O-GlcNAcylation in Hepatocellular Carcinoma: Mechanisms and Implications

Authors

  • Qiujin Zhang The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
  • Liang Song The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China

DOI:

https://doi.org/10.53469/jcmp.2025.07(03).21

Keywords:

HCC, O-GlcNAcylation, OGT, OGA

Abstract

Hepatocellular carcinoma (HCC), a highly lethal primary liver malignancy, predominantly arises from chronic liver disease or cirrhosis. Most patients are diagnosed at advanced stage with limited therapeutic efficacy, which are closely related to its complex pathogenesis. O-GlcNAcylation is a dynamic post-translational modification (PTM) orchestrated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), regulates protein stability, transcriptional activity, and subcellular localization, thereby exacerbating tumor progression, immune evasion, and therapeutic resistance. Emerging evidence highlights the hyperactivation of O-GlcNAcylation in HCC, suggesting its potential as a diagnostic biomarker and therapeutic target. This review systematically summarizes the mechanisms underlying aberrant O-GlcNAcylation in HCC pathogenesis and explores its translational implications for precision oncology, providing a foundation for future research aimed at developing novel therapeutic strategies.

References

Sia D, Villanueva A, Friedman S L, et al. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis[J]. Gastroenterology, 2017, 152(4):745-761.

Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6):1598-1606.

Yang J D, Hainaut P, Gores G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10):589-604.

Lin Z F, Qin L X, Chen J H. Biomarkers for response to immunotherapy in hepatobiliary malignancies[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(5):413-419.

Bruix J, Takayama T, Mazzaferro V, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2015, 16(13):1344-1354.

Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions[J]. Nat Rev Mol Cell Biol, 2017, 18(7):452-465.

Liu Y, Yu K, Kong X, et al. FOXA1 O-GlcNAcylation-mediated transcriptional switch governs metastasis capacity in breast cancer[J]. Sci Adv, 2023, 9(33): eadg7112.

Zhang Y, Zhou S, Kai Y, et al. O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer[J]. Nat Commun, 2024, 15(1):5597.

Chatham J C, Zhang J, Wende A R. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology[J]. Physiol Rev, 2021, 101(2): 427-493.

Bond M R, Hanover J A. A little sugar goes a long way: the cell biology of O-GlcNAc[J]. J Cell Biol, 2015, 208(7):869-880.

Hart G W, Slawson C, Ramirez-Correa G, et al. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease[J]. Annu Rev Biochem, 2011, 80:825-858.

McCahill A, Warwicker J, Bolger G B, et al. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms[J]. Mol Pharmacol, 2002, 62(6): 1261-1273.

Adams D R, Ron D, Kiely P A. RACK1, A multifaceted scaffolding protein: Structure and function[J]. Cell Commun Signal, 2011, 9:22.

Duan F, Wu H, Jia D, et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis[J]. J Hepatol, 2018, 68(6):1191-1202.

Delis S G, Bakoyiannis A, Tassopoulos N, et al. Hepatic resection for large hepatocellular carcinoma in the era of UCSF criteria[J]. HPB (Oxford), 2009, 11(7):551-558.

Zhang T, Zhang J, You X, et al. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells[J]. Hepatology, 2012, 56(6):2051-2059.

Yang Y, Yan Y, Yin J, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6) - methyladenosine - dependent manner[J]. Signal Transduct Target Ther, 2023, 8(1):63.

Di Bisceglie A M, Carithers R J, Gores G J. Hepatocellular carcinoma [J]. Hepatology, 1998, 28(4): 1161-1165.

Zhao P, Malik S, Xing S. Epigenetic Mechanisms Involved in HCV-Induced Hepatocellular Carcinoma (HCC)[J]. Front Oncol, 2021, 11:677926.

Herzog K, Bandiera S, Pernot S, et al. Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity[J]. Gut, 2020, 69(2):380-392.

Santos-Laso A, Perugorria M J, Banales J M. O-GlcNAcylation: Undesired tripmate but an opportunity for treatment in NAFLD-HCC[J]. J Hepatol, 2017, 67(2):218-220.

Zhou Y, Li Z, Xu M, et al. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease[J]. Cells, 2022, 11(22).

