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Theorem 1: In a complete metric space (M, ρ), let f be a self-

map such that 

 

ρ2(f x, f y) < αρ (x, f x) ρ (y, f y) +βρ (x, f y). ρ (y, f x)  (1) 

 

for all x, y in M for some nonnegative constants α, β with α < 

1. Then f has a fixed point in M. If further β < 1, then f has a 

unique fixed point in M. 

 

In this work, we first construct generalizations of Theorem 1's 

existence portion for a pair of self-maps on a 2-metric space 

and its uniqueness part for four self-maps on a 2-metric space. 

 

We then present the metric space versions of some of these 

findings without providing any supporting evidence. To shed 

more light on the findings covered and the notion of 

compatibility of a pair of self-maps on a 2-metric space 

presented here, we also provide a number of examples. 

 

For the purpose of completeness, remember a few 

fundamental concepts and details. 

 

Definition 1: Assume that the set X is nonempty. The 

definition of a 2-metric on X is as follows: 
1) given distinct elements x, y of X, there exists an element 

z of X such that d (x y, z) ≠ 0,  

2) d (x, y, z) = 0 when at least two of x, y, z are equal, 

3) d (x, y, z) = d (x, z, y) = d (y, z, x) for all x, y, z in X, and  

4) d (x, y, z) ≤ d (x, y, w) +d (x, w, z) + d (w, y, z) for all x, 

y, z, w in X. 

 

It is known as a 2-metric space when the ordered pair (X, d) 

has d as a 2-metric on X. 

 

Definition 2: In a 2-metric space (X, d), a sequence {xn} is 

considered  

1) Convergent with limit x in X if limn→∞ d (xn, x, a) = 0 for 

all a in X,  

2) Cauchy if limit x in X if limn→∞ d (xn, xm, a) = 0 for all a 

in X. 

 

Definition 3: If each Cauchy sequence in a 2-metric space is 

convergent, the space is considered complete. 

 

Definition 4: If two of its arguments are sequentially 

continuous, then A2-metriconasetX is said to be continuous 

on X. 

 

Two metrics are known to be nonnegative real-valued 

functions that are sequentially continuous in any one of their 

arguments. If they are sequentially continuous in two of their 

arguments, then they are sequentially continuous in all three. 

Naidu and Prasad noted that (i) a convergent sequence in a 2-

metric space does not always have to be Cauchy (see [4, 

Remark 0.1 and Example 0.1]). (ii) any convergent sequence 

in a 2-metric space (X, d) is Cauchy if d is continuous on X 

[4, Remark 0.2], and (iii) the opposite of (ii) is untrue [4, 

Remark 0.2 and Example 0.2]. 

 

Throughout this paper, unless otherwise stated, (X, d) is a 2-

metric space; (M, ρ) is a metric space; R is the set of all real 

numbers; R+ is the set of all nonnegative real numbers; for a 

self-map θ on R+, θ1 stands for θ and for a positive integer n, 

θn+1 is the composite of θ and θn; ϕ is a monotonically 

increasing map from R+ to R+ with Σ(𝑛=1)
∞ √𝜑𝑛 (𝑡) < ∞ for all 

t in R+; ψ is a map from R+ to R+ with ψ(0) = 0; K is an 

absolute non-negative real constant; and, depending upon the 

context, f , g, S, T are self-maps on X or M. We note that 𝜑(t) 

< t for all t in (0, ∞) and that 𝜑 (0) = 𝜑 (0+) = 0. 

 

Remark 1: For a monotonically increasing nonnegative real-

valued function θ on R+ the condition “Σ(𝑛=1)
∞ √𝜃𝑛 (𝑡) < + ∞ 

for all t in R+” neither implies nor is implied by the condition 

“θ(t+) < t for all t in (0, ∞).” Examples 1 and 2 illustrate this. 

 

Example 1: Define θ: R+ → R+ as θ(t) = t2 if 0 ≤ t ≤ 3/4 and 

θ(t) = 3/4 if t > 3/4. Then θ is monotonically increasing on R+. 

For a positive integer n, we have θn(t) = (3/4) 2n−1 if t > 3/4 and 

θn(t) = 𝑡2𝑛
 if t ≤ 3/4. Hence Σ𝑛=1

∞ √𝜃𝑛 (𝑡) < + ∞ for all t in R+. 

