Research Progress on the Mechanism of Action of Tanshinone ⅡA in the Prevention and Treatment of Osteoarthritis

Authors

  • Zifan Luo Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Xinnan Cheng Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Shanshan Cui Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Xianguo He Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Jianbing Ma Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China

DOI:

https://doi.org/10.53469/jcmp.2025.07(01).28

Keywords:

Tanshinone ⅡA, Osteoarthritis, Chondrocytes, Mechanism of action

Abstract

Osteoarthritis (OA) is a chronic inflammatory degenerative disease that is difficult to cure due to its complex pathogenesis. Traditional Chinese Medicine (TCM), with its multi-component, multi-target, and multi-pathway characteristics, offers various mechanisms for the treatment of OA. Tanshinone ⅡA (Tan ⅡA), a primary active ingredient extracted from the herb Salvia miltiorrhiza (Danshen), has shown significant potential in the treatment of OA. Tan II A can participate in the development of OA by activating or inhibiting multiple signaling pathways. It has various effects, including the inhibition of chondrocyte apoptosis and degradation of the extracellular matrix, reduction of inflammatory factor production, promotion of chondrocyte autophagy, and antioxidative stress. This review summarizes the role and mechanisms of Tan II A in the prevention and treatment of OA, providing a theoretical basis for future research and clinical applications of Tan ⅡA in OA treatment.

References

Sharma, L., Osteoarthritis of the Knee. N Engl J Med 2021, 384, (1), 51-59.

Shen, J.; Abu-Amer, Y.; O'Keefe, R. J.; McAlinden, A., Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 2017, 58, (1), 49-63.

Loeser, R. F.; Goldring, S. R.; Scanzello, C. R.; Goldring, M. B., Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64, (6), 1697-707.

Wood, M. J.; Miller, R. E.; Malfait, A.-M., The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of O steoarthritis Pain. Clinics in geriatric medicine 38, (2), 221-238.

Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G., Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 8, (1), 56.

Yimam, M.; Lee, Y.-C.; Jiao, P.; Hong, M.; Nam, J.-B.; Brownell, L.; Hyun, E.; Jia, Q., UP1306, a Botanical Composition with Analgesic and Anti-inflammatory E ffect. Pharmacognosy Res 2016, 8, (3), 186-92.

Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T., Short-term effects of highly - bioavailable curcumin for treating knee o steoarthritis: a randomized, double-blind, placebo-controlled prospect ive study. J Orthop Sci 2014, 19, (6), 933-9.

Fang, J.; Little, P. J.; Xu, S., Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2018, 38, (1), 201-228.

Dai N, Wang C A, Shi B, Research progress on mechanism of active components of Salvia miltiorrhiza to prevent osteoarthritis. Global Traditional Chinese Medicine 2023, 16, (10), 2147-2152.

Ansari, M. A.; Khan, F. B.; Safdari, H. A.; Almatroudi, A.; Alzohairy, M. A.; Safdari, M.; Amirizadeh, M.; Rehman, S.; Equbal, M. J.; Hoque, M., Prospective therapeutic potential of Tanshinone ⅡA: An updated overview. Pharmacol Res 2021, 164, 105364.

You M C, Shen C W, Xu Y Y, Ren X H, You Y W. Effects of Tanshinone IIA on Expression of Bcl-2 and Bax and in Spinal of Rats with Neuropathic Pain [J]. Journal of Basic Chinese Medicine 2020, 26, (04), 479-482.

Guo, R.; Li, L.; Su, J.; Li, S.; Duncan, S. E.; Liu, Z.; Fan, G., Pharmacological Activity and Mechanism of Tanshinone ⅡA in Related Diseases. Drug Des Devel Ther 2020, 14, 4735-4748.

Sun, S. C., The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017, 17, (9), 545-558.

Hong Y, Yan W H, Liu X S, Tanshinone ⅡA Plays a Protective Effect on Chondrocyte Damage Induced by IL-1β by Down-regulating the NF-κB Signaling Pathway. Strait Pharmaceutical Journal V 2021, 33, (06), 4-8.

