The Impact of Prenatal Glucocorticoid Exposure on Offspring Cardiac Development

Authors

  • Wenwen Huang The Second Clinical College of Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Xiaowen Jia The Third Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi’an 710000, Shaanxi, China

DOI:

https://doi.org/10.53469/jcmp.2025.07(01).26

Keywords:

ACS, GR, Fatty acid oxidation, PGC-1α, DNA methylation

Abstract

Glucocorticoids are the main part of the treatment of preterm birth, which can promote fetal lung maturation and reduce neonatal respiratory distress syndrome. NRDS), neonatal intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and perinatal mortality. However, many studies in recent years have shown that antenatal corticosteroid (ACS) exposure has adverse effects on cardiac myocytes in offspring, resulting in long-term cardiac damage in offspring. This article reviews the recent studies on the regulation of cardiac maturation, cardiac hypertrophy, hemodynamic effects, energy metabolism regulation, and susceptibility to heart disease in offspring treated with glucocorticoids, in order to provide clinical evidence on the harm of ACS to the heart health of offspring, so that clinical attention should be paid to the risk of ACS and the reasonable indications for the use of ACS.

References

Liggins, G. C.; Howie, R. N., A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972, 50 (4), 515-25.

Stock, S. J.; Thomson, A. J.; Papworth, S., Antenatal corticosteroids to reduce neonatal morbidity and mortality: Green-top Guideline No. 74. BJOG: an international journal of obstetrics and gynaecology 2022, 129 (8), e35-e60.

Williams, M. J.; Ramson, J. A.; Brownfoot, F. C., Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. The Cochrane database of systematic reviews 2022, 8 (8), Cd006764.

Jellyman, J. K.; Fletcher, A. J. W.; Fowden, A. L.; Giussani, D. A., Glucocorticoid Maturation of Fetal Cardiovascular Function. Trends in molecular medicine 2020, 26 (2), 170-184.

Hanson, M. A.; Gluckman, P. D., Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiological reviews 2014, 94 (4), 1027-76.

Makhija, N. K.; Tronnes, A. A.; Dunlap, B. S.; Schulkin, J.; Lannon, S. M., Antenatal corticosteroid timing: accuracy after the introduction of a rescue course protocol. American journal of obstetrics and gynecology 2016, 214 (1), 120.e1-6.

Guo, Y.; Pu, W. T., Cardiomyocyte Maturation: New Phase in Development. Circulation research 2020, 126 (8), 1086-1106.

Karbassi, E.; Fenix, A.; Marchiano, S.; Muraoka, N.; Nakamura, K.; Yang, X.; Murry, C. E., Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature reviews. Cardiology 2020, 17 (6), 341-359.

Lopaschuk, G. D.; Jaswal, J. S., Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. Journal of cardiovascular pharmacology 2010, 56 (2), 130-40.

Scuderi, G. J.; Butcher, J., Naturally Engineered Maturation of Cardiomyocytes. Frontiers in cell and developmental biology 2017, 5, 50.

Mohamed, T. M. A.; Ang, Y. S.; Radzinsky, E.; Zhou, P.; Huang, Y.; Elfenbein, A.; Foley, A.; Magnitsky, S.; Srivastava, D., Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell 2018, 173 (1), 104-116.e12.

Mollova, M.; Bersell, K.; Walsh, S.; Savla, J.; Das, L. T.; Park, S. Y.; Silberstein, L. E.; Dos Remedios, C. G.; Graham, D.; Colan, S.; Kühn, B., Cardiomyocyte proliferation contributes to heart growth in young humans. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (4), 1446-51.

Rog-Zielinska, E. A.; Richardson, R. V.; Denvir, M. A.; Chapman, K. E., Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. Journal of molecular endocrinology 2014, 52 (2), R125-35.

Ishimoto, H.; Jaffe, R. B., Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocrine reviews 2011, 32 (3), 317-55.

Walker, N.; Filis, P.; Soffientini, U.; Bellingham, M.; O'Shaughnessy, P. J.; Fowler, P. A., Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†. Biology of reproduction 2017, 96 (4), 733-742.

Chapman, K.; Holmes, M.; Seckl, J., 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiological reviews 2013, 93 (3), 1139-206.

Warren, W. B.; Goland, R. S., Effects of parturition on corticotropin releasing hormone and products of the pituitary and adrenal in term fetuses at delivery. Journal of perinatal medicine 1995, 23 (6), 453-8.

