A New Concept of Quantum Field Theory

Authors

  • Mohamed Ali Mohamed Department of Physics, G. D. College, Begusarai LNM University Darbhanga Bihar, India

DOI:

https://doi.org/10.53469/jrse.2024.06(09).01

Keywords:

Quantum field theory, curved spacetime, Cauchy surfaces, global hyperbolicity, Unruh effect

Abstract

This paper explores the integration of quantum field theory QFT with Einsteins theory of gravitation, addressing the challenges of quantization in curved spacetimes. It examines the limitations of current approaches, such as standard QFTs neglect of gravitational effects and the complexities of choosing a vacuum state in general spacetimes. Key sections include the analysis of Cauchy surfaces, global hyperbolicity, and the role of observers in QFT. The study also delves into the Unruh effect, illustrating the thermal nature of the Minkowski vacuum in accelerated frames, and concludes with a discussion on the generalization of classical phase - space in curved spacetimes.

References

Fulling, S. A. (1979). “Remarks on positive frequency and hamiltonians in expand - ing universes”. In: General Relativity and Gravitation 10.10, pp.807–824. issn: 00017701. doi: 10.1007/BF00756661.

Fulling, S. A, F. J Narcowich, and Robert M. Wald (1981). “Singularity structure of the two - point function in quantum field theory in curved spacetime, II”. In:

Annals of Physics 136.2, pp.243–272. issn: 00034916.

doi: 10.1016 / 0003 - 4916 (81) 90098 - 1. url: https:

//linkinghub. elsevier. com/retrieve/pii/ 0003491681900981.

Fulling, Stephen A. (1973). “Nonuniqueness of canonical field quantization in rieman - nian space - time”. In: Physical Review D 7.10, pp.2850–2862. issn: 05562821. doi: 10.1103/PhysRevD.7.2850.

Fulling, Stephen A., Mark Sweeny, and Robert M. Wald (1978). “Singularity struc - ture of the two - point function in quantum field theory in curved spacetime”. In:

Communications in Mathematical Physics 63.3, pp.257–264. issn: 0010 - 3616. doi: 1007/BF01196934. url: http: //link. springer. com/10.1007/BF01196934.

Geroch, Robert (1970). “Domain of dependence”. In: Journal of Mathematical Physics 11.2, pp.437–449. issn: 00222488. doi: 10.1063/1.1665157.

Hawking, S. W. and G. F. R. Ellis (1973). The Large Scale Structure of Space–Time. Vol.1. Cambridge: Cambridge University Press. isbn: 9780511524646. doi: 10.1017/CBO9780511524646.

Hollands, Stefan and Robert M. Wald (2015). “Quantum fields in curved spacetime”. In: General Relativity and Gravitation: A Centennial Perspective, pp.513–552. issn: 03701573. doi: 10.1017/CBO9781139583961.015. arXiv: 1401.2026.

Junker, Wolfgang and Elmar Schrohe (2002). “Adiabatic vacuum states on general space - time manifolds: Definition, construction, and physical properties”. In: Annales Henri Poincare 3, pp.1113– 1182. doi: 10.1007 / s000230200001. arXiv: math - ph/0109010 [math - ph].

Kay, Bernard S (1980). “Linear spin - zero quantum fields in external gravitational and scalar fields”. In: Communications in Mathematical Physics 71.1, pp.29– 46. issn: 0010 - 3616. doi: 10.1007/BF01230084. url: http: //link. springer. com/10.1007/BF01230084.

Kay, Bernard S. (1985). “The double - wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes”. In: Communications in Mathematical Physics 100.1, pp.57–81

Downloads

Published

2024-09-26

How to Cite

Mohamed, M. A. (2024). A New Concept of Quantum Field Theory. Journal of Research in Science and Engineering, 6(9), 1–5. https://doi.org/10.53469/jrse.2024.06(09).01