Exploring Rogers-Ramanujan-Type Identities Modulo 9, 11, 18, and 22

Authors

  • Deepthi Vijayan Assistant Professor, Department of Mathematics, F. A. Ahmed College, Garoimari, Kamrup, Assam, India

DOI:

https://doi.org/10.53469/jrve.2025.7(02).01

Keywords:

Rogers-Ramanujan Type Identities, Jacobi’s Triple Product Identity, Bailey Pairs

Abstract

In this paper, some identities of Rogers_Ramanujan Type related to modulo 9, 11, 18 and 22 is derived with the incorporation of generalized Bailey pairs and some standard results established by Andrew V. Sills [1] using some q − difference relations.

References

Andrew V. Sills, "On Identities of the Rogers- Ramanujan Type". Ramanujan journal, 1-28 (2004)

G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University press1990.

G.E. Andrews, "Encyclopedia of Mathematics and its application",(Ed: Gian- Carlo Rota (ed.)2, The Theory of partitions, Addison Wesley co., Newyork 1976.

I Scur, "Ein Beitrag zur additive Zahlen und zur Theorie der Kettenbruche", Sitzungsberichte der Berliner Akademie (1917), 302-321

L.J. Slater, Further Identities of Rogers Ramanujan Type, Proc. London Math. Soc. 54 (1952) 147-167.

L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), pp, 318-343.

P.A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, London 1918.

W.N. Bailey, "Some identities in combinatory analysis," Proc. London Math. Soc.(2), 49 (1947),421- 435.

W.N. Bailey, "Identities of Rogers-Ramanujan Type"

Proc. London Math. Soc.(2), 50 (1949), 1-10

Downloads

Published

2025-02-28

How to Cite

Vijayan, D. (2025). Exploring Rogers-Ramanujan-Type Identities Modulo 9, 11, 18, and 22. Journal of Research in Vocational Education, 7(2), 1–6. https://doi.org/10.53469/jrve.2025.7(02).01

Issue

Section

Articles