Mendelian Randomization Analyses Identified Bioavailable Testosterone Mediates the Effect of Fat Intake on Prostate Cancer

Authors

  • Qiao Du Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
  • Xia Wang Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
  • Hao Yang Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
  • Zheng Luo Nanjing Hospital of Chinese Medicine, Nanjing 210000, Jiangsu, China
  • Youqi Xu Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China

DOI:

https://doi.org/10.53469/jcmp.2024.06(10).02

Keywords:

Prostate cancer, Macronutrients, Micronutrients, Testosterone, Mendelian randomization

Abstract

Background: Dietary factors are considered significant in the risk of prostate cancer (PCa). However, observational studies concerning the influence of macronutrients and micronutrients on PCa risk have yielded inconsistent findings. Method: We employed a two-sample Mendelian randomization (MR) approach to assess the impacts of four principal macronutrients and 17 micronutrients on PCa risk. Utilizing MR, we examined the relationship between fat digestion products (glycerol, fatty acids) and PCa, and conducted a two-step MR to determine if serum testosterone mediates the impact of fat intake on PCa risk. Results: Our study revealed a strong association between genetically predicted fat intake and PCa risk [OR=1.818, 95% CI (1.136, 2.909), P=0.013], with evidence suggesting that vitamin B5, vitamin B12, carotenoids, and zinc may influence PCa risk. No genetic evidence linked glycerol and various fatty acids to PCa risk (all P>0.05). Notably, the mediator bioavailable testosterone explained of the total effect of fat intake on prostate cancer risk [mediated proportion=8.8 %, 95% CI (-4.4% , 21.9%)]. Conclusion: In conclusion, our research demonstrates that fat intake increases the risk of prostate cancer. We also provide genetic evidence that bioavailable serum testosterone mediates the effect of fat consumption on prostate cancer risk. However, we found no significant benefits from micronutrients in preventing prostate cancer, with the exception of carotenoids.

References

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17-48. https://doi.org/10.3322/caac.21763

He J, Chen WQ, Li N, Cao W, Ye DW, Ma JH et al (2022) China guideline for the screening and early detection of prostate cancer (2022, Beijing). Chin J Oncol 44(1): 29-53. https://doi.org/10.3760/cma.j. cn112152-20211226-00975

Taplin ME, Ho SM (2001) Clinical review 134: The endocrinology of prostate cancer. J Clin Endocrinol Metab 86(8):3467-3477. https://doi.org/10.1210/jcem. 86.8.7782

Aksoy O, Pencik J, Hartenbach M, Moazzami AA, Schlederer M, Balber T et al (2021) Thyroid and androgen receptor signaling are antagonized by μ-Crystallin in prostate cancer. Int J Cancer 148(3):731-747. https://doi.org/10.1002/ijc.33332

Ferro M, Lucarelli G, Crocetto F, Dolce P, Verde A, La Civita E et al (2021) First-line systemic therapy for metastatic castration-sensitive prostate cancer: An updated systematic review with novel findings. Crit Rev Oncol Hematol 157:103198. https://doi.org/10.1016/j. critrevonc.2020.103198

Matsushita M, Fujita K, Nonomura N (2020) Influence of diet and nutrition on prostate cancer. Int J Mol Sci 21(4):1447. https://doi.org/10.3390/ijms21041447

Ohwaki K, Endo F, Kachi Y, Hattori K, Muraishi O, Nishikitani M et al (2012) Relationship between dietary factors and prostate-specific antigen in healthy men. Urol Int 89(3):270-274. https://doi.org/10.1159/ 000339601

Liss MA, Al-Bayati O, Gelfond J, Goros M, Ullevig S, DiGiovanni J et al (2019) Higher baseline dietary fat and fatty acid intake is associated with increased risk of incident prostate cancer in the SABOR study. Prostate Cancer Prostatic Dis 22(2):244-251. https://doi.org/ 10.1038/s41391-018-0105-2

Wallström P, Bjartell A, Gullberg B, Olsson H, Wirfält E (2007) A prospective study on dietary fat and incidence of prostate cancer (Malmö, Sweden). Cancer Causes Control 18(10):1107-1121. https://doi.org/10. 1007/s10552-007-9050-4

