, M. M. Ruchoux, J. Weissenbach, J. F. Bach, M. G. Bousser, and E. Tournier-Lasserve. 1997. Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann. N. Y. Acad. Sci. (1997), 213-217. DOI 10.1111/ j.1749-6632.1997.tb48472.x

J. H. Sun, L. Tan, H. F. Wang, M. S. Tan, L. Tan, J. Q. Li, W. Xu, X. C. Zhu, T. Jiang, and J. T. Yu. 2015. Genetics of Vascular Dementia: Systematic Review and Meta-Analysis. J. Alzheimers Dis. (2015), 611-629. DOI 10.3233/JAD-143102

A. Warren, Y. Nyavor, A. Beguelin, and L. A. Frame. 2024. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front. Immunol. (2024), 1365871. DOI 10.3389/fimmu.2024.1365871

M. Carabotti, A. Scirocco, M. A. Maselli, and C. Severi. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. (2015), 203-209.

N. Saji, Y. Saito, T. Yamashita, K. Murotani, T. Tsuduki, T. Hisada, T. Sugimoto, S. Niida, K. Toba, and T. Sakurai. 2022. Relationship Between Plasma Lipopolysaccharides, Gut Microbiota, and Dementia: A Cross-Sectional Study. J. Alzheimers Dis. (2022), 1947-1957. DOI 10.3233/JAD-215653

R. Tu and J. Xia. 2024. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS Neurol. Disord.-Drug Targets (2024), 102-121. DOI 10.2174/ 1871527322666230203140805

V. Singh, S. Roth, G. Llovera, R. Sadler, D. Garzetti, B. Stecher, M. Dichgans, and A. Liesz. 2016. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J. Neurosci. (2016), 7428-7440. DOI 10.1523/JNEUROSCI.1114-16.2016

D. Y. Cheon, K. D. Han, C. H. Kim, M. S. Oh, B. C. Lee, Y. Kim, S. H. Lee, C. Kim, J. S. Lim, M. Lee, and K. H. Yu. 2023. Association between exercise habit changes and incident dementia after ischemic stroke. Sci. Rep. (2023), 3959. DOI 10.1038/s41598-023-31229-z

G. H. Kim, J. H. Lee, S. W. Seo, J. H. Kim, J. K. Seong, B. S. Ye, H. Cho, Y. Noh, H. J. Kim, C. W. Yoon, S. J. Oh, J. S. Kim, Y. S. Choe, K. H. Lee, S. T. Kim, J. W. Hwang, J. H. Jeong, and D. L. Na. 2015. Hippocampal volume and shape in pure subcortical vascular dementia. Neurobiol. Aging (2015), 485-491. DOI 10.1016/ j.neurobiolaging.2014.08.009

J. M. Park, Y. J. Kim, M. K. Song, J. M. Lee, and Y. J. Kim. 2018. Genome‑wide DNA methylation profiling in a rat model with vascular dementia. Mol. Med. Rep. (2018), 123-130. DOI 10.3892/mmr.2018.8990

V. Miceli, G. Russelli, G. Iannolo, A. Gallo, Re V. Lo, V. Agnese, G. Sparacia, P. G. Conaldi, and M. Bulati. 2020. Role of non-coding RNAs in age-related vascular cognitive impairment: An overview on diagnostic / prognostic value in Vascular Dementia and Vascular Parkinsonism. Mech. Ageing. Dev. (2020), 111332. DOI 10.1016/j.mad.2020.111332

G. S. Blount, L. Coursey, and J. Kocerha. 2022. MicroRNA Networks in Cognition and Dementia. Cells (2022). DOI 10.3390/cells11121882

R. Duan, Q. Fu, Y. Sun, and Q. Li. 2022. Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res. Rev. (2022), 101743. DOI 10.1016/ j.arr.2022.101743

W. Zhai, M. Zhao, G. Zhang, Z. Wang, C. Wei, and L. Sun. 2022. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front. Neurol. (2022), 895316. DOI 10.3389/fneur.2022.895316