We note that θ ((3/4) +) = 3/4. 
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Example 2: Define θ: R+ → R+ as θ(t) = t/(1+t) for all t in R+. 

Then θ is a strictly increasing continuous function on R+ with 

θ(t) < t for all t in (0, ∞). We have θ(1/n) = 1/(n+1) for all n = 

1,2, 3, .... Hence θn(1) = 1/(n+1) for all n = 1,2,3,.... Hence 

Σ(𝑛=1)
∞ √𝜃𝑛 (𝑡) is divergent. 

 

The following Naidu lemma is required [3]. 

 

Lemma 1: (see [3]) Consider the sequence {𝑦𝑛}𝑛=0
∞

 in (X, d). 

Let dn(a) = d (yn, yn+1, a), for a ∈ X. Assume that for any 

nonnegative integers m, n with n > m, dn(ym) = 0. Then, for 

any nonnegative integers i, j, and k, d (yi, yj, yk) = 0.  

 

Preposition 1: Assume that  

d2(fx, gy, a) ≤ 𝜑 (Kd (fx, Ty, a) d (Sx, gy, a) + max d2(Sx, Ty, 

a), d2(Sx, fx, a), d2(Ty, gy, a) + Ψ d (fx, Ty, a) d (Sx, gy, a)     

 (1) 

 

for all x, y, a in X. Let {𝑥𝑛}𝑛=0
∞  be a sequence in X such that 

fx2n = Tx2n+1(= y2n, say), gx2n+1 = Sx2n+2 (= y2n+1, say) (n=0,1, 

2, ...).    

(2) 

Then {𝑦𝑛}𝑛=0
∞

 is Cauchy. 

 

Proof. Let dn(a) = d (yn, yn+1, a). By taking x = x2n+2 and y = 

x2n+1 in inequality (1), We obtain  

d2n+1
2  (a) ≤ 𝜑 (max {d2n

2  (a), d2n+1
2

 (a)}).            (3) 

 

By taking x = x2n and y = x2n+1 in inequality (1) we obtain  

d2n
2 (a) ≤ 𝜑 (max {d2n−1

2
 (a), d2n

2 (a)}).                  (4) 

 

From the above two inequalities, we have   

dn+1
2  (a) ≤ 𝜑 (max {d2n

2  (a), dn+1
2  (a) (n=0,1, 2, ...). (5)  

 
Given that φ is nonnegative and φ (t) < t for any t in (0, ∞), 

the inequality above gives 

dn+1
2  (a) ≤ 𝜑 (dn

2  (a))                (n=0,1,2,...).           (6) 

 

Using inequality (6) and the monotonically growing character 

of φ repeatedly, we arrive at 

dn
2  (a) ≤ 𝜑 (d0

2 (a))                 (n=0,1,2,...).              (7) 

 

From inequality (6) we see that dn+1 (a) = 0 and if dn (a) = 0. 

Since dm (ym) = 0 for every non-negative integer m, it 

follows that dm (ym) = 0 for any nonnegative integers m, n 

with n > m.  

 

Hence from Lemma 1 we have d (yi, yj, yk) = 0 for all 

nonnegative integers i, j, k. Hence for any nonnegative 

integers m and n with n < m. 

d (yn, ym, a) ≤ ∑ 𝑑𝑘(𝑎)
𝑚−1

𝑘=1
                                   (8) 

 

Hence from inequality (7) we have,  

d (yn, ym, a) ≤ ∑ √𝜑𝑘(𝑡0

𝑚−1

𝑘=1
)                              (9) 

 

where t0 = d0
2 (a). Since Σ(𝑛=1)

∞ √𝜑𝑘(𝑡) < + ∞ ∀ t in R+ , 

∑ 𝜑𝑘(𝑡0 )
𝑚−1

𝑘=1
 → 0 as both m and n → + ∞. Hence d (yn, ym, 

a) → 0, as both m and n →+ ∞. Since this is true for any a in 

X, it follows that {yn} is Cauchy. 