Radojčić, M. R.; Thudium, C. S.; Henriksen, K.; Tan, K.; Karlsten, R.; Dudley, A.; Chessell, I.; Karsdal, M. A.; Bay-Jensen, A. C.; Crema, M. D.; Guermazi, A., Biomarker of extracellular matrix remodelling C1M and proinflammatory cytokine interleukin 6 are related to synovitis and pain in end-stage knee osteoarthritis patients. Pain 2017, 158, (7), 1254-1263.

Meng R D, Hu Z J, Mao Q, Protective Effect of Tanshinone IIA on Inflammatory Chondrocytes by Inhibiting PI3K/AKT/NF-κB Pathway. Chin J Mod Appl Pharm 2021, 38, (10), 1166-1173.

Li, Z.; Zou, Y.; Fan, D.; Zhang, W.; Gao, H.; Ge, N.; Tian, S., The mechanism of medial collateral ligament repair in knee osteoarthritis based on the TLR4/MyD88/NF-κB inflammatory signaling pathway. J Musculoskelet Neuronal Interact 2020, 20, (3), 398-403.

Zhang, Y.; Zeng, Y., Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4 /MyD88/NF-κB signal pathway. Drug Dev Res 2019, 80, (3), 353-359.

Liu, X.; Cai, H. X.; Cao, P. Y.; Feng, Y.; Jiang, H. H.; Liu, L.; Ke, J.; Long, X., TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020, 24, (19), 11489-11499.

Gu, H.; Jiao, Y.; Yu, X.; Li, X.; Wang, W.; Ding, L.; Liu, L., Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. Int J Mol Med 2017, 39, (3), 734-740.

Zhang J F, Xu Z L, Wu M, Dong Z W, Wang W J, Xiu X G, Tanshinone ⅡA Alleviates Cartilage Degeneration and Local Inflammation in Rats with Knee Osteoarthritis by Inhibiting Pathway. Chin Pharm J 2021, 56, (23), 1918-1926.

Zhang J Y, Zhang W H, Han J, Chen D, Tanshinone ⅡA Ameliorates Osteoarthritis in Rats to Inhibit Chondrocyte Inflammation and Cartilage Matrix Degradation. Med & Pharm J Chin PLA 2021, 33, (03), 10-16.

Jenei-Lanzl, Z.; Meurer, A.; Zaucke, F., Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2019, 53, 212-223.

Xu, J.; Zhi, X.; Zhang, Y.; Ding, R., Tanshinone ⅡA alleviates IL-1β-induced chondrocyte apoptosis and inflammation by regulating FBXO11 expression. Clinics (Sao Paulo) 2024, 79, 100365.

Aizawa, T.; Kon, T.; Einhorn, T. A.; Gerstenfeld, L. C., Induction of apoptosis in chondrocytes by tumor necrosis factor-alpha. J Orthop Res 2001, 19, (5), 785-96.

Jia, P. T.; Zhang, X. L.; Zuo, H. N.; Lu, X.; Li, L., Articular cartilage degradation is prevented by tanshinone ⅡA through inhibiting apoptosis and the expression of inflammatory cytokines. Mol Med Rep 2017, 16, (5), 6285-6289.

Guo, J.; Zhang, Y. Y.; Sun, M.; Xu, L. F., Therapeutic Potential of Curcumin in a Rat Model of Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating the Balance of Treg/Th17 Cells. Inflammation 2022, 45, (6), 2163-2171.

Sun M D, Shang X L, Wang X J, Effect of Tanshinone Ⅱ-A on Th17 / Treg Balance and TLR4 Related Pathways in Osteoarticular Cartilage Degeneration Rats. J Med Mol Biol 2024, 21, (06), 521-529.

Stockwell, B. R.; Jiang, X.; Gu, W., Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol 2020, 30, (6), 478-490.

