Research Progress of Laboratory Diagnostic Indexes of Osteoarthritis
DOI:
https://doi.org/10.53469/jcmp.2025.07(02).03Keywords:
Osteoarthritis, Laboratory diagnostic indicator, Biomarker, Vitamin DAbstract
Osteoarthritis (OA) is a common joint degenerative disease. The current diagnosis of OA is mainly through imaging and physical examination. Once such diagnosis is established, it means that the lesion is often advanced, resulting in poor treatment effect. The laboratory diagnostic indicators of OA can be used as a way to diagnose OA early, and promote the early detection, diagnosis and treatment of osteoarthritis. In this paper, we selected some representative clinical candidate biomarkers and auxiliary diagnostic indicators of OA to review its clinical significance, diagnostic value and research progress.
References
Xu Xin. Daphnoretin delays articular cartilage degeneration by negatively regulating the NF-κB and MAPK signaling pathways [D]. Anhui Medical University, 2022.
Zhang Xu, Zheng Jie, Zhao Liping, et al. The role of IL-17 in the pathogenesis of osteoarthritis and research progress. Journal of Cellular and Molecular Immunology, 2021, 37(12): 1138-1142.
McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014; 22(25): 363-388.
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Annals of the Rheumatic Diseases. 1957; 16(4): 494-502.
Iversen M, Lyn Price L, von Heideken J, Harvey W, Wang Ch. Physical examination findings and their relationship with performance-based function in adults with knee osteoarthritis. BioMed Central Musculoskeletal Disorders. 2016; 17(273): 12.
Choi M, Jo J, Park J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells (Basel, Switzerland), 2019, 8(7): 734.
Mueller MB, Tuan RS. Anabolic/catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM & R: the journal of injury, function, and rehabilitation 2011; 3(6 Suppl 1): S3-11.
Piscoya JL, Fermor B, Kraus VB, Stabler TV, et al. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis & Cartilage, 2006, 13(12): 1092-1099.
Bauer DC, Hunter DJ, Abramson SB, et al. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 2006; 14(8): 723-727.
Hunter DJ, Nevitt M, Losina E, et al. Biomarkers for osteoarthritis: current position and steps towards further validation. Best practice & research Clinical rheumatology 2014; 28(1): 61-71.
Ahmed U, Anwar A, Savage RS, et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Scientific reports 2015; 5: 9259.
Hsueh MF, Onnerfjord P, Kraus VB. Biomarkers and proteomic analysis of osteoarthritis. Matrix biology: journal of the International Society for Matrix Biology 2014; 39: 56-66.
Hunt MA, Pollock CL, Kraus VB, et al. Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: results from a randomized controlled pilot study. BMC musculoskeletal disorders 2013; 14: 115.
Saberi Hosnijeh F, Runhaar J, van Meurs JB, et al. Biomarkers for osteoarthritis: Can they be used for risk assessment? A systematic review. Maturitas 2015.
Vilím V, Olejarova M, Machacek S, et al. Serum levels of cartilage oligomeric matrix protein (COMP) correlate with radiographic progression of knee osteoarthritis. Osteoarthritis Cartilage, 2002, 10(9): 707-713.
Henrotin Y, Sanchez C, Bay-Jensen AC, et al. Osteoarthritis biomarkers derived from cartilage extracellular matrix: current status and future perspectives. Annals of physical and rehabilitation medicine, 2016, 59: 145-148.
Acharya C, Yik JHN, Kishore A, et al. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biology, 2014, 37: 102-111.
Zhu Taihang, Cai Chunyuan, Zhang Lei. Research progress of osteoarthritis biomarker COMP. Chinese Journal of Orthopedics, 2010, 23(12): 959-961.
Fernandes FA, Pucinelli ML, da Silva NP, et al. Serum cartilage oligomeric matrix protein (COMP) levels in knee osteoarthritis in a Brazilian population: clinical and radiological correlation. Scand J Rheumatol, 2007, 36(3): 211-215.
Li Heng, Wang Dan, Wu Zhongqing, Zhong Jianming, Yuan Yongjian. The role of serum COMP in the early diagnosis of osteoarthritis. Chinese Journal of Orthopedics, 2012, 25(05): 380-383.
Lai Y, Yu XP, Zhang Y, et al. Enhanced COMP catabolism detected in serum of patients with arthritis and animal disease models through a novel capture ELISA. Osteoarthritis Cartilage. 2012; 20(8): 854-862.
Staikova ND, Kuzmanova SI, Solakov PT. Serologic markers of early rheumatoid arthritis. Folia Medica. 2003; 45(3): 35-42.
Kim JR, Yoo JJ, Kim HA. Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. Int J Mol Sci. 2018; 19(3): 674. Published 2018 Feb 27.
Steel KJA, Srenathan U, Ridley M, et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+ CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 2020; 72(3): 435-447.
Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA. 2020; 323(19): 1945-1960.
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol. 2020; 11: 730.
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017; 18(6): 612-621.
Xu Qiang, Li Haiyan, Jin Gang. Screening and identification of potential anti-osteoarthritis targets of luteolin. Journal of Zhejiang Chinese Medical University. 2020; 44(4): 381-386.
Xu Q, Li H, Jing G. Optimization and identification of anti-osteoarthritis potential targets of luteolin. Zhejiang Zhong Yi Yao Da Xue Xue Bao. 2020; 44(4): 381-386.
Li Z, Yuan B, Pei Z, et al. circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. Cell Mol Med. 2019; 23(10): 6554-6564.
Yamaguchi Y, Fujio K, Shoda H, et al. IL-17B and IL-17C are associated with TNF-alpha production and contribute to the exacerbation of inflammatory arthritis. J Immunol. 2007; 179(10): 7128-7136.