 

Theorem 2: Assume that 𝜓 is right continuous at Zero and  

d2(fx, gy, a)

≤  φ (max {
d2(x, y, a), d2(x, y, a), d2(x, fx. a), d2(y, gy, a),

 kd(fx, y, a)d(x, gy, a)
}

+  𝜓 (d(fx, y, a)d(x. gy, a)) 

                                                                                                              

(1a) 

 

for all x, y, a in X. For any x0 in X, let {𝑥𝑛}𝑛=1
∞  defined 

iterativity as  

 

x2n+1 = fx2n, x2n+2= gx2n+1 (n = 0,1. 2…….)     (1b) 

 

Then 
{xn}is Cauchy. If {xn} converges to an element z of X, then z 

 is a common fixed point of f and g. Further the fixed point 

sets of f and g are the same. 

 

Proof: By taking S = T = I, the identity map on X, in 

Proposition 1, we can conclude that {𝑥𝑛}isa Cauchy sequence 

in X. Suppose that it converges to an element z of X. By 

taking x = x2n and y = z in inequality (1a) we obtain 

d2(x2n+1, gz. a)

≤ φ(max {
d2(x2n, z, a), d2(x2n, x2n+1, a), d2(z, gz, a),

kd(x2n+1, z, a)d(x2n, gz, a)
}) 

                                                 ψ(d(x2n+1, z, a)d(x2n, gz, a))                                                 

(1c) 

 

The limit of the first term on the right-hand side of inequality 

(1c) as n → + ∞ is if φ(d2(z, gz, a)) 

d(z, gz, a) is poisitive. Otherwise, it is φ(0) or φ(0 +).  
Since φ(0 +) =  φ(0) = 0, in either 

case it can be written as φ(d2(z, gz, a)). Since Ψ(0 +)

= Ψ (0) = 0. by taking limits  on    
 both sides of the above inequality as n → +∞ we obtain  
  d2(z, gz, a) ≤ φ (d2(z, gz, a)) .             (1d) 

 

Since φ(t) < t for all t in (0, ∞), we have d2(z, gz, a) = 0. 
Since this is true for all a in X, gz = z. Similarly, it can be 

shown that fz = z. if x is a fixed point of f, then by taking y = 

x inequality (1a) we obtain d2(x, gx, a) ≤ φ (d2(x, gx, a)). 

Hence gx = x. Similarly, it can be shown that any fixed point 

of g is also a fixed point of f. Hence f and g have the same 

fixed point sets. 

 

Remark 2: The uniqueness of the common fixed point for f 

and g is not guaranteed by the hypothesis of Theorem 2. This 

can be seen by taking f and g as identity maps on X, K = 2, φ 

(t)= (1/2) t and Ψ(t) = 0 for all t in R+. We can also take K =0 

and φ (t)=Ψ(t) = (1/2) t for all t in R+ or ϕ(t)=0 and Ψ(t)=t for 

all t in R+. Theorem 2 is an improvement over the existence 

part of Theorem 3 of Naidu [3] in which the first Ψ occurring 

in the governing inequality is to be read as φ. Proposition 1 is 

also an improvement over that of Naidu [3] 
 

Corollary 1: Assume that (X, d) is complete and 

d2(fx, fy, a) ≤ 

αd(x, fx, a)d(y, fy, a) + βd(x, fy, a)d(fx, y, a)for all x, y in X.                                          
(1e)  
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for some nonnegative constants α, β with α < 1. 
Consequently, f has a fixed point in X. The fixed point of f in 

X is unique if β < 1. 

 

Proof: The corollary's existence component is derived from 

Theorem 2 by using g = f and k = 0. φ(t) = αt, and ψ(t) = βt 
for all t in R+. The rest of it is evident. 

 

Remark 3: Corollary 1 is the version of Theorem 1 in 2- 

metric space. A review of the Theorem 2 proof yields the 

following variation. 

 

Theorem 3: Assume that φ(t+) < t ∀ t in (0, ∞), ψ is right 

continuous at zero and 

d2(fx, gy, a) ≤  φ(kd(fx, y, a)d(x, gy, a)
+ max {d2(x, y, a), d2(x, fx, a), d2(y, gy. a) 

                                                   + ψ(d(fx, y, a)d(x, gy, a)                                                                         

(1f) 

 

for all x, y, a in X. for any x0 in X, let {𝑥𝑛}𝑛=1
∞  defined 

iterativity as in Theorem 2. Then {𝑥𝑛} is Cauchy. Z is a 

common fixed point of x and g if {xn} converges to an 

element z of X. Additionally, f and g's fixed point sets are 

identical. 
 

