The Citric Acid Cycle: Historical Discovery, Biochemical Mechanisms, and Its Impact on Life Sciences

Authors

  • Lan Lu College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China

DOI:

https://doi.org/10.53469/jcmp.2025.07(03).37

Keywords:

Citric acid cycle, Metabolic pathways, Biochemistry

Abstract

With the rapid development of metabolomics and systems biology, scientists have made significant strides in exploring the regulatory mechanisms of the citric acid cycle, its associations with various diseases, and its applications in bioengineering. This paper reviews the historical discovery of the citric acid cycle, analyzes its biochemical mechanisms, and discusses its pivotal role in modern life sciences. By examining breakthroughs in early metabolic research, particularly advancements in glycolysis, citric acid metabolism, and enzymology, this paper reveals how the citric acid cycle was discovered based on the foundational work of previous studies. It also elaborates on how this scientific breakthrough has propelled theoretical innovations in the fields of metabolism and cell biology. Through a comprehensive analysis of this milestone discovery, the paper aims to highlight the fundamental position of the citric acid cycle in life sciences and its lasting impact.

References

Alvarez-Mamani, E., Buettner, F., Beltran-Castanon, C. A., & Ibanez, A. J. (2024). Exploratory analysis of metabolic changes using mass spectrometry data and graph embeddings. Scientific Reports, 14(1), 29570. https://doi.org/10.1038/s41598-024-80955-5

Arnold, P. K., & Finley, L. W. S. (2023). Regulation and function of the mammalian tricarboxylic acid cycle. Journal of Biological Chemistry, 299(2), 102838. https://doi.org/10.1016/j.jbc.2022.102838

Baharum, S. N., & Azizan, K. A. (2018). Metabolomics in Systems Biology. In W. M. Aizat, H.-H. Goh, & S. N. Baharum (Eds.), Omics Applications for Systems Biology (Vol. 1102, pp. 51-68). Springer International Publishing. https://doi.org/10.1007/978-3-319-98758-3 _4

Castro-Guarda, M., & Evans, R. D. (2025). Human metabolism: Metabolic pathways and clinical aspects. Surgery (Oxford), 43(1), 6-15. https://doi.org/10.1016/ j.mpsur.2024.10.009

Cornish-Bowden, A. (2015). One hundred years of Michaelis-Menten kinetics. Perspectives in Science, 4, 3-9. https://doi.org/10.1016/j.pisc.2014.12.002

Grankvist, N., Jönsson, C., Hedin, K., Sundqvist, N., Sandström, P., Björnsson, B., Begzati, A., Mickols, E., Artursson, P., Jain, M., Cedersund, G., & Nilsson, R. (2024). Global 13C tracing and metabolic flux analysis of intact human liver tissue ex vivo. Nature Metabolism, 6(10), 1963-1975. https://doi.org/10.1038/s42255-024- 01119-3

Grüning, N.-M., & Ralser, M. (2021). Glycolysis: How a 300yr long research journey that started with the desire to improve alcoholic beverages kept revolutionizing biochemistry. Current Opinion in Systems Biology, 28, 100380. https://doi.org/10.1016/j.coisb.2021.100380

Gupta, R., & Gupta, N. (2021). Tricarboxylic Acid Cycle. In R. Gupta & N. Gupta, Fundamentals of Bacterial Physiology and Metabolism (pp. 327-346). Springer Singapore. https://doi.org/10.1007/978-981-16-0723-3_12

Karim, A. S., Brown, D. M., Archuleta, C. M., Grannan, S., Aristilde, L., Goyal, Y., Leonard, J. N., Mangan, N. M., Prindle, A., Rocklin, G. J., Tyo, K. J., Zoloth, L., Jewett, M. C., Calkins, S., Kamat, N. P., Tullman-Ercek, D., & Lucks, J. B. (2024). Deconstructing synthetic biology across scales: A conceptual approach for training synthetic biologists. Nature Communications, 15(1), 5425. https://doi.org/10.1038/s41467-024-49626 -x

Kierans, S. J., & Taylor, C. T. (2024). Glycolysis: A multifaceted metabolic pathway and signaling hub. Journal of Biological Chemistry, 300(11), 107906. https://doi.org/10.1016/j.jbc.2024.107906

Kohler, R. E. (1972). The reception of Eduard Buchner’s discovery of cell-free fermentation. Journal of the History of Biology, 5(2), 327-353. https://doi.org/ 10.1007/BF00346663

Krebs, H. A., & Johnson, W. A. (1980). The role of citric acid in intermediate metabolism in animal tissues. FEBS Letters, 117(S1). https://doi.org/10.1016/0014-5793 (80)80564-3

Liu, H., Wang, S., Wang, J., Guo, X., Song, Y., Fu, K., Gao, Z., Liu, D., He, W., & Yang, L.-L. (2025). Energy metabolism in health and diseases. Signal Transduction and Targeted Therapy, 10(1), 1-71. https://doi.org /10.1038/s41392-025-02141-x

Liu, S., Liu, X., & Locasale, J. W. (2024). Quantitation of metabolic activity from isotope tracing data using automated methodology. Nature Metabolism, 6(12), 2207-2209. https://doi.org/10.1038/s42255-024- 01144- 2

McIlwain, B. (2024). Studying ATP synthesis in situ. Nature Chemical Biology, 20(11), 1387-1387. https://doi.org/10.1038/s41589-024-01768-1

Notley, S. R., Mitchell, D., & Taylor, N. A. S. (2023). A century of exercise physiology: Concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. European Journal of Applied Physiology, 123(12), 2587-2685. https://doi.org/10.1007/s00421- 023-05284 -3

Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737-767. https://doi.org/10.1113/JP279963

Rheinberger, H.-J. (2023). Claude Bernard and life in the laboratory. History and Philosophy of the Life Sciences, 45(2), 11. https://doi.org/10.1007/s40656-023-00570-x

Roosterman, D., & Cottrell, G. S. (2021). Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. International Journal of Molecular Sciences, 22(2), 604. https://doi.org/10.3390/ijms22020604

Song, H.-S., Ahamed, F., Lee, J.-Y., Henry, C. S., Edirisinghe, J. N., Nelson, W. C., Chen, X., Moulton, J. D., & Scheibe, T. D. (2025). Coupling flux balance analysis with reactive transport modeling through machine learning for rapid and stable simulation of microbial metabolic switching. Scientific Reports, 15(1), 6042. https://doi.org/10.1038/s41598-025-89997-9

Stern, K. G., & Melnick, J. L. (1939). Oxidation of Succinate by Heart Muscle. Nature, 144(3642), 330-330. https://doi.org/10.1038/144330a0

Wang, R., & Lou, L. (2024). The Central Role of the Citric Acid Cycle in Energy Metabolism: From Metabolic Intermediates to Regulatory Mechanisms. Biological Evidence. https://doi.org/10.5376/ be.2024. 14.0013

Downloads

Published

2025-03-28

How to Cite

Lu, L. (2025). The Citric Acid Cycle: Historical Discovery, Biochemical Mechanisms, and Its Impact on Life Sciences. Journal of Contemporary Medical Practice, 7(3), 187–192. https://doi.org/10.53469/jcmp.2025.07(03).37