Correlation Analysis of Biological Effects of P53 Mutant Triple-Negative Breast Cancer with DCE-MRI Features
DOI:
https://doi.org/10.53469/jcmp.2025.07(02).01Keywords:
Triple-negative breast cancer (TNBC), P53 gene, Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), Semi-quantitative parameters, Quantitative parametersAbstract
Objective: To explore the correlation between the biological effects of P53 mutant and P53 wild-type in triple-negative breast cancer (TNBC) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) signs, semi-quantitative parameters, and quantitative parameters. Methods: A retrospective analysis was conducted on 68 patients diagnosed with TNBC at Baotou Cancer Hospital from December 2022 to August 2024, including 48 cases of P53 mutation and 20 cases of P53 wild-type. The differences between the two groups were compared in MRI signs including [lesion maximum diameter, apparent diffusion coefficient (ADC), lesion morphology, quantity, lymph node metastasis, intratumoral T2WI signal intensity, peritumoral edema, and early enhancement pattern], semi-quantitative parameters [signal enhancement ratio (SER), maximum enhancement rate (Epeak), time to peak (TTP), wash-in rate, wash-out rate, briefness of enhancement (BoE), and area under the curve (AUC)], and quantitative parameters [volume transfer constant (Ktrans), rate constant (Kep), and extracellular extravascular volume fraction (Ve)]. Results: Compared with TNBC-P53 wild-type, TNBC-P53 mutant showed differences in intratumoral T2WI high signal, early ring enhancement, Epeak, TTP, Ktrans, and Kep (P<0.05), while there was no statistical difference between the two groups in patient age, menopausal status, lymph node metastasis, and MRI signs including maximum diameter, ADC value, morphological appearance, quantity, peritumoral edema, and semi-quantitative parameters SER, wash-in, wash-out, BoE, AUC, and quantitative parameter Ve (P>0.05). A binary logistic regression model was used for analysis, and TTP and Ktrans were found to be more effective in determining mutation status. Conclusion: Intratumoral T2WI high signal, early ring enhancement, Epeak, TTP, Ktrans, and Kep are correlated with TNBC-P53 gene mutations.
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/ caac.21834. Epub 2024 Apr 4. PMID: 38572751.
Ji YT, Liu SW, Zhang YM, Duan HY, Liu XM, Feng ZW, Li JJ, Lyu ZY, Huang YB. [Comparison of the latest cancer statistics, cancer epidemic trends and determinants between China and the United States]. Zhonghua Zhong Liu Za Zhi. 2024 Jul 23;46(7):646-656. Chinese. doi: 10.3760/cma.j.cn112152-20240208- 00068. PMID: 38764329.
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5.
Xiao Hui, Zou Dan, Song Ailin. Advances in Targeted Therapy for Triple-Negative Breast Cancer [J]. Chinese Journal of Endocrine Surgery, 2022, 16(2):241-243. DOI:10.3760/cma.j.cn.115807-20210702-00205.
Wang Wenhui. The Effect of TYK2 and Mutant P53 on the Biological Behavior of Breast Cancer MDA-MB-231 Cell Line [D]. Dalian Medical University, 2017.
Xu Lisheng, Wang Shui, Zhao Zhihong, et al. Expression and Prognostic Study of VEGF and p53 in Tissue and Serum of Patients with Triple-Negative Breast Cancer [J]. Journal of Nanjing Medical University (Natural Science Edition), 2021, 41(1): 118-121. DOI: 10.7655/NYDXBNS20210122.
Advances in Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Predicting Breast Cancer Prognosis J. Journal of Biomedical Engineering, 2024, 37(1): 1-12. DOI: 10.12677/acm.2024.141134
Research Progress on the Diagnostic Value of DCE-MRI Combined with DWI in Breast Cancer J. Advances in Clinical Medicine, 2024, 14(1): 943-950. DOI: 10.12677/acm.2024.141134
Wang L, Van den Bos IC, Hussain SM, Pattynama PM, VogelMW, Krestin GP (2008) Post-processing of dynamic gadolinium-enhanced magnetic resonance imaging exams of the liver: expla-nation and potential clinical applications for color-coded qualita-tive and quantitative analysis. Acta Radiol 49(1):6–18
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007 Aug 1; 13(15 Pt 1): 4429-34. doi: 10.1158/1078-0432. CCR-06-3045. PMID: 17671126.
