Emerging Nanobiotechnology Solutions for Diagnosis and Treatment of Infectious Diseases
DOI:
https://doi.org/10.53469/jrse.2024.06(11).06Keywords:
Nanotechnology, Infectious diseases, Drug delivery, Point - of - care testingAbstract
Nanotechnology has emerged as a transformative force in combating infectious diseases, especially highlighted by its applications during the COVID - 19 pandemic. This review discusses the multifaceted roles of nanotechnology in enhancing diagnostic accuracy, therapeutic efficacy and vaccine development. It emphasizes the critical importance of rapid, sensitive diagnostics for early infection identification, utilizing fluorescent nanoparticles and nanosensors that enable detection at unprecedentedly low and light concentrations. Additionally, the review explores the development of nanoparticle - based drug delivery systems for targeted therapy and immune response modulation, which promise to improve the outcomes of infectious disease treatment. The potential of point - of - care POC diagnostics leveraging nanotechnology for real - time cost - effective and portable disease monitoring, particularlyin resource - limited settings, is thoroughly examined. Through detailed examples including graphene - based biosensors and nanoparticles enhanced immunotherapeutics, the paper illustrates how nanotechnology is reshaping the landscape of infectious disease management, offering novel solutions to the age - old problems of diagnosis, treatment and prevention, challenges such as cost, regulatory approval and the need for global collaboration are acknowledged. Alongside the optimistic outlook for nanotechnology role is advancing public health and global infectious disease.
References
Hung YP, Chen YF, Tsai PJ, Huang IH, Ko WC, Jan JS. Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics.2021 Nov 12; 13 (11): 1913. doi: 10.3390/pharmaceutics13111913. PMID: 34834328; PMCID: PMC8618949.
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta.2021 Aug 1; 230: 122026. doi: 10.1016/j. talanta.2020.122026. Epub 2020 Dec 17. PMID: 33934756; PMCID: PMC7854185.
Deng J, Zhao S, Liu Y, Liu C, Sun J. Nanosensors for Diagnosis of Infectious Diseases. ACS Appl Bio Mater.2021 May 17; 4 (5): 3863 - 3879. doi: 10.1021/acsabm.0c01247. Epub 2020 Nov 19. PMID: 35006812.
Pai, M. Global health technologies: time to re - think the ‘trickle down’ model. Forbes https: //www.forbes. com/sites/madhukarpai/2020/02/17/global - health - technologies - time - to - re - think - the - trickle - down - model/?sh=67a7d67d44d9 (2020).
A. Sosnik and M. Amiji, Adv. Drug Del. Rev.62, 375 (2010).
T. S. Hauck, S. Giri, Y. L. Gao, and W. C. W. Chan, Adv. Drug Del. Rev.62, 438 (2010).
Wang T., Li X., Chen L., Zhang Y., Zheng Y., Yu L., Ye Z., Wang H., Cui X., Zhao S. The preparation of bifunctional hybrid nano - flowers and their application in the enzyme - linked immunosorbent assay for Helicobacter pylori detection. Analyst.2021; 146: 338–347. doi: 10.1039/D0AN01533D. [PubMed] [CrossRef] [Google Scholar]
Wang T., Li X., Chen L., Zhang Y., Zheng Y., Yu L., Ye Z., Wang H., Cui X., Zhao S. The preparation of bifunctional hybrid nano - flowers and their application in the enzyme - linked immunosorbent assay for Helicobacter pylori detection. Analyst.2021; 146: 338–347. doi: 10.1039/D0AN01533D. [PubMed] [CrossRef] [Google Scholar]
Pu Y., Hou Z., Khin M. M., Zamudio - Vazquez R., Poon K. L., Duan H., Chan - Park M. B. Synthesis and Antibacterial Study of Sulfobetaine/Quaternary Ammonium - Modified Star - Shaped Poly [2 -(dimethylamino) ethyl methacrylate] - Based Copolymers with an Inorganic Core. Biomacromolecules.2017; 18: 44–55. doi: 10.1021/acs. biomac.6b01279. [PubMed] [CrossRef] [Google Scholar]
Lam S. J., O’Brien - Simpson N. M., Pantarat N., Sulistio A., Wong E. H., Chen Y. Y., Lenzo J. C., Holden J. A., Blencowe A., Reynolds E. C., et al. Combating multidrug - resistant Gram - negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol.2016; 1: 16162. doi: 10.1038/nmicrobiol.2016.162. [PubMed] [CrossRef] [Google Scholar]
Pirzada M., Altintas Z. Nanomaterials for Healthcare Biosensing Applications. Sensors.2019; 19: 5311. doi: 10.3390/s19235311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Jiang Z., Feng B., Xu J., Qing T., Zhang P., Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron.2020; 166: 112471. doi: 10.1016/j. bios.2020.112471. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Schultz A., Knoll T., Urban A., Schuck H., von Briesen H., Germann A., Velten T. Novel Cost - Efficient Graphene - Based Impedance Biosensor for the Analysis of Viral Cytopathogenicity and the Effect of Antiviral Drugs. Front. Bioeng. Biotechnol.2021; 9: 718889. doi: 10.3389/fbioe.2021.718889. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Peng H., Borg R. E., Nguyen A. B. N., Chen I. A. Chimeric Phage Nanoparticles for Rapid Characterization of Bacterial Pathogens: Detection in Complex Biological Samples and Determination of Antibiotic Sensitivity. ACS Sens.2020; 5: 1491–1499. doi: 10.1021/acssensors.0c00654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Narang R., Mohammadi S., Ashani M. M., Sadabadi H., Hejazi H., Zarifi M. H., Sanati - Nezhad A. Sensitive, Real - time and Non - Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic - Microwave Ring Resonator Biosensor. Sci. Rep.2018; 8: 15807. doi: 10.1038/s41598 - 018 - 34001 - w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
M. Look, A. Bandyopadhyay, J. S. Blum, and T. M. Fahmy, Adv. Drug Del. Rev.62, 378 (2010).
R. P. Allaker and G. Ren, Trans R Soc. Trop Med. Hyg.102, 1 (2008).
F. Martinez - Gutierrez, P. L. Olive, A. Banuelos, E. Orrantia, N. Nino, E. M. Sanchez, F. Ruiz, H. Bach, and Y. Av - Gay, Nanomed. Nanotechnol. Bio. Med.6, 681 (2010).
. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv.27, 76 (2009)
N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve - Zacheo, M. D’Alessio, P. G. Zambonin, and E. Traversa, Chem. Mater.17, 5255 (2005).
M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, Trends Biotechnol.30, 499 (2012)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saji Mathew Perinjelil
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.