A Review of the Research on the Mechanism of Ethylene in Plant Leaf Senescence
DOI:
https://doi.org/10.53469/jrse.2024.06(12).17Keywords:
leaf senescence, plant development, ethylene, phytohormone, signal transduction, environmental stress, age-related changesAbstract
Leaf senescence represents the final stage of plant development, involving nutrient redistribution and cellular degradation. Ethylene, a gaseous hormone, plays a pivotal role in regulating this process. Despite extensive research, gaps persist in understanding ethylene's contribution to leaf senescence comprehensively. This review synthesizes existing literature to elucidate ethylene's signalling cascade, interaction with other hormones, and response to environmental stress. Key findings highlight the nuanced relationship between ethylene, leaf age, and environmental factors, emphasising the need for further investigation to optimize plant health and agricultural productivity.
References
Gill, A. L., Gallinat, A. S., Sanders‐DeMott, R., Rigden,
A.J., Gianotti, D. J. S., Mantooth, J. A., & Templer, P.
H. (2015). Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of Botany, 116(6), 875–888. https://doi.org/10.1093/aob/mcv055
Jing, H., Schippers, J. H. M., Hille, J., & Dijkwel, P. P. (2005). Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany, 56(421), 2915–2923. https://doi.org/10.1093/jxb/eri287
Chang, C. (2016). Q&A: How do plants respond to ethylene and what is its importance? BMC Biology, 14(1). https://doi.org/10.1186/s12915-016-0230-0
Hegelund, J. N., Lütken, H., & Müller, R. (2017). Postharvest Physiology: Ethylene in Roses ☆. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-809633- 8.05082-2
Park, H. L., Seo, D. H., Lee, H. Y., Bakshi, A., Park, C., Chien, Y., Kieber, J. J., Binder, B. M., & Yoon, G. M. (2023). Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nature Communications, 14(1). https://doi.org/10.1038/s41467- 023-35975-6
Azhar, B. J., Abbas, S., Aman, S., Yamburenko, M. V., Chen, W., Müller, L., Uzun, B., Jewell, D. V., Dong, J., Shakeel, S. N., Groth, G., Binder, B. M., Grigoryan, G., & Schäller, G. (2023). Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 120(23). https://doi.org/10.1073/pnas.2215195120
Xing, W., Zhang, C., Ji, Y., Zhao, Q., He, W., An, F., Jiang, L., & Guo, H. (2012). Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research, 22(11), 1613–1616. https://doi.org/10.1038/cr.2012.145
Yang, F., Miao, Y., Liu, Y., Botella, J. R., Li, W., Li, K., & Song, C. (2022). Function of protein kinases in leaf senescence of plants. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.864215
Schippers, J. H. M., Schmidt, R., Wagstaff, C., & Jing,
H. (2015). Living to Die and Dying to Live: The Survival Strategy behind Leaf Senescence. Plant Physiology, 169(2), 914–930. https://doi.org/10.1104/pp.15.00498
Guo, Y., Ren, G., Zhang, K., Li, Z., Miao, Y., & Guo, H. (2021). Leaf senescence: progression, regulation, and application. Molecular Horticulture, 1(1). https://doi.org/10.1186/s43897-021-00006-9
Khan, N. A. (2005). The influence of exogenous ethylene on growth and photosynthesis of mustard (Brassica juncea) following defoliation. Scientia Horticulturae, 105(4), 499–505.
https://doi.org/10.1016/j.scienta.2005.02.004
Jing, H., Sturre, M. J., Hille, J., & Dijkwel, P. P. (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. The Plant Journal, 32(1), 51–63.
https://doi.org/10.1046/j.1365-313x.2002.01400.x
Jakubowicz, M., & Nowak, W. (2010). Comprehensive natural products (H.-W. (Ben) Liu & L. Mander, Eds.; 2nd ed.) [Online]. Elsevier. https://doi.org/10.1016/B978-008045382-8.00690-0
Yang, J., Zhang, J., Wang, Z. Q., Zhu, Q., & Liu, L. J. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell & Environment, 26(10), 1621–1631. https://doi.org/10.1046/j.1365-3040.2003.01081.x
Cheng, W., Chiang, M., Hwang, S., & Lin, P. (2009). Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Molecular Biology, 71(1–2), 61–80.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aliya Fareed Nowshahri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.