Remark 4: The uniqueness of a common fixed point for f and 

g is not guaranteed by the hypothesis of Theorem 3. This can 

be seen by taking f and g as identity maps on X, K=1, 𝜑 (t) = 

(1/2) t, and Ψ(t)=0 ∀ t in R+. 

 

The notions of weak continuity of a 2-metric and weak 

commutativity for a pair of self-maps on a 2-metric space 

were first presented by Naidu and Prasad [4]. In Jeong and 

Rhoades [2], the concepts of weak compatibility for a pair of 

self-maps on an arbitrary set and compatibility for a pair of 

self-maps on a metric space are introduced. For the interest of 

thoroughness, we list them below. 

 

Definition 5: (see [4]).  A convergent sequence in X with limit 

z is said to be weakly continuous if it is Cauchy at z ∈ X.  

 

Definition 6:(see [4]). A pair of (f1, f2) of self-maps on (X, d) 

is said to be a weakly commuting pair (w.c.p.) if 

d(f1f2x , f2f1x, a) ≤ d(f1x, f2x, a) ∀ x, y, a in X.  

 

Definition 7: (see [2]). A pair (f1, f2) of self-maps on (M, ρ) 

is said to be ac compatible pair (co.p.) if {ρ (f1f2xn, f2f1xn)} 

converges to zero whenever {xn} is a sequence in M such that 

{f1xn} and {f2xn} are convergent in M and have the same 

limit.  

 

Definition 8: (see [2]). A pair (f1, f2) of self-maps on an 

arbitrary set E is said to be a weakly compatible pair (w.co.p.) 

if f1f2x = f2f1x whenever x ∈ E is such that f1x =f2x.  

In analogy with Definition 7 we introduce the concept of 

compatibility for a pair of self-maps on a 2-metric space. 

 

Definition 9: A pair (f1, f2) of self-maps on (X, d) is called a 

compatible pair (co.p.) if {d (f1f2xn, f2f1xn, a)} converges to 

zero for each a in X whenever {xn} is a sequence in X such 

that {f1xn} and {f2xn} are convergent sequences in X having 

the same limit and {d (f2xn, f1xn, a)} converges to zero for each 

a in X. 

Remark 3: Naidu [3] established the idea of asymptotic weak 

commutativity for a pair of self-maps on a 2-metric space, 

which is a little stricter than the idea of compatibility 

presented here. Compatibility is implied by weak 

commutativity in 2-metric spaces. However, the opposite is 

untrue. 

 

Theorem 4: Suppose that Ψ is monotonically increasing on 

R+, Ψ(t+) < t ∀ t in (0,∞), 

d2(fx, gy, a) ≤ φ(max{d2(Sx, fx, a), d2(Ty, gy, a)}) +
 Ψ(d(fx, Ty, a)d(Sx, gy, a))                   (1g)           

 

for all x, y, a in X and that there are sequences {𝑥𝑛}𝑛=0
∞  and 

{𝑦𝑛}𝑛=0
∞  as stated in Proposition 1. Then {yn} is Cauchy. 

Suppose that it converges to an element z of X. 

 

Corollary 2: Assume that Ψ is monotonically increasing on 

R+, Ψ(t+) < t ∀ t in (0,∞), 

d2(fx, gy, a) ≤ φ(max{d2(Sx, fx, a), d2(Sy, gy, a)}) +
 Ψ(d(fx, Sy, a)d(Sx, gy, a))              (1h)          

for all x, y, a in X and that there are sequences {𝑥𝑛}𝑛=0
∞  and 

{𝑦𝑛}𝑛=0
∞  in X such that  

fx2n = sx2n+1 = y2n, gx2n+1 = sx2n+2 = y2n+1    (n =
0, 1, 2, … ….                                (1i) 

 

Then {yn} is Cauchy. Presume that it converges to X's element 

z. If one of the following sets of requirements holds, then z is 

a unique common fixed point of f, g, and S. 

• Either (f, S) or (g, S) is a w.co.p. and z ∈ S(X). 

• Either f or g is continuous at z and (f, S) is a co.p., or S is 

continuous at z and (g, S) is a co.p. 

• S is continuous at z, d is weakly continuous at Sz and 

either (f, S) or (g, S) is a co.p.  

• Sk is continuous at z and d is weakly continuous at Skz for 

some positive integer k, and S commutes with either f or 

g.  