Robinson, B. G.; Emanuel, R. L.; Frim, D. M.; Majzoub, J. A., Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proceedings of the National Academy of Sciences of the United States of America 1988, 85 (14), 5244-8.

Murphy, V. E.; Clifton, V. L., Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 2003, 24 (7), 739-44.

Agnew, E. J.; Ivy, J. R.; Stock, S. J.; Chapman, K. E., Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. Journal of molecular endocrinology 2018, 61 (1), R61-r73.

Kemp, M. W.; Newnham, J. P.; Challis, J. G.; Jobe, A. H.; Stock, S. J., The clinical use of corticosteroids in pregnancy. Human reproduction update 2016, 22 (2), 240-59.

Richardson, R. V.; Batchen, E. J.; Denvir, M. A.; Gray, G. A.; Chapman, K. E., Cardiac GR and MR: From Development to Pathology. Trends in endocrinology and metabolism: TEM 2016, 27 (1), 35-43.

Funder, J. W., Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annual review of medicine 1997, 48, 231-40.

Coutinho, A. E.; Chapman, K. E., The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology 2011, 335 (1), 2-13.

Rog-Zielinska, E. A.; Thomson, A.; Kenyon, C. J.; Brownstein, D. G.; Moran, C. M.; Szumska, D.; Michailidou, Z.; Richardson, J.; Owen, E.; Watt, A.; Morrison, H.; Forrester, L. M.; Bhattacharya, S.; Holmes, M. C.; Chapman, K. E., Glucocorticoid receptor is required for foetal heart maturation. Human molecular genetics 2013, 22 (16), 3269-82.

Parikh, S. S.; Blackwell, D. J.; Gomez-Hurtado, N.; Frisk, M.; Wang, L.; Kim, K.; Dahl, C. P.; Fiane, A.; Tønnessen, T.; Kryshtal, D. O.; Louch, W. E.; Knollmann, B. C., Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation research 2017, 121 (12), 1323-1330.

Sakurai, K.; Takeba, Y.; Osada, Y.; Mizuno, M.; Tsuzuki, Y.; Aso, K.; Kida, K.; Ohta, Y.; Ootaki, M.; Iiri, T.; Hokuto, I.; Shimizu, N.; Matsumoto, N., Antenatal Glucocorticoid Administration Promotes Cardiac Structure and Energy Metabolism Maturation in Preterm Fetuses. International journal of molecular sciences 2022, 23 (17).

Garrud, T. A. C.; Teulings, N.; Niu, Y.; Skeffington, K. L.; Beck, C.; Itani, N.; Conlon, F. G.; Botting, K. J.; Nicholas, L. M.; Tong, W.; Derks, J. B.; Ozanne, S. E.; Giussani, D. A., Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2023, 37 (6), e22887.

Schmidt, A. F.; Kemp, M. W.; Kannan, P. S.; Kramer, B. W.; Newnham, J. P.; Kallapur, S. G.; Jobe, A. H., Antenatal dexamethasone vs. betamethasone dosing for lung maturation in fetal sheep. Pediatric research 2017, 81 (3), 496-503.

Vogel, J. P.; Oladapo, O. T.; Manu, A.; Gülmezoglu, A. M.; Bahl, R., New WHO recommendations to improve the outcomes of preterm birth. The Lancet. Global health 2015, 3 (10), e589-90.

Sacco, A.; Cornish, E. F.; Marlow, N.; David, A. L.; Giussani, D. A., The effect of antenatal corticosteroid use on offspring cardiovascular function: A systematic review. BJOG: an international journal of obstetrics and gynaecology 2023, 130 (4), 325-333.

Elfayomy, A. K.; Almasry, S. M., Effects of a single course versus repeated courses of antenatal corticosteroids on fetal growth, placental morphometry and the differential regulation of vascular endothelial growth factor. The journal of obstetrics and gynaecology research 2014, 40 (11), 2135-45.

Cottrell, E. C.; Seckl, J. R.; Holmes, M. C.; Wyrwoll, C. S., Foetal and placental 11β-HSD2: a hub for developmental programming. Acta physiologica (Oxford, England) 2014, 210 (2), 288-95.

Schuermans, A.; Lewandowski, A. J., Understanding the preterm human heart: What do we know so far? Anatomical record (Hoboken, N.J.: 2007) 2022, 305 (9), 2099-2112.

Morrison, J. L.; Botting, K. J.; Soo, P. S.; McGillick, E. V.; Hiscock, J.; Zhang, S.; McMillen, I. C.; Orgeig, S., Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? Journal of pregnancy 2012, 2012, 839656.

