Mendelian Randomization Analyses Identified Bioavailable Testosterone Mediates the Effect of Fat Intake on Prostate Cancer
DOI:
https://doi.org/10.53469/jcmp.2024.06(10).02Keywords:
Prostate cancer, Macronutrients, Micronutrients, Testosterone, Mendelian randomizationAbstract
Background: Dietary factors are considered significant in the risk of prostate cancer (PCa). However, observational studies concerning the influence of macronutrients and micronutrients on PCa risk have yielded inconsistent findings. Method: We employed a two-sample Mendelian randomization (MR) approach to assess the impacts of four principal macronutrients and 17 micronutrients on PCa risk. Utilizing MR, we examined the relationship between fat digestion products (glycerol, fatty acids) and PCa, and conducted a two-step MR to determine if serum testosterone mediates the impact of fat intake on PCa risk. Results: Our study revealed a strong association between genetically predicted fat intake and PCa risk [OR=1.818, 95% CI (1.136, 2.909), P=0.013], with evidence suggesting that vitamin B5, vitamin B12, carotenoids, and zinc may influence PCa risk. No genetic evidence linked glycerol and various fatty acids to PCa risk (all P>0.05). Notably, the mediator bioavailable testosterone explained of the total effect of fat intake on prostate cancer risk [mediated proportion=8.8 %, 95% CI (-4.4% , 21.9%)]. Conclusion: In conclusion, our research demonstrates that fat intake increases the risk of prostate cancer. We also provide genetic evidence that bioavailable serum testosterone mediates the effect of fat consumption on prostate cancer risk. However, we found no significant benefits from micronutrients in preventing prostate cancer, with the exception of carotenoids.
References
Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17-48. https://doi.org/10.3322/caac.21763
He J, Chen WQ, Li N, Cao W, Ye DW, Ma JH et al (2022) China guideline for the screening and early detection of prostate cancer (2022, Beijing). Chin J Oncol 44(1): 29-53. https://doi.org/10.3760/cma.j. cn112152-20211226-00975
Taplin ME, Ho SM (2001) Clinical review 134: The endocrinology of prostate cancer. J Clin Endocrinol Metab 86(8):3467-3477. https://doi.org/10.1210/jcem. 86.8.7782
Aksoy O, Pencik J, Hartenbach M, Moazzami AA, Schlederer M, Balber T et al (2021) Thyroid and androgen receptor signaling are antagonized by μ-Crystallin in prostate cancer. Int J Cancer 148(3):731-747. https://doi.org/10.1002/ijc.33332
Ferro M, Lucarelli G, Crocetto F, Dolce P, Verde A, La Civita E et al (2021) First-line systemic therapy for metastatic castration-sensitive prostate cancer: An updated systematic review with novel findings. Crit Rev Oncol Hematol 157:103198. https://doi.org/10.1016/j. critrevonc.2020.103198
Matsushita M, Fujita K, Nonomura N (2020) Influence of diet and nutrition on prostate cancer. Int J Mol Sci 21(4):1447. https://doi.org/10.3390/ijms21041447
Ohwaki K, Endo F, Kachi Y, Hattori K, Muraishi O, Nishikitani M et al (2012) Relationship between dietary factors and prostate-specific antigen in healthy men. Urol Int 89(3):270-274. https://doi.org/10.1159/ 000339601
Liss MA, Al-Bayati O, Gelfond J, Goros M, Ullevig S, DiGiovanni J et al (2019) Higher baseline dietary fat and fatty acid intake is associated with increased risk of incident prostate cancer in the SABOR study. Prostate Cancer Prostatic Dis 22(2):244-251. https://doi.org/ 10.1038/s41391-018-0105-2
Wallström P, Bjartell A, Gullberg B, Olsson H, Wirfält E (2007) A prospective study on dietary fat and incidence of prostate cancer (Malmö, Sweden). Cancer Causes Control 18(10):1107-1121. https://doi.org/10. 1007/s10552-007-9050-4
Crowe FL, Key TJ, Appleby PN, Travis RC, Overvad K, Jakobsen MU et al (2008) Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 87(5):1405-1413. https://doi.org/10.1093/ajcn/ 87.5. 1405
Mao Y, Tie Y, Du J (2018) Association between dietary protein intake and prostate cancer risk: evidence from a meta-analysis. World J Surg Oncol 16(1):152. https://doi.org/10.118 6/s12957-018-1452-0
Bernichtein S, Pigat N, Capiod T, Boutillon F, Verkarre V, Camparo P et al (2015) High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS One 10(5):e0125423. https://doi.org/10.1371/journal. pone. 0125423
Darcey E, Boyle T (2018) Tobacco smoking and survival after a prostate cancer diagnosis: A systematic review and meta-analysis. Cancer Treat Rev 70:30-40. https://doi.org/10.101 6/j.ctrv.2018.07.001
Darlington GA, Kreiger N, Lightfoot N, Purdham J, Sass-Kortsak A (2007) Prostate cancer risk and diet, recreational physical activity and cigarette smoking. Chronic Dis Can 27(4):145-153.
