Feasibility of Pulsed Electromagnetic Fields (PEMFs) in Talar Cartilage Injuries
DOI:
https://doi.org/10.53469/jcmp.2024.06(11).37Keywords:
Talus cartilage injury, Pulsed electromagnetic field, Cartilage, Theoretical investigationAbstract
Osteochondral Lesion of the Talus (OLT) is a common cause of ankle pain and its conservative treatment has limitations. However, there are few studies on pulsed electromagnetic fields (PEMFs) in the treatment of OLT. This study mainly explored the application feasibility of PEMFs in OLT.PEMFs can play a role through a variety of mechanisms such as promoting cell metabolism and regulating gene and protein expression. This study explored the potential of PEMFs in the treatment of OLT by combining the pathological mechanism of OLT and the mechanism of PEMFs through theoretical discussion. The findings suggest that PEMFs can accelerate initial healing such as promoting vascular remodeling, reduce inflammation, relieve pain, and prevent further cartilage damage. This study provides new insights into noninvasive treatment options for OLT.
References
Mukai S, Suzuki S, Seto Y, et al. Early characteristic findings in bowleg deformities: evaluation using magnetic resonance imaging [J]. Journal of pediatric orthopedics, 2000, 20(5):611-615.
Krause F, Anwander H. Osteochondral lesion of the talus: still a problem? [J]. EFORT open reviews, 2022, 7(6):337-343.
Shimozono Y, Yasui Y, Ross A W, et al. Osteochondral lesions of the talus in the athlete: up to date review [J]. Current reviews in musculoskeletal medicine, 2017, 10(1):131-140.
Klammer G, Maquieira G J, Spahn S, et al. Natural History of Nonoperatively Treated Osteochondral Lesions of the Talus [J]. Foot & Ankle International, 2015, 36(1):24-31.
Tamam C, Tamam M O, Yildirim D, et al. Comparison of SPECT-CT with MRI in treatment decision making osteochondral lesions of the talus[J]. The Journal of Nuclear Medicine, 2013, 54:1967.
Yang S, Chen W. Conservative Treatment of Tendon Injuries [J]. American journal of physical medicine & rehabilitation, 2020, 99(6):550-557.
Schnitzer T J. Osteoarthritis treatment update. Minimizing pain while limiting patient risk [J]. Postgraduate medicine, 1993, 93(1):89-92, 95.
Roychan M, Desnantyo A T. Patofisiologi dan Tatalaksana Osteochondral Lesion of the Talus[J]. Medica Arteriana (Med-Art), 2019, 1(2):45.
Ramponi L, Yasui Y, Murawski C D, et al. Lesion Size Is a Predictor of Clinical Outcomes After Bone Marrow Stimulation for Osteochondral Lesions of the Talus: A Systematic Review [J]. The American journal of sports medicine, 2017, 45(7):1698-1705.
Machado G C, Abdel-Shaheed C, Underwood M, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) for musculoskeletal pain [J]. BMJ (Clinical research ed.), 2021, 372:n104.
Murray H B, Pethica B A. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures [J]. Orthopedic research and reviews, 2016, 8:67-72.
Wang A, Ma X, Bian J, et al. Signalling pathways underlying pulsed electromagnetic fields in bone repair [J]. Frontiers in bioengineering and biotechnology, 2024, 12:1333566.
Cianni L, Di Gialleonardo E, Coppola D, et al. Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review [J]. Journal of clinical medicine, 2024, 13(7).
Iwasa K, Reddi A H. Pulsed Electromagnetic Fields and Tissue Engineering of the Joints [J]. Tissue engineering. Part B, Reviews, 2018, 24(2):144-154.
Caliogna L, Bina V, Brancato A M, et al. The Role of PEMFs on Bone Healing: An In Vitro Study [J]. International journal of molecular sciences, 2022, 23(22).
Behrens F, Kraft E L, Oegema T J. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation[J]. J Orthop Res, 1989, 7(3): 335-343.
Lee J H, Fitzgerald J B, Dimicco M A, et al. Mechanical injury of cartilage explants causes specific time - dependent changes in chondrocyte gene expression [J]. Arthritis Rheum, 2005, 52(8):2386-2395.
Buckwalter J A M I, Mankin H J M B. Articular Cartilage: Part II: Degeneration and Osteoarthrosis, Repair, Regeneration, and Transplantation [J]. Journal of Bone & Joint Surgery - American, 1997(NO.4): 612-632.
Slowman S D, Brandt K D. Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites[J]. Arthritis Rheum, 1986, 29(1):88-94.
Loening A M, James I E, Levenston M E, et al. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis[J]. Arch Biochem Biophys, 2000, 381(2):205-212.
Kurz B, Lemke A, Kehn M, et al. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression[J]. Arthritis Rheum, 2004, 50(1):123-130.
