Research Progress on Mechanism of Action of Vascular Endothelial Cells in Autologous Arteriovenous Fistula Stenosis
DOI:
https://doi.org/10.53469/jcmp.2025.07(01).36Keywords:
Arteriovenous fistula, Vascular endothelial cells, Intimal hyperplasia, Endothelium-mesenchymal transformation, Shear forceAbstract
At present, arteriovenous fistula is the preferred vascular access for hemodialysis patients. In clinical practice, arteriovenous fistula is often narrow, in which vascular endothelial cells play an important role. This paper introduces the mechanism of arteriovenous fistula stenosis, the function of endothelial cells, the common injury mechanism, and the relationship between endothelial cells and endometrial hyperplasia, and further discusses the role of vascular endothelial cells in the occurrence and development of arteriovenous fistula stenosis, in order to provide new ideas for improving the prognosis of arteriovenous fistula stenosis by intervening vascular endothelial cells.
References
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020; 395(10225): 709-733.
Feng X, Hou N, Chen Z, et al. Secular trends of epidemiologic patterns of chronic kidney disease over three decades: an updated analysis of the Global Burden of Disease Study 2019. BMJ Open. 2023;13(3):e064540. Published 2023 Mar 17.
Viecelli AK, Mori TA, Roy-Chaudhury P, et al. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: Optimism unfulfilled. Semin Dial. 2018;31(3):244-257.
Venkat Ramanan S, Prabhu RA, Rao IR, et al. Outcomes and predictors of failure of arteriovenous fistulae for hemodialysis. Int Urol Nephrol. 2022;54(1):185-192.
Cheung AK, Imrey PB, Alpers CE, et al. Intimal Hyperplasia, Stenosis, and Arteriovenous Fistula Maturation Failure in the Hemodialysis Fistula Maturation Study. J Am Soc Nephrol. 2017; 28(10): 3005-3013.
Lok C E, Huber T S, Orchanian-Cheff A,et al.Arteriovenous Access for Hemodialysis: A Review
[J].JAMA: Journal of the American Medical Association, 2024, 331(15).
Rothuizen TC, Wong C, Quax PH, van Zonneveld AJ, Rabelink TJ, Rotmans JI. Arteriovenous access failure: more than just intimal hyperplasia?. Nephrol Dial Transplant. 2013;28(5):1085-1092.
Ladak SS, McQueen LW, Layton GR, Aujla H, Adebayo A, Zakkar M. The Role of Endothelial Cells in the Onset, Development and Modulation of Vein Graft Disease. Cells. 2022;11(19):3066.
Viecelli AK, Mori TA, Roy-Chaudhury P, et al. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: Optimism unfulfilled. Semin Dial. 2018;31(3):244-257.
Kassem MM, Muqri F, Dacosta M, Bruch D, Gahtan V, Maier KG. Inhibition of heat shock protein 90 attenuates post‑angioplasty intimal hyperplasia. Mol Med Rep. 2020;21(4):1959-1964.
Roy-Chaudhury P, Kruska L. Future directions for vascular access for hemodialysis. Semin Dial. 2015; 28(2): 107-113.
Duque JC, Tabbara M, Martinez L, Cardona J, Vazquez-Padron RI, Salman LH. Dialysis Arteriovenous Fistula Failure and Angioplasty: Intimal Hyperplasia and Other Causes of Access Failure. Am J Kidney Dis. 2017;69(1):147-151.
Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016;89(2):303-316.
Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023; 20(3): 197-210.
Wakabayashi T, Naito H. Cellular heterogeneity and stem cells of vascular endothelial cells in blood vessel formation and homeostasis: Insights from single-cell RNA sequencing. Front Cell Dev Biol. 2023; 11: 1146399.
Garcia FJ, Sun N, Lee H, et al. Single-cell dissection of the human brain vasculature. Nature. 2022; 603(7903): 893-899.
Phansalkar R, Krieger J, Zhao M, et al. Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. Elife. 2021, 10.
Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature
[published correction appears in Nature. 2018 Aug; 560(7716):E3.
Ushiyama A., Kataoka H., Iijima T. Glycocalix and its involvement in clinical pathophysiologies. J. Intens. Care. 2016;4:59.
Curry F.E., Adamson R.H. Endothelial glycocalyx: Permeability barrier and mechanosensor. Ann. Biomed. Eng. 2012;40:828–839.
van den Berg B.M., Nieuwdorp M., Stroes E.S., Vink H. Glycocalyx and endothelial (dys) function: From mice to men. Pharmacol. Rep. 2006;58:75–80.
Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653–666.
Levick J. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp. Physiol. 1991;76:825–857.