P. Prabhakar, S. R. Chandra, and R. Christopher. 2017. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease. Age. Ageing. (2017), 861-864. DOI 10.1093/ageing/afx090

W. Zhang, J. Qu, G. H. Liu, and JCI Belmonte. 2020. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. (2020), 137-150. DOI 10.1038/ s41580-019-0204-5

S. Pulya, S. A. Amin, N. Adhikari, S. Biswas, T. Jha, and B. Ghosh. 2021. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. (2021), 105274. DOI 10.1016/j.phrs.2020.105274

W. X. Jian, Z. Zhang, J. H. Zhan, S. F. Chu, Y. Peng, M. Zhao, Q. Wang, and N. H. Chen. 2020. Donepezil attenuates vascular dementia in rats through increasing BDNF induced by reducing HDAC6 nuclear translocation. Acta Pharmacol. Sin. (2020), 588-598. DOI 10.1038/s41401-019-0334-5

C. E. Battle, A. H. Abdul-Rahim, S. D. Shenkin, J. Hewitt, and T. J. Quinn. 2021. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: a network meta-analysis. Cochrane Database Syst Rev. (2021), CD013306. DOI 10.1002/ 14651858.CD013306.pub2

P. B. Gorelick, A. Scuteri, S. E. Black, C. Decarli, S. M. Greenberg, C. Iadecola, L. J. Launer, S. Laurent, O. L. Lopez, D. Nyenhuis, R. C. Petersen, J. A. Schneider, C. Tzourio, D. K. Arnett, D. A. Bennett, H. C. Chui, R. T. Higashida, R. Lindquist, P. M. Nilsson, G. C. Roman, F. W. Sellke, and S. Seshadri. 2011. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke (2011), 2672-2713. DOI 10.1161/STR.0b013e3182299496

H. J. Mobius. 1999. Pharmacologic rationale for memantine in chronic cerebral hypoperfusion, especially vascular dementia. Alzheimer. Dis. Assoc. Disord. (1999), S172-S178. DOI 10.1097/ 00002093- 199912001-00024

B. Caramelli, P. C. Yu, FAM Cardozo, I. R. Magalhaes, R. R. Spera, D. K. Amado, M. C. Escalante-Rojas, D. M. Gualandro, D. Calderaro, CAM Tavares, F. A. Borges-Junior, A. F. Pastana, M. G. Matheus, SMD Brucki, ACO Rodrigues, R. Nitrini, and P. Caramelli. 2022. Effects of dabigatran versus warfarin on 2-year cognitive outcomes in old patients with atrial fibrillation: results from the GIRAF randomized clinical trial. BMC Med. (2022), 374. DOI 10.1186/s12916-022-02563-2

J. M. Lopez-Arrieta and J. Birks. 2002. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. (2002), CD000147. DOI 10.1002/14651858.CD000147

J. P. Appleton, P. Scutt, N. Sprigg, and P. M. Bath. 2017. Hypercholesterolaemia and vascular dementia. Clin. Sci. (Lond). (2017), 1561-1578. DOI 10.1042/CS20160382

S. Cui, N. Chen, M. Yang, J. Guo, M. Zhou, C. Zhu, and L. He. 2019. Cerebrolysin for vascular dementia. Cochrane Database Syst Rev. (2019). DOI 10.1002/14651858.CD008900.pub3

Y. Tang, Y. Xing, Z. Zhu, Y. He, F. Li, J. Yang, Q. Liu, F. Li, S. J. Teipel, G. Zhao, and J. Jia. 2019. The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the Cog-VACCINE study): A randomized controlled trial. Alzheimers. Dement. (2019), 605-614. DOI 10.1016/ j.jalz. 2019.01.009

Downloads

Published

2025-02-28

How to Cite

Cui, M., Wang, L., Wang, T., Yang, Y., Si, K., Chen, Z., & Cui, Y. (2025). Vascular Dementia: from Pathogenesis to Treatment. Journal of Contemporary Medical Practice, 7(2), 164–169. https://doi.org/10.53469/jcmp.2025.07(02).32

Most read articles by the same author(s)