Lee J H, Fitzgerald J B, Dimicco M A, et al. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression [J]. Arthritis and rheumatism, 2005, 52(8): 2386-2395.
Wang Y, Tang Z, Xue R, et al. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study [J]. Journal of orthopaedic research: official publication of the Orthopaedic Research Society, 2011, 29(7):1008-1014.
Blom R P, Rahim D, Paardekam E, et al. A Traumatic Impact Immediately Changes the Mechanical Properties of Articular Cartilage [J]. Cartilage, 2024:768617295.
Singh A, Mantebea H, Badar F, et al. Assessment of articular cartilage degradation in response to an impact injury using µMRI [J]. Connective tissue research, 2024, 65(2):146-160.
Ruan Y, Du Y, Jiang Z, et al. The Biomechanical Influence of Defected Cartilage on the Progression of Osteochondral Lesions of the Talus: A Three-dimensional Finite Element Analysis [J]. Orthopaedic surgery, 2023, 15(6):1685-1693.
Kim K, Best T M, Aiyer A. How Do Athletes with Chronic Ankle Instability Suffer from Impaired Balance? An Update on Neurophysiological Mechanisms [J]. Current sports medicine reports, 2017, 16(5):309-311.
Li J, Wang Y, Wei Y, et al. The effect of talus osteochondral defects of different area size on ankle joint stability: a finite element analysis [J]. BMC musculoskeletal disorders, 2022, 23(1):500.
Kurz B, Jin M, Patwari P, et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression[J]. J Orthop Res, 2001, 19(6): 1140-1146.
Kurz B, Lemke A K, Fay J, et al. Pathomechanisms of cartilage destruction by mechanical injury [J]. Annals of anatomy = Anatomischer Anzeiger: official organ of the Anatomische Gesellschaft, 2005, 187(5-6):473-485.
Anastasio A T, Bagheri K, Johnson L, et al. Outcomes following total ankle total talus replacement: A systematic review [J]. Foot and ankle surgery: official journal of the European Society of Foot and Ankle Surgeons, 2024, 30(3):245-251.
Lutz M, Golser K, Sperner G, et al. [Post-traumatic ischemia of the talus. Is talus necrosis unavoidable?].[J]. Der Unfallchirurg, 1998, 101(6):461-467.
Zhao Z, Sun X, Tu P, et al. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies [J]. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 2024, 38(6):e23559.
Bruns J, Habermann C, Werner M. Osteochondral Lesions of the Talus: A Review on Talus Osteochondral Injuries, Including Osteochondritis Dissecans [J]. Cartilage, 2021, 13(1_suppl):1380S-1401S.
Szwedowski D, Szczepanek J, Paczesny Ł, et al. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches [J]. International journal of molecular sciences, 2020, 21(15).
Boukhemis K, Giza E, Kreulen C D. Failed OCL Talus/Revision OLT[M]//Springer International Publishing, 2020:205-217.
Claassen H, Schicht M, Paulsen F. Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease [J]. Progress in histochemistry and cytochemistry, 2011, 45(4):239-293.
Runhaar J, Beavers D P, Miller G D, et al. Inflammatory cytokines mediate the effects of diet and exercise on pain and function in knee osteoarthritis independent of BMI [J]. Osteoarthritis and cartilage, 2019, 27(8):1118-1123.
Jenei-Lanzl Z. Der Einfluss von Steroidhormonen auf die chondrogene Differenzierung humaner mesenchymaler Stammzellen [C], 2010.
Tong J, Sun L, Zhu B, et al. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients[J]. Bioelectromagnetics, 2017, 38(7): 541-549.
Yang C, Xu L, Liao F, et al. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis [J]. Scientific reports, 2024, 14(1):19027.
Cadossi R, Massari L, Racine-Avila J, et al. Pulsed Electromagnetic Field Stimulation of Bone Healing and Joint Preservation: Cellular Mechanisms of Skeletal Response [J]. Journal of the American Academy of Orthopaedic Surgeons. Global research & reviews, 2020, 4(5):e1900155.
Lei Y, Su J, Xu H, et al. Pulsed electromagnetic fields inhibit osteoclast differentiation in RAW264.7 macrophages via suppression of the protein kinase B/mammalian target of rapamycin signaling pathway [J]. Molecular medicine reports, 2018, 18(1):447-454.
Daou F, Masante B, Gabetti S, et al. Unraveling the transcriptome profile of pulsed electromagnetic field stimulation in bone regeneration using a bioreactor-based investigation platform [J]. Bone, 2024, 182:117065.
Ferroni L, Gardin C, Dolkart O, et al. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study [J]. Scientific reports, 2018, 8(1):5108.
Jansen J H W, van der Jagt O P, Punt B J, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study [J]. BMC musculoskeletal disorders, 2010, 11:188.