Liu F, Wang J, Wu HL, Wang H, Wang JX, Zhou R et al (2018) Leisure time physical activity and risk of prostate cancer: a dose-response meta-analysis. Minerva Urol Nefrol 70(2):152-161. https://doi.org/10.23736/ s0393- 2249.17.02874-0
Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579-591. https://doi. org/10.1038/nrc1408
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625-1638. https://doi.org/10.1056/ NEJMoa021423
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133-1163. https:// doi.org/10.1002/sim.3034
Smith GD, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1-22. https://doi.org/10.1093/ije/dyg070
Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ et al (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50(7): 928-936. https://doi.org/10.1038/s41588-018-0142-8
Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C et al (2021) Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 26(6):2056-2069. https://doi.org/10.1038/s41380-020-0697-5
O'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM et al (2013) Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet 9(9):e1003796. https://doi.org/10.1371/journal.pgen.1003796
Evans DM, Zhu G, Dy V, Heath AC, Madden PA, Kemp JP et al (2013) Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet 22(19):3998-4006. https://doi.org/10. 1093/ hmg/ddt239
Bell S, Rigas AS, Magnusson MK, Ferkingstad E, Allara E, Bjornsdottir G et al (2021) A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun Biol 4(1):156. https://doi.org/10.1038/s42003-020-01575-z
Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, van Rooij FJ et al (2010) Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet 6(8):e1001045. https://doi.org/10.1371/journal.pgen.1001045
Kestenbaum B, Glazer NL, Köttgen A, Felix JF, Hwang SJ, Liu Y et al (2010) Common genetic variants associate with serum phosphorus concentration. J Am Soc Nephrol 21(7):1223-1232. https://doi.org/10.1681/ asn.2009111104
Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S et al (2015) Genome-wide association study of selenium concentrations. Hum Mol Genet 24(5):1469-1477. https://doi.org/10.1093/hmg/ddu546
Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T et al (2023) Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet 55(1):44-53. https://doi.org/10.1038/s41588-022-01270-1
Grarup N, Sulem P, Sandholt CH, Thorleifsson G, Ahluwalia TS, Steinthorsdottir V et al (2013) Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet 9(6):e1003530. https://doi.org/10.1371/journal.pg en. 1003530
Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, Jacques P et al (2009) Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet 18(23):4677-4687. https://doi. org/10.1093/hmg/ddp428
Zheng JS, Luan J, Sofianopoulou E, Imamura F, Stewart ID, Day FR et al (2021) Plasma Vitamin C and Type 2 Diabetes: Genome-Wide Association Study and Mendelian Randomization Analysis in European Populations. Diabetes Care 44(1):98-106. https://doi. org/10.2337/dc20-1328
Jiang X, O'Reilly PF, Aschard H, Hsu YH, Richards JB, Dupuis J et al (2018) Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9(1):260. https://doi.org/10. 1038/s41467 -017-02662-2
Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME et al (2011) Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet 20(19):3876-3883. https://doi.org/10.1093/hmg/ddr296
Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T, Silander K et al (2009) Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Hum Genet 84(2):123-133. https://doi.org/10.1016/j.ajhg.2008.12.019
Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G et al (2022) Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med 20(1):210. https://doi.org/10.1186/s12916-022-0239 9-w
