Optimal Screw Trajectory for Percutaneous Screw Fixation of Sanders Type ⅡC Calcaneal Fractures: A Finite Element Analysis

Authors

  • Yang Peng The First Affiliated Hospital of Chongqing Medical University
  • Gang Luo The First Affiliated Hospital of Chongqing Medical University
  • Weidong Ni The First Affiliated Hospital of Chongqing Medical University

DOI:

https://doi.org/10.53469/jcmp.2025.07(01).18

Keywords:

Calcaneal fracture, Percutaneous screw fixation, Finite element analysis

Abstract

Background: Percutaneous screw fixation has been widely used to treat calcaneal fractures, but the optimal screw configuration is still unclear. In this study, finite element analysis was used to explore the optimal screw fixation. Methods: Mimics 21.0 software was used to process the ankle CT of a healthy subject and extract a three-dimensional model of the calcaneus. After optimizing the model using Geomagic Wrap 2021, the SandersⅡC fracture model was constructed in SolidWorks 2022 and four internal fixation methods with different screw directions were designed to simulate the internal fixation of the fracture. Finally, the finite element analysis was completed in ANSYS Workbench 2022 R1. Results: The maximum stress of screw and bone and the maximum displacement of fracture fragment in the study group and control groups 1 were significantly smaller than those in the control groups 2 and 3. Conclusion: The screw configuration of study group and control group 1 (two transverse screws to fix the articular surface fracture fragment, one longitudinal screw fixed from the calcaneal tuberosity to the calcaneal anterior process, and one longitudinal screw fixed from the calcaneal tuberosity to the sustentaculum talus) can obtain the best biomechanical fixation effect.

References

Potter, M.Q. and J.A. Nunley, Long-term functional outcomes after operative treatment for intra-articular fractures of the calcaneus. J Bone Joint Surg Am, 2009. 91(8): p. 1854-60.1854-60.10.2106/jbjs.H.01475

Snoap, T., M. Jaykel, C. Williams, et al., Calcaneus Fractures: A Possible Musculoskeletal Emergency. J Emerg Med, 2017. 52(1): p. 28-33.28-33. 10.1016/ j.jemermed.2016.07.085

Rammelt, S. and M.P. Swords, Calcaneal Fractures-Which Approach for Which Fracture? Orthop Clin North Am, 2021. 52(4): p. 433-450.433-450. 10.1016/j.ocl.2021.05.012

Razik, A., M. Harris, and A. Trompeter, Calcaneal fractures: Where are we now? Strategies Trauma Limb Reconstr, 2018. 13(1): p. 1-11.1-11. 10.1007/ s11751-017-0297-3

Jiang, N., Q.R. Lin, X.C. Diao, et al., Surgical versus nonsurgical treatment of displaced intra-articular calcaneal fracture: a meta-analysis of current evidence base. Int Orthop, 2012. 36(8): p. 1615-22.1615-22. 10.1007/s00264-012-1563-0

Zhang, W., F. Lin, E. Chen, et al., Operative Versus Nonoperative Treatment of Displaced Intra-Articular Calcaneal Fractures: A Meta-Analysis of Randomized Controlled Trials. J Orthop Trauma, 2016. 30(3): p. e75-81.e75-81.10.1097/bot.0000000000000446

Hsu, A.R., R.B. Anderson, and B.E. Cohen, Advances in Surgical Management of Intra-articular Calcaneus Fractures. J Am Acad Orthop Surg, 2015. 23(7): p. 399-407.399-407.10.5435/jaaos-d-14-00287

Jin, C., D. Weng, W. Yang, et al., Minimally invasive percutaneous osteosynthesis versus ORIF for Sanders type II and III calcaneal fractures: a prospective, randomized intervention trial. J Orthop Surg Res, 2017. 12(1): p. 10.10.10.1186/s13018-017-0511-5

Nosewicz, T., M. Knupp, A. Barg, et al., Mini-open sinus tarsi approach with percutaneous screw fixation of displaced calcaneal fractures: a prospective computed tomography-based study. Foot Ankle Int, 2012. 33(11): p. 925-33.925-33.10.3113/fai.2012.0925