Yao, X.; Sun, K.; Yu, S.; Luo, J.; Guo, J.; Lin, J.; Wang, G.; Guo, Z.; Ye, Y.; Guo, F., Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2021, 27, 33-43.

Lin, X.; Ping, J.; Wen, Y.; Wu, Y., The Mechanism of Ferroptosis and Applications in Tumor Treatment. Front Pharmacol 2020, 11, 1061.

Xu, J.; Zhi, X.; Zhang, Y.; Ding, R., Tanshinone ⅡA alleviates chondrocyte apoptosis and extracellular matrix degeneration by inhibiting ferroptosis. Open Life Sci 2023, 18, (1), 20220666.

Bai, B.; Li, Y., Danshen prevents articular cartilage degeneration via antioxidation in rabbits with osteoarthritis. Osteoarthritis Cartilage 2016, 24, (3), 514-20.

Yudoh, K.; Nguyen v, T.; Nakamura, H.; Hongo-Masuko, K.; Kato, T.; Nishioka, K., Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 2005, 7, (2), R380-91.

Ahmad, N.; Ansari, M. Y.; Haqqi, T. M., Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol 2020, 235, (10), 6366-6376.

Onuora, S., Osteoarthritis: Cartilage matrix stiffness regulates chondrocyte metabolism and OA pathogenesis. Nat Rev Rheumatol 2015, 11, (9), 504.

Li, T.; Peng, J.; Li, Q.; Shu, Y.; Zhu, P.; Hao, L., The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022, 12, (7).

Ashruf, O. S.; Ansari, M. Y., Natural Compounds: Potential Therapeutics for the Inhibition of Cartilage Matrix Degradation in Osteoarthritis. Life (Basel) 2022, 13, (1).

Hu, Q.; Ecker, M., Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci 2021, 22, (4).

Bondeson, J.; Wainwright, S.; Hughes, C.; Caterson, B., The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol 2008, 26, (1), 139-45.

Mehana, E. E.; Khafaga, A. F.; El-Blehi, S. S., The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci 2019, 234, 116786.

Liu J Y, Duan H C, Zhnag X F, Xu X L, Li Z X, Li J C, Tanshinone Ⅱ alleviates keen osteoarthritis via NF-κB signaling pathway. Modern Journal of Integrated Traditional Chinese and Western Medicine 2024, 33, (12), 1635-1641+1654.

Ko, J. Y.; Lee, J.; Lee, J.; Ryu, Y. H.; Im, G. I., SOX-6, 9-Transfected Adipose Stem Cells to Treat Surgically-Induced Osteoarthritis in Goats. Tissue Eng Part A 2019, 25, (13-14), 990-1000.

Zhang, Y.; Sun, L.; Liu, X.; Zhu, D.; Dang, J.; Xue, Y.; Fan, H., Investigating the protective effect of tanshinone ⅡA against chondrocyte dedifferentiation: a combined molecular biology and network pharmacology approach. Ann Transl Med 2021, 9, (3), 249.

Yuasa, T.; Otani, T.; Koike, T.; Iwamoto, M.; Enomoto-Iwamoto, M., Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 2008, 88, (3), 264-74.

Song Y, Zhu Y, Ding D F, Effect of Tanshinone ⅡA on Collagen Ⅱ and Wnt/β-catenin Signal Pathway of Rat Chondrocytes. Chinese J Trad Med Traum & Orthop 2018, 26, (09), 1-4.

Li, C. J.; Xiao, Y.; Sun, Y. C.; He, W. Z.; Liu, L.; Huang, M.; He, C.; Huang, M.; Chen, K. X.; Hou, J.; Feng, X.; Su, T.; Guo, Q.; Huang, Y.; Peng, H.; Yang, M.; Liu, G. H.; Luo, X. H., Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 2021, 33, (10), 1957-1973.e6.