Wang Guoliang. Expression of IL-17 and mechanisms of inflammatory response in osteoarthritis [D]. Shandong University, 2018.
Lee YH, Song GG. Association between IL-17 gene polymorphisms and circulating IL-17 levels in osteoarthritis: a meta-analysis. Zusammenhang zwischen IL-17-Genpolymorphismen und zirkulierendem IL-17 bei Osteoarthrose: eine Metaanalyse. Z Rheumatol. 2020; 79(5): 482-490. doi: 10.1007/s00393-019-00720-2
Vos LM, Kuijer R, Huddleston Slater JJ, et al. Alteration of cartilage degeneration and inflammation markers in temporomandibular joint osteoarthritis occurs proportionally. J Oral Maxillofacial Surg. 2013; 71(10): 1659-1664.
Meulenbelt I, Kloppenburg M, Kroon HM, et al. Urinary CTX-II levels are associated with radiographic subtypes of osteoarthritis in hip, knee, hand, and facet joints in subjects with familial osteoarthritis at multiple sites: the GARP study. Ann Rheum Dis. 2006; 65: 360-365.
Kraus VB, Kepler TB, Stabler T, et al. First qualification study of serum biomarkers as indicators of total body burden of osteoarthritis. PLoS ONE. 2010; 5: e9739.
Reijman M, Hazes JM, Bierma-Zeinstra SM, et al. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum. 2004; 50: 2471-2478.
Dam EB, Loog M, Christiansen C, et al. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthritis Res Ther. 2009; 11: R115.
van Spil WE, Degroot J, Lems WF, et al. Serum and urinary biochemical markers for knee and hip osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthritis Cartilage. 2010; 18: 605-12.
Dou X, Zhang Z, Wang S, Zhou X. Combined use of Serum miR-338-3p, Cartilage Oligomeric Matrix Protein, and Chondroitin Sulfate-846 in the Early Diagnosis of Knee Osteoarthritis. Clin Lab. 2019; 65(3): 10.7754/Clin.Lab.2018.180803.
Jansen NW, Roosendaal G, Lundin B, et al. The combination of the biomarkers urinary C-terminal telopeptide of type II collagen, serum cartilage oligomeric matrix protein, and serum chondroitin sulfate 846 reflects cartilage damage in hemophilic arthropathy. Arthritis Rheum. 2009; 60(1): 290-298.
Wang Teng, Ding Hong, Zhao Zhengming, et al. Expression of S100A8/A9, CS-846, and MMP3 in knee osteoarthritis and their clinical significance. International Journal of Laboratory Medicine. 2020; 41(19): 2337-2340.
Zhang Junfeng, Song Linghua, Dong Haiyuan, et al. Combined detection of urinary C-terminal type II collagen, serum cartilage oligomeric matrix protein, and chondroitin sulfate 846 in the early diagnosis of osteoarthritis. Chinese Journal of Drugs and Clinical Therapeutics. 2014; 14(7): 861-864.
Zhou Tao, Zhang Bing, Zhu Peng. Detection of serum glucose-6-phosphate isomerase, chondroitin sulfate 846, and thrombospondin-1 levels in patients with knee osteoarthritis and their clinical significance. Laboratory Medicine and Clinical. 2022; 19(13): 1750-1753.
Bouillon R, Marcocci C, Carmeliet G, Bikle D, White J, Dawson-Hughes B, et al. Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev. 2019; 40: 1109-1151.
Martel-Pelletier J, Barr A, Cicuttini F, Conaghan P, Cooper C, Goldring M, et al. Osteoarthritis. Nat Rev Dis Primers. 2016; 2: 16072.
Mabey T, Honsawek S. Role of vitamin D in osteoarthritis: molecular, cellular, and clinical perspectives. Int J Endocrinol. 2015; 2015: 383918.
Veronese N, Maggi S, Noale M, De Rui M, Bolzetta F, Zambon S, et al. Serum 25-hydroxyvitamin D and osteoarthritis in older people: the Progetto Veneto Anziani study. Rejuvenation Res. 2015; 18: 543-553.
Laslett L, Quinn S, Burgess J, Parameswaran V, Winzenberg T, Jones G, et al. Moderate vitamin D deficiency is associated with changes in knee and hip pain in older adults: a 5-year longitudinal study. Ann Rheum Dis. 2014; 73: 697-703.
McAlindon T, Felson D, Zhang Y, Hannan M, Aliabadi P, Weissman B, et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med. 1996; 125: 353-359.
Felson D, Niu J, Clancy M, Aliabadi P, Sack B, Guermazi A, et al. Low levels of vitamin D and worsening of knee osteoarthritis: results of two longitudinal studies. Arthritis Rheum. 2007; 56: 129-136.
Konstari S, Paananen M, Heliövaara M, Knekt P, Marniemi J, Impivaara O, et al. Association of 25-hydroxyvitamin D with the incidence of knee and hip osteoarthritis: a 22-year follow-up study. Scand J Rheumatol. 2012; 41: 124-131.
Bergink A, Zillikens M, van Leeuwen J, Hofman A, Uitterlinden A, van Meurs J, et al. 25-hydroxyvitamin D and osteoarthritis: a meta-analysis including new data. Semin Arthritis Rheum. 2016; 45: 539-546.
Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014; 2: 76-89.
Shipton E, Shipton E. Vitamin D deficiency and pain: clinical evidence of low levels of vitamin D and supplementation in chronic pain states. Pain Ther. 2015; 4: 67-87.
Yu G, Lin Y, Dai H, Xu J, Liu J. Association between serum 25-hydroxyvitamin D and osteoarthritis: A national population-based analysis of NHANES 2001-2018. Front Nutr. 2023; 10: 1016809. Published 2023 Feb 28.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wenjing Wang, Liping Zhao

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.