Journal of Social Science and Humanities

DOI: 10.53469/jssh.2024.6(06).25

Research and Practice of Curriculum System Reform of Water Conservancy Major in Colleges and Universities

Lixia Guo

College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract: The analysis of the current situation of the curriculum system of water conservancy major in colleges and universities shows that the backward traditional curriculum, backward teaching methods, unbalanced teacher structure and other problems significantly affect the quality of education. Therefore, this paper discusses the reform plan of the curriculum system based on the concept of internationalization and foresight, aiming at improving students’ practical ability and international competitiveness, and promoting the sustainable development of the field of hydraulic engineering.

Keywords: Universities, Water conservancy major, Curriculum system, Reformation.

1. Introduction

With the progress of science and technology and the constant change of social needs, water conservancy major in universities is facing many challenges and opportunities. The traditional curriculum system is becoming increasingly inadequate in the face of emerging technologies and international standards, and there is an urgent need for further reform to improve the quality of education and cultivate outstanding professionals.

2. Analysis of the Current Situation of the Water Conservancy Major Curriculum System in Colleges and Universities

The development of water conservancy projects can be traced back to the ancient civilization period, as early as the Spring and Autumn period and the Warring States period, there were the rudiments of irrigation and water conservancy projects. With the development of social economy, water conservancy projects gradually became an important infrastructure for agricultural production and urban development. Since modern times, with the progress of science and technology and the development of engineering technology, water conservancy projects have been constantly evolving and improving, covering a wide range of fields from water resources management, water environment protection to flood prevention and control. With the continuous advancement of social demand and technological progress, water conservancy majors in colleges and universities are facing many challenges and problems, which are mainly reflected in the following aspects: First, the lack of course content with The Times. In the current water conservancy professional curriculum system, some course contents lag behind the development of science and technology and actual needs, and can not reflect the application and development of new technologies and new ideas in the field of water conservancy engineering in a timely manner. In the process of receiving education, students lack the latest theoretical support and practical guidance, which affects their ability to adapt to the practical work of modern hydraulic engineering after graduation. Second, the teaching method is backward and lacks practice. Most college water conservancy majors still adopt traditional teaching methods, pay attention to the instilling of theoretical courses, and lack enough practical teaching links. Students lack opportunities for field work and project practice, resulting in them lacking the necessary skills and experience when faced with practical work. Third, the structure and level of teaching staff are unbalanced. There is an obvious imbalance in the teaching team structure of water conservancy major in colleges and universities. On the one hand, some schools lack teachers with practical experience and industry background; on the other hand, the scientific research level and teaching methods of some teachers have lagged behind. This imbalance leads to the differentiation of teaching quality and education effect, which cannot effectively meet the demand of students and society for high-level water conservancy professionals [1].

3. The Concept and Goal Setting of Curriculum System Reform

3.1 Idea

Under the current social background of rapid development, the course system of water conservancy major in colleges and universities is in urgent need of profound reform to better adapt to the needs of social development and improve the teaching quality. The traditional hydraulic engineering curriculum system mostly focuses on the teaching of theoretical knowledge, but neglects the training of practical engineering operation and problem solving ability. The future curriculum reform will pay more attention to practical teaching, through field visits, engineering case analysis and laboratory simulation, so that students can master theoretical knowledge in practice and cultivate the ability to solve practical engineering problems. For example, field engineering projects are introduced as part of the curriculum, allowing students to carry out measurement, design and construction in actual projects, thereby improving their practical operation ability and comprehensive quality [2].

With the acceleration of the process of globalization and the promotion of scientific and technological innovation, the development of the field of water conservancy engineering is no longer limited to the domestic, but needs to integrate into...
the international advanced concepts and technical standards. Therefore, the future curriculum reform will focus on improving the forward-looking and international level of the curriculum, including introducing international advanced theoretical research results, setting up transnational cooperation projects, organizing international exchanges and academic conferences. Through cooperation with world-class universities and scientific research institutions, we provide students with a broad academic vision and a platform for cross-cultural exchange, and cultivate outstanding talents with global competitiveness.