Crowe FL, Key TJ, Appleby PN, Travis RC, Overvad K, Jakobsen MU et al (2008) Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 87(5):1405-1413. https://doi.org/10.1093/ajcn/ 87.5. 1405

Mao Y, Tie Y, Du J (2018) Association between dietary protein intake and prostate cancer risk: evidence from a meta-analysis. World J Surg Oncol 16(1):152. https://doi.org/10.118 6/s12957-018-1452-0

Bernichtein S, Pigat N, Capiod T, Boutillon F, Verkarre V, Camparo P et al (2015) High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS One 10(5):e0125423. https://doi.org/10.1371/journal. pone. 0125423

Darcey E, Boyle T (2018) Tobacco smoking and survival after a prostate cancer diagnosis: A systematic review and meta-analysis. Cancer Treat Rev 70:30-40. https://doi.org/10.101 6/j.ctrv.2018.07.001

Darlington GA, Kreiger N, Lightfoot N, Purdham J, Sass-Kortsak A (2007) Prostate cancer risk and diet, recreational physical activity and cigarette smoking. Chronic Dis Can 27(4):145-153.

Liu F, Wang J, Wu HL, Wang H, Wang JX, Zhou R et al (2018) Leisure time physical activity and risk of prostate cancer: a dose-response meta-analysis. Minerva Urol Nefrol 70(2):152-161. https://doi.org/10.23736/ s0393- 2249.17.02874-0

Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579-591. https://doi. org/10.1038/nrc1408

Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625-1638. https://doi.org/10.1056/ NEJMoa021423

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133-1163. https:// doi.org/10.1002/sim.3034

Smith GD, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1-22. https://doi.org/10.1093/ije/dyg070

Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ et al (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50(7): 928-936. https://doi.org/10.1038/s41588-018-0142-8

Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C et al (2021) Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 26(6):2056-2069. https://doi.org/10.1038/s41380-020-0697-5

O'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM et al (2013) Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet 9(9):e1003796. https://doi.org/10.1371/journal.pgen.1003796

Evans DM, Zhu G, Dy V, Heath AC, Madden PA, Kemp JP et al (2013) Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet 22(19):3998-4006. https://doi.org/10. 1093/ hmg/ddt239

Bell S, Rigas AS, Magnusson MK, Ferkingstad E, Allara E, Bjornsdottir G et al (2021) A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun Biol 4(1):156. https://doi.org/10.1038/s42003-020-01575-z

Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, van Rooij FJ et al (2010) Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet 6(8):e1001045. https://doi.org/10.1371/journal.pgen.1001045

Kestenbaum B, Glazer NL, Köttgen A, Felix JF, Hwang SJ, Liu Y et al (2010) Common genetic variants associate with serum phosphorus concentration. J Am Soc Nephrol 21(7):1223-1232. https://doi.org/10.1681/ asn.2009111104

Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S et al (2015) Genome-wide association study of selenium concentrations. Hum Mol Genet 24(5):1469-1477. https://doi.org/10.1093/hmg/ddu546

Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T et al (2023) Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet 55(1):44-53. https://doi.org/10.1038/s41588-022-01270-1

Grarup N, Sulem P, Sandholt CH, Thorleifsson G, Ahluwalia TS, Steinthorsdottir V et al (2013) Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet 9(6):e1003530. https://doi.org/10.1371/journal.pg en. 1003530

Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, Jacques P et al (2009) Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet 18(23):4677-4687. https://doi. org/10.1093/hmg/ddp428

Zheng JS, Luan J, Sofianopoulou E, Imamura F, Stewart ID, Day FR et al (2021) Plasma Vitamin C and Type 2 Diabetes: Genome-Wide Association Study and Mendelian Randomization Analysis in European Populations. Diabetes Care 44(1):98-106. https://doi. org/10.2337/dc20-1328

Jiang X, O'Reilly PF, Aschard H, Hsu YH, Richards JB, Dupuis J et al (2018) Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9(1):260. https://doi.org/10. 1038/s41467 -017-02662-2

Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME et al (2011) Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet 20(19):3876-3883. https://doi.org/10.1093/hmg/ddr296

Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T, Silander K et al (2009) Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Hum Genet 84(2):123-133. https://doi.org/10.1016/j.ajhg.2008.12.019

Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G et al (2022) Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med 20(1):210. https://doi.org/10.1186/s12916-022-0239 9-w

Hayes BL, Robinson T, Kar S, Ruth KS, Tsilidis KK, Frayling T et al (2022) Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? A Mendelian randomization study. PLoS Genet 18(1):e1009887. https://doi.org/10.1371/jou rnal.pgen. 1009887

Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 375:n2233. https://doi.org/10.1136/bmj.n2233

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133-1163. https://doi. org/10.1002/sim.3034

Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35(22):4851-4853. https:// doi.org/10.1093/bioinformatics/bt z469

Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ et al (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21(3):223-242. https://doi.org/10.1177/0962280210394459

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377-389. https://doi. org/10.1007/s10 654-017-0255-x

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693-698. https://doi.org/10.1038/ s41588-018- 0099-7

Greco MF, Minelli C, Sheehan NA, Thompson JR (2015) Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med 34(21):2926-2940. https://doi.org/10. 1002/sim.6522

Makarem N, Bandera EV, Lin Y, Jacques PF, Hayes RB, Parekh N (2017) Carbohydrate nutrition and risk of adiposity-related cancers: results from the Framingham Offspring cohort (1991-2013). Br J Nutr 117(11): 1603 -1614. https://doi.org/10.1017/s00071145170 01489

Makarem N, Bandera EV, Lin Y, Jacques PF, Hayes RB, Parekh N (2018) Consumption of Sugars, Sugary Foods, and Sugary Beverages in Relation to Adiposity-Related Cancer Risk in the Framingham Offspring Cohort (1991-2013). Cancer Prev Res (Phila) 11(6):347-358. https://doi.org/10.1158/1940-6207.Capr-17-0218

Kim JY, Song M, Kim MS, Natarajan P, Do R, Myung W et al (2023) An atlas of associations between 14 micronutrients and 22 cancer outcomes: Mendelian randomization analyses. BMC Med 21(1):316. https://doi.org/10.1186/s12916-023-0301 8-y

Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP (2013) Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159(12):824-834. https://doi.org/10.7326/ 0003-4819- 159-12-201312170-00729

Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290-1324. https://doi.org/10.11 11/bph.13625

Khankari NK, Murff HJ, Zeng C, Wen W, Eeles RA, Easton DF et al (2016) Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. Br J Cancer 115(5):624-631. https://doi.org/10.1038/b jc.2016.228

Epstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A et al (2012) Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol 176(3):240-252. https://doi.org/10. 1093/aje/kwr520

Terry P, Lichtenstein P, Feychting M, Ahlbom A, Wolk A (2001) Fatty fish consumption and risk of prostate cancer. Lancet 357(9270):1764-1766. https://doi.org/10. 1016/s0140-6736(00)04889-3

Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R (2017) A reappraisal of testosterone's binding in circulation: Physiological and clinical implications. Endocr Rev 38(4):302-324. https://doi.org/10.1210/er.2017-00025

Tande AJ, Platz EA, Folsom AR (2006) The metabolic syndrome is associated with reduced risk of prostate cancer. Am J Epidemiol 164(11):1094-1102. https://doi.org/10.1 093/aje/kwj320

García-Cruz E, Piqueras M, Ribal MJ, Huguet J, Serapiao R, Peri L et al (2012) Low testosterone level predicts prostate cancer in re-biopsy in patients with high grade prostatic intraepithelial neoplasia. BJU Int 110(6 Pt B): E199-E202. https://doi.org/10.1111/j. 1464-410X.2011.10876.x

Downloads

Published

2024-10-29

How to Cite

Du, Q., Wang, X., Yang, H., Luo, Z., & Xu, Y. (2024). Mendelian Randomization Analyses Identified Bioavailable Testosterone Mediates the Effect of Fat Intake on Prostate Cancer. Journal of Contemporary Medical Practice, 6(10), 6–11. https://doi.org/10.53469/jcmp.2024.06(10).02