• For some positive integer k, Sk is continuous at z, and S 

commutes with each of the maps f and g. 

 

Remark 4: In Theorem 4 if inequality (1g) is replaced with 

the following more stringent inequality 

d2(fx, gy, a) ≤ φ(max{d2(Sx, fx, a), d2(Ty, gy, a)}) +
 Ψ(d(fx, Ty, a)d(Sx, gy, a))              (1j)     

 

Then the weak continuity d can be dropped from all those 

numbered statements in which it appears. A similar remark 

applies to Corollary 2 also.  

 

We now state without proof the metric space versions of some 

of the results we obtained in 2-metric spaces. Hereafter, 

unless otherwise stated, f, g, S, T are self-maps on M.    

 

Preposition 2: Assume that  

ρ2(fx, gy) ≤ φ (Kρ (fx, Ty) ρ (Sx, gy) +max {ρ2(Sx, Ty), 

ρ2(Sx, fx), ρ2(Ty, gy)}) 

+ Ψ (ρ (fx, Ty) ρ (Sx, gy))      (1k) 

 

for all x, y in M and that there are sequences {𝑥𝑛}𝑛=0
∞  and 

{𝑦𝑛}𝑛=0
∞  in M satisfying equations (2) then {𝑦𝑛}𝑛=0

∞  is 

Cauchy. 

 

Remark 5: Proposition 2 fails if the condition Σ(𝑛=1)
∞ √φn (t) 

< +∞  ∀ t in R+ is replaced by the condition 𝜑(𝑡+) <
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𝑡 ∀ 𝑡 𝑖𝑛 (0, ∞). Exaple 3 illustrates this when g = f , S =
 T =  I (the identity map on M) and Ψ(t) = t ∀ t in R+. 
 

Example 3: Let M = {xn: n = 1, 2, 3, ...}, where xn = Σ(n=1)
∞  

1

k
 . 

Define f: M →M as f xn = xn+1 for all n=1, 2, 3, .... Define φ: 

R+ →R+ as φ (t) = 
t

1+t
 ∀ t in R+. Then φ  is a strictly increasing 

continuous function on R+ with φ (t) < t ∀ t in (0, ∞) and 

|fx−fy|2 ≤ φ |x−y|2 +|fx−y||x−fy| 

                                                       (1l) 

for all x, y in M. Evidently for any x in M the sequence {f n 

x} diverges to + ∞ and hence is not Cauchy. 

 

Theorem 5: Assume that Ψ is right continuous at zero and  

                    ρ2(fx, gy) ≤ 

φ(max{ρ2(𝑥, 𝑦), ρ2(𝑥, 𝑓𝑥), ρ2(𝑦, 𝑔𝑦) , 𝑘ρ(fx, y)ρ(x, gy}) +  

                                                  Ψ (ρ (fx, y) + ρ (x, gy))                                                       

(1m) 

 

for all x, y in M. For any x0 in M, let Σ𝑛=1
∞  be defined 

iteratively as in Theorem 2. Then {xn} is Cauchy. If {xn} 

converges to an element z of M, then z is a common fixed 

point of f and g. Further the fixed point sets of f and g are the 

same. 

 

Theorem 6: Assume that φ(t +) < t ∀ t in (0, ∞), Ψ is the 

right continuous at zero and 

ρ2(fx, gy) ≤ φ(𝑘ρ(fx, y)ρ(x, gy) +
max ({ρ2(𝑥, 𝑦), ρ2(𝑥, 𝑓𝑥), ρ2(𝑦, 𝑔𝑦)} + 

Ψ (ρ (fx, y) + ρ (x, gy))                                                     (1n) 

 

for all x, y in M. For any x0 in M, let Σ𝑛=1
∞  be defined 

iteratively as in Theorem 2. Then {xn} is Cauchy. An element 

z of M is a common fixed point of f and g if {xn} converges 

to it. Additionally, the fixed point sets of f and g are identical. 
 

Remark 6: In the lack of the constraint φ(t+), even if (M, ρ) 

is complete, f = g, K = 1, and Ψ is identically zero on R+, the 

continuous z is a common fixed point of f and g fails in the 

theorem 6. Instances 4 and 5 demonstrate this. In Example 5, 

the function f has a fixed point; in Example 4, it does not. 
 