Amiya, R. M.; Mlunde, L. B.; Ota, E.; Swa, T.; Oladapo, O. T.; Mori, R., Antenatal Corticosteroids for Reducing Adverse Maternal and Child Outcomes in Special Populations of Women at Risk of Imminent Preterm Birth: A Systematic Review and Meta-Analysis. PloS one 2016, 11 (2), e0147604.

Fratelli, N.; Prefumo, F.; Wolf, H.; Hecher, K.; Visser, G. H. A.; Giussani, D.; Derks, J. B.; Shaw, C. J.; Frusca, T.; Ghi, T.; Ferrazzi, E.; Lees, C. C., Effects of Antenatal Betamethasone on Fetal Doppler Indices and Short Term Fetal Heart Rate Variation in Early Growth Restricted Fetuses. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2021, 42 (1), 56-64.

Lai, L.; Leone, T. C.; Zechner, C.; Schaeffer, P. J.; Kelly, S. M.; Flanagan, D. P.; Medeiros, D. M.; Kovacs, A.; Kelly, D. P., Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes & development 2008, 22 (14), 1948-61.

Rog-Zielinska, E. A.; Craig, M. A.; Manning, J. R.; Richardson, R. V.; Gowans, G. J.; Dunbar, D. R.; Gharbi, K.; Kenyon, C. J.; Holmes, M. C.; Hardie, D. G.; Smith, G. L.; Chapman, K. E., Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α. Cell death and differentiation 2015, 22 (7), 1106-16.

Ivy, J. R.; Carter, R. N.; Zhao, J. F.; Buckley, C.; Urquijo, H.; Rog-Zielinska, E. A.; Panting, E.; Hrabalkova, L.; Nicholson, C.; Agnew, E. J.; Kemp, M. W.; Morton, N. M.; Stock, S. J.; Wyrwoll, C.; Ganley, I. G.; Chapman, K. E., Glucocorticoids regulate mitochondrial fatty acid oxidation in fetal cardiomyocytes. The Journal of physiology 2021, 599 (21), 4901-4924.

Birket, M. J.; Casini, S.; Kosmidis, G.; Elliott, D. A.; Gerencser, A. A.; Baartscheer, A.; Schumacher, C.; Mastroberardino, P. G.; Elefanty, A. G.; Stanley, E. G.; Mummery, C. L., PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function. Stem cell reports 2013, 1 (6), 560-74.

Garrud, T. A. C.; Giussani, D. A., Combined Antioxidant and Glucocorticoid Therapy for Safer Treatment of Preterm Birth. Trends in endocrinology and metabolism: TEM 2019, 30 (4), 258-269.

Gao, L. T.; Yuan, J. Q.; Zhang, Z. Y.; Zhao, H. M.; Gao, L., Hypermethylation of the Bmp4 promoter dampens binding of HIF-1α and impairs its cardiac protective effects from oxidative stress in prenatally GC-exposed offspring. Cellular and molecular life sciences: CMLS 2023, 80 (3), 58.

Peng, J.; Zhou, Y.; Zhang, Z.; Wang, Z.; Gao, L.; Zhang, X.; Fang, Z.; Li, G.; Chen, H.; Yang, H.; Gao, L., The detrimental effects of glucocorticoids exposure during pregnancy on offspring's cardiac functions mediated by hypermethylation of bone morphogenetic protein-4. Cell death & disease 2018, 9 (8), 834.

Luo, T.; Kim, J. K., The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview. The Canadian journal of cardiology 2016, 32 (8), 1017-25.

[Clinical guidelines for the prevention and treatment of preterm birth (version 2024)]. Zhonghua fu chan ke za zhi 2024, 59 (4), 257-269.

Velayutham, N.; Agnew, E. J.; Yutzey, K. E., Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatric cardiology 2019, 40 (7), 1345-1358.

Wyrwoll, C. S.; Noble, J.; Thomson, A.; Tesic, D.; Miller, M. R.; Rog-Zielinska, E. A.; Moran, C. M.; Seckl, J. R.; Chapman, K. E.; Holmes, M. C., Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess. Proceedings of the National Academy of Sciences of the United States of America 2016, 113 (22), 6265-70.

Downloads

Published

2025-01-31

How to Cite

Huang, W., & Jia, X. (2025). The Impact of Prenatal Glucocorticoid Exposure on Offspring Cardiac Development. Journal of Contemporary Medical Practice, 7(1), 135–140. https://doi.org/10.53469/jcmp.2025.07(01).26