Zhang, G.; Liu, J., Targeting senescent immune cells to rejuvenate the aging skeleton. Cell Metab 2021, 33, (10), 1903-1905.

Houtman, E.; Tuerlings, M.; Riechelman, J.; Suchiman, E.; van der Wal, R. J. P.; Nelissen, R.; Mei, H.; Ramos, Y. F. M.; Coutinho de Almeida, R.; Meulenbelt, I., Elucidating mechano-pathology of osteoarthritis: transcriptome-wide differences in mechanically stressed aged human cartilage explants. Arthritis Res Ther 2021, 23, (1), 215.

Prašnikar, E.; Borišek, J.; Perdih, A., Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021, 66, 101251.

Jun, J. I.; Lau, L. F., Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011, 10, (12), 945-63.

Feng, M.; Peng, H.; Yao, R.; Zhang, Z.; Mao, G.; Yu, H.; Qiu, Y., Inhibition of cellular communication network factor 1 (CCN1)-driven senescence slows down cartilage inflammaging and osteoarthritis. Bone 2020, 139, 115522.

Hernandez-Segura, A.; de Jong, T. V.; Melov, S.; Guryev, V.; Campisi, J.; Demaria, M., Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol 2017, 27, (17), 2652-2660.e4.

Jun, J. I.; Lau, L. F., The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 2010, 12, (7), 676-85.

Huang, Y.; Shen, X. J.; Zou, Q.; Wang, S. P.; Tang, S. M.; Zhang, G. Z., Biological functions of microRNAs: a review. J Physiol Biochem 2011, 67, (1), 129-39.

Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X., MicroRNA: function, detection, and bioanalysis. Chem Rev 2013, 113, (8), 6207-33.

Macfarlane, L. A.; Murphy, P. R., MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2010, 11, (7), 537-61.

Zhou, B.; Li, L. H.; Tan, L. M.; Luo, W. B.; Xiong, H.; Lu, X. L.; Liu, D.; Li, W. Y.; Guo, Y. X.; Tang, Z.; Zhu, L. G., Tanshinone ⅡA Ameliorates Inflammation Response in Osteoarthritis via Inhibition of miR-155/FOXO3 Axis. Pharmacology 2021, 106, (1-2), 20-28.

Ji, Q.; Qi, D.; Xu, X.; Xu, Y.; Goodman, S. B.; Kang, L.; Song, Q.; Fan, Z.; Maloney, W. J.; Wang, Y., Cryptotanshinone Protects Cartilage against Developing Osteoarthritis through the miR-106a-5p/GLIS3 Axis. Mol Ther Nucleic Acids 2018, 11, 170-179.

Min, M.; Peng, L.; Yang, Y.; Guo, M.; Wang, W.; Sun, G., MicroRNA-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis 2014, 20, (4), 652-9.

Fan, G.; Jiang, X.; Wu, X.; Fordjour, P. A.; Miao, L.; Zhang, H.; Zhu, Y.; Gao, X., Anti-Inflammatory Activity of Tanshinone ⅡA in LPS-Stimulated RAW264.7 Macrophages via miRNAs and TLR4-NF-κB Pathway. Inflammation 2016, 39, (1), 375-384.

Ali, S. A.; Peffers, M. J.; Ormseth, M. J.; Jurisica, I.; Kapoor, M., The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021, 17, (11), 692-705.

Ghafouri-Fard, S.; Poulet, C.; Malaise, M.; Abak, A.; Mahmud Hussen, B.; Taheriazam, A.; Taheri, M.; Hallajnejad, M., The Emerging Role of Non-Coding RNAs in Osteoarthritis. Front Immunol 2021, 12, 773171.

Zhang, S.; Jin, Z., Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing Long Noncoding RNA NEAT1 Relieve Osteoarthritis. Oxid Med Cell Longev 2022, 2022, 5517648.

Charlier, E.; Deroyer, C.; Ciregia, F.; Malaise, O.; Neuville, S.; Plener, Z.; Malaise, M.; de Seny, D., Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019, 165, 49-65.