Through the guidance and implementation of the above concepts, it is expected to effectively improve the quality and level of water conservancy teaching in colleges and universities, and cultivate excellent water conservancy engineering talents who are more in line with the requirements of The Times and have international competitiveness. This will not only help meet the social demand for high-level professionals, but also promote the sustainable development and progress in the field of hydraulic engineering [3].

3.2 Goal Setting

In order to adapt to the trend of globalization and scientific and technological progress, the reform of the curriculum system of water conservancy major in universities aims to establish an education system in line with international standards, to train high-level professionals with innovative spirit and practical ability, and to enhance the comprehensive quality and competitiveness of students.

First, establish a curriculum system that meets international standards. The new curriculum system will be based on international standards and best practices, combined with the actual needs of domestic water conservancy engineering, through careful design and optimization of course structure, content and teaching methods, to ensure that students can master the latest theory and technology, with international professional knowledge and skills. The curriculum will emphasize interdisciplinary integration and an international perspective, covering a full range of teaching from basic theory to cutting-edge technology to ensure that students are competitive in a globalized context.

The second is to cultivate high-level professionals with innovative spirit and practical ability. The reform of the curriculum system will focus on cultivating students' innovative thinking and practical operation ability. Through a variety of teaching methods such as project practice, engineering case analysis, and simulation, we stimulate students' innovation potential and improve their problem-solving ability in the face of practical engineering challenges. At the same time, practical teaching is strengthened so that students can apply their knowledge in a real engineering environment, and develop excellent practical skills and teamwork.

Third, improve students' comprehensive quality and competitiveness. In addition to the transfer of professional knowledge and skills, the reform of the curriculum system will also focus on the cultivation of students' comprehensive quality. By offering general education courses, strengthening language communication skills, training leadership skills and social responsibility, the comprehensive quality of students is comprehensively improved, so that they have good humanistic literacy, innovation ability and team spirit, so as to show excellent comprehensive competitiveness in their career [4].

4. The Specific Reform Measures and Implementation Paths

4.1 Curriculum Structure Adjustment and Optimization

The adjustment and optimization of the curriculum structure is the key step in the reform process of the water conservancy major curriculum system in colleges and universities, which aims to better adapt to the needs of the development of modern water conservancy engineering, and improve the quality of education and the practical application ability of students. Colleges and universities need to comprehensively review and restructure the existing core curriculum. By combing the basic theoretical and practical skills requirements of each professional field, the core curriculum is determined to meet international standards and industry needs. These core courses should not only cover the traditional subjects of hydraulic engineering, but also cover the latest scientific and technological progress and international advanced standards to ensure that students master the most critical and basic knowledge system. In order to keep the curriculum forward-looking and practical, it is necessary to actively introduce cutting-edge technology and the latest scientific research results. Through the establishment of cooperative relations with scientific research institutions and industry enterprises, the latest scientific research results are directly integrated into the curriculum. For example, combining big data analysis technology and the application of artificial intelligence in water conservancy projects, relevant cutting-edge courses are offered to enable students to understand and apply the latest technological means to solve practical problems [5].

Through the above adjustment and optimization measures of curriculum structure, students' learning experience and education quality can be effectively improved. At the same time, in order to implement these reform measures smoothly, it is necessary to formulate a detailed implementation path: first, formulate a specific curriculum reform plan. Set up a special curriculum reform group or committee, responsible for formulating a detailed curriculum restructuring plan and timetable to ensure the smooth progress of the reform. Second, we will strengthen teacher training and support. Provide necessary teacher training to help teachers familiarize themselves with the new teaching content and methods and improve their teaching ability and academic level. Third, establish an evaluation and feedback mechanism. Design a scientific and reasonable curriculum evaluation and student feedback mechanism, regularly evaluate the effect of curriculum reform, and timely adjust and optimize the course content and teaching methods according to the feedback.