Hayes BL, Robinson T, Kar S, Ruth KS, Tsilidis KK, Frayling T et al (2022) Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? A Mendelian randomization study. PLoS Genet 18(1):e1009887. https://doi.org/10.1371/jou rnal.pgen. 1009887
Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 375:n2233. https://doi.org/10.1136/bmj.n2233
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133-1163. https://doi. org/10.1002/sim.3034
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35(22):4851-4853. https:// doi.org/10.1093/bioinformatics/bt z469
Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ et al (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21(3):223-242. https://doi.org/10.1177/0962280210394459
Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377-389. https://doi. org/10.1007/s10 654-017-0255-x
Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693-698. https://doi.org/10.1038/ s41588-018- 0099-7
Greco MF, Minelli C, Sheehan NA, Thompson JR (2015) Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med 34(21):2926-2940. https://doi.org/10. 1002/sim.6522
Makarem N, Bandera EV, Lin Y, Jacques PF, Hayes RB, Parekh N (2017) Carbohydrate nutrition and risk of adiposity-related cancers: results from the Framingham Offspring cohort (1991-2013). Br J Nutr 117(11): 1603 -1614. https://doi.org/10.1017/s00071145170 01489
Makarem N, Bandera EV, Lin Y, Jacques PF, Hayes RB, Parekh N (2018) Consumption of Sugars, Sugary Foods, and Sugary Beverages in Relation to Adiposity-Related Cancer Risk in the Framingham Offspring Cohort (1991-2013). Cancer Prev Res (Phila) 11(6):347-358. https://doi.org/10.1158/1940-6207.Capr-17-0218
Kim JY, Song M, Kim MS, Natarajan P, Do R, Myung W et al (2023) An atlas of associations between 14 micronutrients and 22 cancer outcomes: Mendelian randomization analyses. BMC Med 21(1):316. https://doi.org/10.1186/s12916-023-0301 8-y
Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP (2013) Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159(12):824-834. https://doi.org/10.7326/ 0003-4819- 159-12-201312170-00729
Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290-1324. https://doi.org/10.11 11/bph.13625
Khankari NK, Murff HJ, Zeng C, Wen W, Eeles RA, Easton DF et al (2016) Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. Br J Cancer 115(5):624-631. https://doi.org/10.1038/b jc.2016.228
Epstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A et al (2012) Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol 176(3):240-252. https://doi.org/10. 1093/aje/kwr520
Terry P, Lichtenstein P, Feychting M, Ahlbom A, Wolk A (2001) Fatty fish consumption and risk of prostate cancer. Lancet 357(9270):1764-1766. https://doi.org/10. 1016/s0140-6736(00)04889-3
Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R (2017) A reappraisal of testosterone's binding in circulation: Physiological and clinical implications. Endocr Rev 38(4):302-324. https://doi.org/10.1210/er.2017-00025
Tande AJ, Platz EA, Folsom AR (2006) The metabolic syndrome is associated with reduced risk of prostate cancer. Am J Epidemiol 164(11):1094-1102. https://doi.org/10.1 093/aje/kwj320
García-Cruz E, Piqueras M, Ribal MJ, Huguet J, Serapiao R, Peri L et al (2012) Low testosterone level predicts prostate cancer in re-biopsy in patients with high grade prostatic intraepithelial neoplasia. BJU Int 110(6 Pt B): E199-E202. https://doi.org/10.1111/j. 1464-410X.2011.10876.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Qiao Du, Xia Wang, Hao Yang, Zheng Luo, Youqi Xu
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.