Sun, J.; Chen, W.; Zhou, Z.; Chen, X.; Zuo, Y.; He, J.; Liu, H., Tanshinone ⅡA Facilitates Efficient Cartilage Regeneration under Inflammatory Factors Caused Stress via Upregulating LncRNA NEAT1_2. Biomedicines 2023, 11, (12).

Jung, H. G.; Myerson, M. S.; Schon, L. C., Spectrum of operative treatments and clinical outcomes for atraumatic osteoarthritis of the tarsometatarsal joints. Foot Ankle Int 2007, 28, (4), 482-9.

Demoor, M.; Ollitrault, D.; Gomez-Leduc, T.; Bouyoucef, M.; Hervieu, M.; Fabre, H.; Lafont, J.; Denoix, J. M.; Audigié, F.; Mallein-Gerin, F.; Legendre, F.; Galera, P., Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 2014, 1840, (8), 2414-40.

Karlsen, T. A.; Shahdadfar, A.; Brinchmann, J. E., Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype. Tissue Eng Part C Methods 2011, 17, (2), 219-27.

Zhang Y S, Zhang P H, Liu X C, Cheng X X, Fan H B, Effects of Tanshinon IIA on dedifferentiation of chondrocytes from rat knee. Chin J Bone Joint Injury 2017, 32, (09), 942-945.

Yan, B.; Zhou, L.; Wang, C.; Wang, R.; Yan, L.; Yu, L.; Liu, F.; Du, W.; Yu, G.; Yuan, Q.; Tong, P.; Shan, L.; Efferth, T., Intra-Articular Injection of Fructus Ligustri Lucidi Extract Attenuates Pain Behavior and Cartilage Degeneration in Mono-Iodoacetate Induced Osteoarthritic Rats. Front Pharmacol 2018, 9, 1360.

Ikeda, T.; Kawaguchi, H.; Kamekura, S.; Ogata, N.; Mori, Y.; Nakamura, K.; Ikegawa, S.; Chung, U. I., Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab 2005, 23, (5), 337-40.

Fransès, R. E.; McWilliams, D. F.; Mapp, P. I.; Walsh, D. A., Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage 2010, 18, (4), 563-71.

Nagai, T.; Sato, M.; Kobayashi, M.; Yokoyama, M.; Tani, Y.; Mochida, J., Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis. Arthritis Res Ther 2014, 16, (5), 427.

Ashraf, S.; Wibberley, H.; Mapp, P. I.; Hill, R.; Wilson, D.; Walsh, D. A., Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis 2011, 70, (3), 523-9.

Hamilton, J. L.; Nagao, M.; Levine, B. R.; Chen, D.; Olsen, B. R.; Im, H. J., Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016, 31, (5), 911-24.

Xie, J.; Liu, J.; Liu, H.; Liang, S.; Lin, M.; Gu, Y.; Liu, T.; Wang, D.; Ge, H.; Mo, S. L., The antitumor effect of tanshinone ⅡA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm Sin B 2015, 5, (6), 554-63.

Li, H. Z.; Han, D.; Ao, R. F.; Cai, Z. H.; Zhu, G. Z.; Wu, D. Z.; Gao, J. W.; Zhuang, J. S.; Tu, C.; Zhao, K.; Wu, Z. Y.; Zhong, Z. M., Tanshinone ⅡA attenuates osteoarthritis via inhibiting aberrant angiogenesis in subchondral bone. Arch Biochem Biophys 2024, 753, 109904.

Downloads

Published

2025-01-31

How to Cite

Luo, Z., Cheng, X., Cui, S., He, X., & Ma, J. (2025). Research Progress on the Mechanism of Action of Tanshinone ⅡA in the Prevention and Treatment of Osteoarthritis. Journal of Contemporary Medical Practice, 7(1), 146–152. https://doi.org/10.53469/jcmp.2025.07(01).28