4.2 Teaching Method Innovation

In order to improve the effectiveness and practicability of
water conservancy teaching in colleges and universities, the innovation of teaching methods has become an indispensable part. In particular, through intensive experimental teaching and field practice, students can apply theoretical knowledge in a real environment and improve their ability to solve practical problems. Experimental teaching is an important bridge to transform theoretical knowledge into practical operation. By setting up modern laboratories and simulation sites, students can conduct experimental research in hydraulic engineering surveying, hydrological data analysis, and water resources management. For example, the latest measurement equipment and data processing software are used to conduct hydraulics experiments and hydrological model simulation, so that students can personally experience and master the methods and skills of scientific experiments. Field practice is an important way for students to apply their knowledge to practical engineering projects. Opportunities are provided for students to participate in practical engineering projects through partnerships with industry companies and local governments. This kind of field internship can not only exercise students' practical operation ability and teamwork spirit, but also let them understand the overall process and implementation details of the engineering project, and make full preparation for the future career.

In addition to the traditional discipline teaching, the introduction of interdisciplinary teaching mode is an effective way to improve teaching quality and expand students' horizons. Through interdisciplinary cooperation with other related majors such as environmental science, geological engineering, etc., students can be provided with a more integrated and diversified learning experience. Interdisciplinary teaching mode can break the boundary between disciplines and promote the knowledge exchange and integration of different disciplines. For example, in the interdisciplinary teaching of hydraulic engineering and environmental science, students not only learn the technology of water resources management and water pollution control, but also have an in-depth understanding of environmental impact assessment and ecosystem restoration and other related knowledge, thus forming a more comprehensive and integrated professional quality. In order to successfully introduce the interdisciplinary teaching model, it is necessary to establish a special working group or committee for interdisciplinary curriculum design, and formulate specific curriculum plans and teaching contents.

4.3 Construction of Teaching Staff

The construction of the teaching staff of water conservancy major in colleges and universities is an important guarantee to promote the improvement of education quality, especially the introduction and training of teachers with international vision and practical experience will have a profound impact on students' learning and professional development. In order to keep up with the latest developments in the vision a global water engineering field, it is necessary to introduce teachers with international rich practical experience through international recruitment channels. These teachers can not only impart internationally advanced theoretical knowledge and technology, but also guide students to focus on the challenges and opportunities in the context of globalization, and cultivate students' professional competence with international competitiveness. At the same time, professional skills training and academic exchanges will be conducted for existing teachers, and they will be encouraged to participate in major projects at home and abroad to enhance their practical ability and industry influence. Through the combination of industry and academic research, it can not only deepen teachers' understanding of the latest trends in the industry, but also promote the transformation and application of academic achievements, and provide students with more abundant and in-depth academic resources.

Through regular training on teaching methods, teaching case analysis and interactive teaching discussion, teachers are helped to improve the classroom teaching effect and students' interactive experience. For example, modern teaching technologies and online teaching platforms have been introduced to enhance teachers' information-based teaching capabilities, improve teaching efficiency and students' learning experience. Policy support and academic resource sharing provide teachers with a broad platform for academic exchange and cooperation, encourage teachers to participate in national key scientific research projects and industrial technological innovation, and promote the transformation and application of scientific research results. Through the active application of scientific research results, the combination of academic innovation and teaching practice is promoted, and the academic influence and industry status of teachers are constantly improved.

5. Conclusion

Through in-depth analysis of the current situation and reform direction of the water conservancy major curriculum, we expect that the new curriculum system can effectively respond to social needs and technological progress, and cultivate outstanding talents in line with international standards. The future curriculum reform will promote the docking of education with the actual needs of the industry, promote continuous innovation and progress in the field of water engineering, and make positive contributions to the sustainable development of society and the environment.

References

major curriculum. Journal of Irrigation and Drainage, 2023, 42 (03): 146.