Zhao Wenkang, Zhang Jian. Research Progress in the Treatment of Triple-Negative Breast Cancer J. Clinical Medical Progress, 2024, 14(5): 362-368. DOI: 10.12677/acm.2024.1451435
Zhou Junzhen, et al. Research progress on mutant p53 as a potential therapeutic target for breast cancer. J. Clinical Medical Progress, 2021, 11(11): 5457-5460. DOI: 10.12677/acm.2021.1111807
Qin Zhang, Liu Hong. Expression and Clinical Significance of P53 in Triple-Negative Breast Cancer J. Chinese Clinical Oncology, 2011, 38(4): 161-164. DOI: 10.3969/j.issn.1000-8179.2011.04.010
Zhu Xiang. Research Progress on p53 Gene and Tumors J. World Cancer Research, 2022, 12(3): 152-160. DOI: 10.12677/wjcr.2022.123020
Cynthia X. Ma, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models J. The Journal of Clinical Investigation, 2012, 122(4): 1398-1405. DOI: 10.1172/JCI58765
Dai Ting, Su Tong, Wang Rui, et al. Predictive value of DCE-MRI imaging features for hormone receptors, HER-2, and triple-negative breast cancer in breast cancer. J. Magnetic Resonance Imaging, 2023, 14(4): 57-67. DOI:10.12015/issn.1674-8034.2023.04.011
Current Status and Prospects of Research on Ring-Enhancing Lesions in Breast DCE-MRI. J. Magnetic Resonance Imaging, 2022, 13(2): 135-146. DOI: 10.12015/issn.1674-8034.2022.02.001
Du Hua. The role and mechanism of p53 in regulating cell cycle arrest and apoptosis. J. International Journal of Radiation Medicine and Nuclear Medicine, 2002, 26(2): 79-83. DOI: 10.16335/j.cnki.issn.1000-4655. 2002. 02.013
LEEK RD, LANDERS RJ, HARRIS AL, et al. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast[J]. Br J Cancer,1999,79 (5 / 6):991.
Kato, F., Kudo, K., Yamashita, H., & Nishimura, T. (2016). MR imaging findings of triple-negative breast cancer: a pictorial essay. Japanese journal of radiology, 34(1), 1-9.
Correlation Study of p53 and Ki67 Expression in Triple-Negative Breast Cancer J. Journal of Shanghai Jiaotong University (Medical Science), 2013, 33(6): 811-815. DOI: 10.3969/j.issn.1674-8115.2013.06.027
WU M,LU L,ZHANG Q,et al. Relating doses of contrast agent administered to TIC and semi quantitative parameters on DCE-MRI: based on a murine breast tumor model [J]. PLoS One, 2016,11(2):e0149279.
Wang Li, Zhai Renyou, Liu Xiaojuan, et al. Correlation between semi-quantitative parameters of dynamic contrast-enhanced breast MRI and vascular endothelial growth factor expression [J]. Journal of Practical Radiology, 2008, 24(7):946.
Wang Li, Zhai Renyou, Jiang Tao, et al. Correlation between dynamic enhanced MRI semi-quantitative parameters and microvessel density in breast diseases [J]. Chinese Journal of Medical Imaging Technology, 2007, 23(3):388.
Diagnostic Value of Breast MRI Signs and Semi-quantitative Enhancement in Triple-negative Breast Cancer J. Journal of Bengbu Medical College, 2023, 48(8): 1035-1039. DOI: 10.13898/j.cnki.issn. 1000-2200.2023.08.018
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity. 2024 Oct 8;57(10):2344-2361.e7. doi: 10.1016/j.immuni. 2024.08.015. Epub 2024 Sep 24. PMID: 39321806.
Correlation Analysis of Breast Cancer DCE-MRI Parameters and ADC with Pathological Molecular Prognostic Markers J. Magnetic Resonance Imaging, 2021, 12(3): 283-288. DOI: 10.12015/issn.1674-8034. 2021.03.001
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 2024 Jun 10;42(6):946-967. doi: 10.1016/j.ccell.2024.04.009. Epub 2024 May 9. PMID: 38729160; PMCID: PMC11190820.
Wei Ling, Jiang Lin, Ma Xuejin, et al. Research Progress of Quantitative MRI in the Diagnosis of Breast Cancer [J]. International Journal of Medical Radiology, 2023, 46(01): 55-59. DOI:10.19300/j.2023.z20042.
Yu Jinfen, Wang Linsheng, Li Chuan Ting, et al. Clinical Value of MR DCE Ktrans Values in Laryngeal Cartilage Lesions [J]. Chinese Journal of Medical Imaging, 2022, 28(05): 466-471. DOI:10.19627/ j.cnki.cn31-1700/th.2022.05.008.
Rao Deli, Qiu Xiaoming, Zhu Yanli. Observational Study on the Application of DCE-MRI Quantitative Parameters in the Staging and Prognostic Evaluation of Breast Cancer [J]. Chinese Journal of CT and MRI, 2024, 22(04): 89-91.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jing Ren, Qiang Zhang, Xiang Zhuang

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.