Example 4: Let M= {
1

2𝑛 𝑛 = 0, 1,2 … … . } ∪ {0}. Then M is 

a complete metric space under the metric induced by the 

modulus function. Define f: M →M as fx = 
1

2
 (x) if x≠ 0 and 

f 0 = 1. Define φ: R+ →R+ as φ (t) = 1if t >1 and φ (t) = ( 
1

2
 ) 

t if t ≤ 1. Then φ is monotonically increasing on R+,Σ(n=1)
∞  

√φn (t) < +∞ ∀ t in R+, φ (1+) = 1 and  

 

                          |f x−f y|2 ≤ φ (|f x−y||x−f y| + max |x−y|2, 

|x−f x|2, | y−f y|2 )                                                             (1o) 

 

for all x, y in M. We note that for any x0 in M the sequence 

{f nx0} converges to zero. But 0 is not a fixed point of f. In 

fact, f has no fixed point. 

 

Example 5: Consider M as shown in Example 4. Define f: M 

→M as fx = 
1

2
 (x) if x∉{0,1} and f 0 = f 1=1. Define φ: R+ 

→R+ as φ (t) = 1if t > 1and φ (t) = ( 
9

10
 ) t if t ≤ 1. Then φ is 

monotonically increasing on R+,Σ(n=1)
∞  √φn (t) < +∞  

∀ t in R+, φ (1+) = 1 and inequality (1o) is satisfied ∀ x, y in 

M. We note that for any x0 in M\ {0,1} the sequence {f nx0} 

converges to zero. However, zero is not a fixed point of f. 

 

Remark 7: A pair (f1, f2) of self-maps on (M, ρ) is a w*.c.p. 

if ρ (f1f2x, f2f1x) ≤ γρ (f2x, f1x) for all x in M for some 

nonnegative real number γ and a w.c.p. (weakly commuting 

pair) if ρ(f1f2x, f2f1x) ≤ ρ(f2x,f1x) for all x in M. (The notion 

of weak commutativity for a pair of self-maps on a metric 

space was introduced by Sessa [5].) Clearly a w.c.p. is a 

w*.c.p. and a w*.c.p. is a co.p. But the converse is false in 

either instance. Examples 6 and 7 prove this. 

 

Example 6: Define f1, f2 from R to R as f1x = x2 and f2x = 

2x−1 ∀   x in R. Then |f1f2x − f2f1x| = 2(x−1)2 = 2|f1x − f2x| ∀ 

x in R. Hence (f1, f2) is a w*.c.p. but not a w.c.p. 

 

Example 7: Define f1, f2 from R to R as f1x = x2 and f2x = - 

x2 ∀   x in R. Then |f1f2x−f2f1x| = 2x4 and |f1x − f2x| = 2x2  ∀ 

x in R. Clearly there is no nonnegative real number γ such that 

2x4 ≤ γ (2x2) ∀ x in R. Hence (f1, f2) is a w*.c.p. Clearly it is 

a co.p. 

 

Theorem 7: Assume that Ψ increases monotonically on R+, 
Ψ(t+) < t  ∀ t in (0, ∞),  ρ2(fx, gy) ≤ φ (max{ 
ρ2(Sx, fx), ρ2(Ty, gy)}) + Ψ (ρ (fx, Ty), ρ (Sx, gy))  (1p)  

∀ x, y in M and that there are sequences {𝑥𝑛}𝑛=0
∞  and {𝑦𝑛}𝑛=0

∞  

in M satisfying the equations (2) 

 {𝑦𝑛}𝑛=0
∞  is Cauchy because of this. Suppose it converges to a 

z-element in M. Consequently, the following claims are 

accurate. 

• The fixed point z is the only one that both the maps f and 

S and g and T pair can share.        

When Sz = z, fz = z. Tz = z implies that gz = z. 

• Z is a common fixed point of f and S if and only if it is a 

common fixed point of g and T, provided that Sz = Tz. 

• If z ∈ S(X) and (f, S) is a w.co.p., then fz = Sz = z. 

• If S is continuous at z and (f, S) is a co.p., then fz = Sz = 

z. 

• If (f, S) is a w.co.p. and, for some positive integer k, fSk = 

Skf and Sk is continuous at z, then fz = Sz = z.  

fz = z if f is continuous at z and (f, S) is a co.p. 

• Statements (3), (4), (5), and (6) with f and S replaced by g 

and T, respectively 
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