Xu W, Zhang X, Wu J L, et al. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress[J]. J Hepatol, 2017, 67(2):310-320.

Zhang B, Li M D, Yin R, et al. O-GlcNAc transferase suppresses necroptosis and liver fibrosis[J]. JCI Insight, 2019, 4(21).

Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell, 2010, 141(7):1117-1134.

Wu L, Cheng Y, Geng D, et al. O-GlcNAcylation regulates epidermal growth factor receptor intracellular trafficking and signaling[J]. Proc Natl Acad Sci U S A, 2022, 119(10): e2107453119.

Chu Y, Jiang M, Wu N, et al. O-GlcNAcylation of SIX1 enhances its stability and promotes Hepatocellular Carcinoma Proliferation[J]. Theranostics, 2020, 10(21): 9830-9842.

Singh J P, Zhang K, Wu J, et al. O-GlcNAc signaling in cancer metabolism and epigenetics[J]. Cancer Lett, 2015, 356(2 Pt A):244-250.

Zhang X, Qiao Y, Wu Q, et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis[J]. Nat Commun, 2017, 8:15280.

Liu Y, An S, Ward R, et al. G protein-coupled receptors as promising cancer targets[J]. Cancer Lett, 2016, 376(2):226-239.

Kamei Y, Hatazawa Y, Uchitomi R, et al. Regulation of Skeletal Muscle Function by Amino Acids[J]. Nutrients, 2020, 12(1).

Raab S, Gadault A, Very N, et al. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells[J]. Cell Mol Life Sci, 2021, 78(13):5397-5413.

Zhu G, Murshed A, Li H, et al. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer[J]. Cell Death Discov, 2021, 7(1):83.

Gong Z, Yu J, Yang S, et al. FOX transcription factor family in hepatocellular carcinoma[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1):188376.

Huang H, Wu Q, Guo X, et al. O-GlcNAcylation promotes the migratory ability of hepatocellular carcinoma cells via regulating FOXA2 stability and transcriptional activity[J]. J Cell Physiol, 2021, 236(11): 7491-7503.

Huang H, Wang Y, Huang T, et al. FOXA2 inhibits doxorubicin-induced apoptosis via transcriptionally activating HBP rate-limiting enzyme GFPT1 in HCC cells[J]. J Physiol Biochem, 2021, 77(4):625-638.

Gatenby R A, Gillies R J. Why do cancers have high aerobic glycolysis? [J]. Nat Rev Cancer, 2004, 4(11): 891-899.

Hirata H, Sugimachi K, Komatsu H, et al. Decreased Expression of Fructose-1, 6-bisphosphatase Associates with Glucose Metabolism and Tumor Progression in Hepatocellular Carcinoma[J]. Cancer Res, 2016, 76(11): 3265-3276.

Xiang J, Chen C, Liu R, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation[J]. J Clin Invest, 2021, 131(8).

Liu R, Gou D, Xiang J, et al. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis[J]. Oncogene, 2021, 40(50):6707-6719.

Foglia B, Beltra M, Sutti S, et al. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses[J]. Int J Mol Sci, 2023, 24(8).

Qu M, Zhang G, Qu H, et al. Circadian regulator BMAL1: CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle[J]. Proc Natl Acad Sci U S A, 2023, 120(2): e2080138176.

Cai X, Yu X, Yang J, et al. TRPM2 regulates cell cycle through the Ca2+-CaM-CaMKII signaling pathway to promote HCC[J]. Hepatol Commun, 2023, 7(5).

He W, Wang M, Zhang X, et al. Estrogen Induces LCAT to Maintain Cholesterol Homeostasis and Suppress Hepatocellular Carcinoma Development[J]. Cancer Res, 2024, 84(15):2417-2431.

Llovet J M, Pinyol R, Yarchoan M, et al. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2024, 21(4):294-311.

Schwartz J D, Schwartz M, Mandeli J, et al. Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials[J]. Lancet Oncol, 2002, 3(10):593-603.

Downloads

Published

2025-03-28

How to Cite

Zhang, Q., & Song, L. (2025). O-GlcNAcylation in Hepatocellular Carcinoma: Mechanisms and Implications. Journal of Contemporary Medical Practice, 7(3), 105–109. https://doi.org/10.53469/jcmp.2025.07(03).21