Becker B.F., Chappell D., Bruegger D., Annecke T., Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: Acute deficits, but great potential. Cardiovasc. Res. 2010;87:300–310.
Lipowsky H.H., Lescanic A. Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc. Res. 2017; 112: 72–78.
Tarbell J.M., Pahakis M. Mechanotransduction and the glycocalyx. J. Intern. Med. 2006;259:339–350.
Wolf MP, Hunziker P. Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J Cardiovasc Transl Res. 2020; 13(5): 744-757.
Loh YC, Tan CS, Ch’ng YS, Yeap ZQ, Ng CH, Yam MF. Overview of the Microenvironment of Vasculature in Vascular Tone Regulation. Int J Mol Sci. 2018; 19(1): 120.
Tomioka H., Hattori Y., Fukao M., Sato A., Liu M., Sakuma I., Kitabatake A., Kanno M. Relaxation in different-sized rat blood vessels mediated by endothelium-derived hyperpolarizing factor: Importance of processes mediating precontractions. J. Vasc. Res. 1999;36:311–320.
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019 Sep 7;20(18):4411.
Cines D.B., Pollak E.S., Buck C.A., Loscalzo J., Zimmerman G.A., McEver R.P., Pober J.S., Wick T.M., Konkle B.A., Schwartz B.S., et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–3561.
de Graaf J.C., Banga J.D., Moncada S., Palmer R.M., de Groot P.G., Sixma J.J. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992;85:2284–2290.
Pearson J.D., Carleton J.S., Gordon J.L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth muscle cells in culture. Biochem. J. 1980;190:421–429.
Michal F., Thorp R.H. Enhanced adenosine inhibition of platelet aggregation in the presence of cardiac glycosides. Nature.
Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473: 298–307.
Munaron L., Fiorio Pla A. Endothelial calcium machinery and angiogenesis: Understanding physiology to interfere with pathology. Curr Med Chem. 2009; 16: 4691–4703.
Moccia F., Dragoni S., Lodola F., Bonetti E., Bottino C., Guerra G., Laforenza U., Rosti V., Tanzi F. Store-dependent Ca(2+) entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization. Curr Med Chem. 2012;19:5802–5818.
Jain R.K. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–693.
Jung F., Franke R.P., Mrowietz C., Wolf S., Kiesewetter H. Capillary occlusion and secondary angiogenesis in a patient with Raynaud’s phenomenon. J Vasc Res. 1992;29:71–74.
Blocki A., Beyer S., Jung F., Raghunath M. The controversial origin of pericytes during angiogenesis - Implications for cell-based therapeutic angiogenesis and cell-based therapies. Clin Hemorheol Microcirc. 2018;69:215–232.
Blocki A., Wang Y., Koch M., Goralczyk A., Beyer S., Agarwal N., Lee M., Moonshi S., Dewavrin J.Y., Peh P., et al. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications. Mol Ther. 2015; 23: 510–522.
Kobayashi H., Lin P.C. Angiogenesis links chronic inflammation with cancer. Methods Mol Biol. 2009;511:185–191.
Kundu J.K., Surh Y.J. Inflammation: Gearing the journey to cancer. Mutat Res. 2008;659:15–30.
Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601.
Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83: 835–870.
Wagner W, Wehrmann M. Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med. 2007; 11(6): 1342-1351.
Zafrani L, Ince C. Microcirculation in Acute and Chronic Kidney Diseases. Am J Kidney Dis. 2015; 66(6): 1083-1094.
Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90(11):1189-1196.
Krenning G, Moonen JAJ, van Luyn MJA, Harmsen MC. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials. 2008;29(27):3703-3711.
Kizu A, Medici D, Kalluri R. Endothelial-mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy. Am J Pathol. 2009;175(4):1371-1373.
Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res. 2010;86(3):506-515.
Moonen JR, Lee ES, Schmidt M, et al. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res. 2015; 108(3): 377-386.
Mahmoud MM, Serbanovic-Canic J, Feng S, et al. Author Correction: Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep. 2020;10(1):3870. Published 2020 Feb 26.
Cooley BC, Nevado J, Mellad J, et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med. 2014;6(227):227ra34.
Zhang M, Wang B, Urabe G, et al. The BD2 domain of BRD4 is a determinant in EndoMT and vein graft neointima formation. Cell Signal. 2019;61:20-29.
Vanchin B, Offringa E, Friedrich J, et al. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J Pathol. 2019; 247(4): 456-470.
Lee T, Roy-Chaudhury P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv Chronic Kidney Dis. 2009;16(5):329-338.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hang Li, Yanlong Zhao
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.