Long, C., K. Li, J. Zhu, et al., Three-step closed reduction and percutaneous screw fixation: A reliable and reproducible protocol in managing displaced intra-articular calcaneal fractures. Injury, 2023. 54 Suppl 2: p. S49-s55.S49-s55. 10.1016/ j.injury. 2022.02.017

Nelson, J.D., T.E. McIff, P.G. Moodie, et al., Biomechanical stability of intramedullary technique for fixation of joint depressed calcaneus fracture. Foot Ankle Int, 2010. 31(3): p. 229-35.229-35. 10.3113/ fai.2010.0229

Luo, G., C. Fan, P. Gao, et al., An evaluation of the efficacy of percutaneous reduction and screw fixation without bone grafting in Sanders Type-II and Type-III displaced intra-articular calcaneal fractures. BMC Musculoskelet Disord, 2022. 23(1): p. 562. 562. 10.1186/s12891-022-05515-2

Pang, Q.J., X. Yu, and Z.H. Guo, The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: A finite element analysis. Pak J Med Sci, 2014. 30(5): p. 1099-103.1099-103. 10.12669/ pjms.305.5301

Yu, B., W.C. Chen, P.Y. Lee, et al., Biomechanical comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular calcaneal fractures - a finite element study. Comput Methods Biomech Biomed Engin, 2016. 19(13): p. 1363-70. 1363-70.10.1080/10255842.2016.1142534

Sanders, R., Intra-articular fractures of the calcaneus: present state of the art. J Orthop Trauma, 1992. 6(2): p. 252-65.252-65.10.1097/00005131-199206000-00022

Sanders, R., P. Fortin, T. DiPasquale, et al., Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop Relat Res, 1993(290): p. 87-95.87-95.

He, K., S. Fu, S. Liu, et al., Comparisons in finite element analysis of minimally invasive, locking, and non-locking plates systems used in treating calcaneal fractures of Sanders type II and type III. Chin Med J (Engl), 2014. 127(22): p. 3894-901.3894-901.

de Vroome, S.W. and F.M. van der Linden, Cohort study on the percutaneous treatment of displaced intra-articular fractures of the calcaneus. Foot Ankle Int, 2014. 35(2): p. 156-62. 156-62. 10.1177/ 1071100713509804

Chen, Z., C. Fan, J. Zhang, et al., A novel minimally invasive percutaneous treatment for Essex-Lopresti joint depression-type DIACFs by ligamentotaxis. BMC Surg, 2022. 22(1): p. 431.431.10.1186/s12893-022-01868-6

Ni, M., D.W. Wong, J. Mei, et al., Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures. Sci China Life Sci, 2016. 59(9): p. 958-64.958-64.10.1007/s11427-016-0010-9

Peng, Y., J. Liu, G. Zhang, et al., Reduction and functional outcome of open reduction plate fixation versus minimally invasive reduction with percutaneous screw fixation for displaced calcaneus fracture: a retrospective study. J Orthop Surg Res, 2019. 14(1): p. 124.124.10.1186/s13018-019-1162-5

Lowery, R.B. and J.H. Calhoun, Fractures of the calcaneus. Part I: Anatomy, injury mechanism, and classification. Foot Ankle Int, 1996. 17(4): p. 230-5.230-5.10.1177/107110079601700409

Cain, J.D. and M. Dalmau-Pastor, Anatomy of the Deltoid-Spring Ligament Complex. Foot Ankle Clin, 2021. 26(2): p. 237-247. 237-247. 10.1016/ j.fcl. 2021.03.001

Carr, J.B., Mechanism and pathoanatomy of the intraarticular calcaneal fracture. Clin Orthop Relat Res, 1993(290): p. 36-40.36-40.

Downloads

Published

2025-01-31

How to Cite

Peng, Y., Luo, G., & Ni, W. (2025). Optimal Screw Trajectory for Percutaneous Screw Fixation of Sanders Type ⅡC Calcaneal Fractures: A Finite Element Analysis. Journal of Contemporary Medical Practice, 7(1), 89–94. https://doi.org/10.53469/jcmp.2025.07(01).18