Loureiro G, Bahia D M, Lee M L M, et al. MAPK/ERK and PI3K/AKT signaling pathways are activated in adolescent and adult acute lymphoblastic leukemia [J]. Cancer reports (Hoboken, N.J.), 2023, 6(12):e1912.
Mut M, Lule S, Demir O, et al. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells [J]. The international journal of biochemistry & cell biology, 2012, 44(2):302-310.
Sivaguru M, Mori S, Fouke K W, et al. Osteopontin stabilization and collagen containment slows amorphous calcium phosphate transformation during human aortic valve leaflet calcification [J]. Scientific reports, 2024, 14(1):12222.
Poh P S P, Seeliger C, Unger M, et al. Osteogenic Effect and Cell Signaling Activation of Extremely Low-Frequency Pulsed Electromagnetic Fields in Adipose-Derived Mesenchymal Stromal Cells [J]. Stem cells international, 2018, 2018:5402853.
Park K S. The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels[J]. Anatomy Physiology & Biochemistry International Journal, 2024.
Bloise N, Petecchia L, Ceccarelli G, et al. The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces[J]. PloS one, 2018, 13(6):e199046.
Hong J, Lee C, Hwang S, et al. Pulsed Electromagnetic Field (PEMF) Treatment Ameliorates Murine Model of Collagen-Induced Arthritis [J]. International journal of molecular sciences, 2023, 24(2).
Varani K, Vincenzi F, Ravani A, et al. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields [J]. Mediators of inflammation, 2017, 2017: 2740963.
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study [J]. Signal transduction and targeted therapy, 2020, 5(1): 209.
Hoesel B, Schmid J A. The complexity of NF-κB signaling in inflammation and cancer [J]. Molecular cancer, 2013, 12:86.
Jasti A C, Wetzel B J, Aviles H, et al. Effect of a wound healing electromagnetic field on inflammatory cytokine gene expression in rats [J]. Biomedical sciences instrumentation, 2001, 37:209-214.
Vincenzi F, Ravani A, Pasquini S, et al. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells [J]. Journal of cellular physiology, 2017, 232(5): 1200-1208.
Ross C L, Zhou Y, McCall C E, et al. The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review [J]. Bioelectricity, 2019, 1(4):247-259.
Gessi S, Merighi S, Bencivenni S, et al. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway [J]. Journal of cellular physiology, 2019, 234(9):15089-15097.
Delogu G, Signore M, Mechelli A, et al. Heat shock proteins and their role in heart injury [J]. Current opinion in critical care, 2002, 8(5):411-416.
Pan Y, Dong Y, Hou W, et al. Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats [J]. Bioelectromagnetics, 2013, 34(3):180-188.
Peng L, Fu C, Wang L, et al. The Effect of Pulsed Electromagnetic Fields on Angiogenesis [J]. Bioelectromagnetics, 2021, 42(3):250-258.
Li R, Huang J, Shi Y, et al. Pulsed electromagnetic field improves postnatal neovascularization in response to hindlimb ischemia [J]. American journal of translational research, 2015, 7(3):430-444.
Bragin D E, Statom G L, Hagberg S, et al. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain [J]. Journal of neurosurgery, 2015, 122(5):1239-1247.
Tsai M, Li W, Tuan R S, et al. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation [J]. Journal of orthopaedic research: official publication of the Orthopaedic Research Society, 2009, 27(9): 1169-1174.
Bekhite M M, Finkensieper A, Abou-Zaid F A, et al. Static electromagnetic fields induce vasculogenesis and chondro-osteogenesis of mouse embryonic stem cells by reactive oxygen species-mediated up-regulation of vascular endothelial growth factor [J]. Stem cells and development, 2010, 19(5):731-743.
Chang W H, Chen L, Sun J, et al. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities.[J]. Bioelectromagnetics, 2004, 25(6): 457-465.
Yong Y, Ming Z D, Feng L, et al. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways [J]. Journal of tissue engineering and regenerative medicine, 2016, 10(10):E537-E545.
Evers L H, Bhavsar D. 120B: FREE SERRATUS FASCIA FLAP - ANATOMIC STUDY & CLINICAL APPLICATION[J]. Plastic and Reconstructive Surgery, 2010, 125(6).
Thomas A W, Graham K, Prato F S, et al. A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain [J]. Pain research & management, 2007, 12(4):249-258.
Peng L, Fu C, Xiong F, et al. Effectiveness of Pulsed Electromagnetic Fields on Bone Healing: A Systematic Review and Meta-Analysis of Randomized Controlled Trials [J]. Bioelectromagnetics, 2020, 41(5):323-337.
Wuschech H, von Hehn U, Mikus E, et al. Effects of PEMF on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study [J]. Bioelectromagnetics, 2015, 36(8):576-585.
Iannitti T, Fistetto G, Esposito A, et al. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly [J]. Clinical interventions in aging, 2013, 8:1289-1293.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Geng Liu, Hongze Wang, Qiang Zan
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.