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Abstract: Accurate wind power prediction is essential for the stable operation of power systems. Aiming at the problem of insufficient
accuracy of ultra-short-term wind power prediction, a combined prediction model based on VMD-GRU-Transformer is proposed.
Variational Mode Decomposition (VMD) is used to split the wind power data into different intrinsic mode functions (IMFs) to weaken the
non-stationarity of the original series. The combined GRU-Transformer network structure is designed to utilize gated recurrent unit (GRU)
instead of the original word embedding and positional coding links, and feature fusion is performed on the input data to fill in the gaps in
Transformer where the relevant information is not fully considered. Relying on the self-attention mechanism in Transformer to capture
the time dependence of sequence data for prediction. Finally, a case analysis is performed with a public dataset, and the results show that
the proposed model has higher prediction accuracy compared to other existing models.
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1. Introduction

As a new type of clean energy, wind power has significant
environmental and sustainable advantages. The rapid
advancement of wind power projects is highly important in
mitigating global warming and achieving the transition of
energy infrastructure. However, due to the rapid growth of the
wind power sector, as well as the randomness and volatility
characteristics of wind energy, the centralized grid connection
of large-scale wind power is bound to impact the secure and
steady operation of local power system [1]. Therefore,
accurate and reliable ultra-short-term wind power prediction
is particularly important to enhance the capacity of the
receiving end of the grid to utilize wind power and promote
safe and economic operation of the grid [2].

Presently, wind power prediction approaches that are widely
employed can be categorized into three primary groups:
physical models, statistical models, and machine learning
models [3]. Physical and statistical models, although mature
in their methodological development, have insufficient coping
ability in the face of complex environmental changes in wind
power prediction, resulting in unsatisfactory prediction results.
Machine learning methods, in contrast to the first two models,
depend on data-driven approaches to discover the inherent
relationships between data. These methods have found
extensive application in the domain of wind power prediction.
In addition, in the face of the strong non-linearity and
non-stationarity characteristics of wind power, the algorithms
can be combined with each other to form an integrated model
or deep learning structure to improve the overall performance.

Gao et al. [4] propose a CNN-GRU model, which effectively
improves prediction accuracy by extracting global and local
features from the input multichannel signals via
Convolutional Neural Network (CNN) and combining these
features with those obtained in the convolution process.
However, the method lacks the processing of randomness and
volatility signals in power data and has insufficient coping
ability and generalization ability when facing complex data.
Zhang et al. [5] used VMD to decompose the raw power into
multiple modal components, and then optimized the

hyperparameters of the TCN-BIGRU model through sparrow
search algorithm (SSA), and applied the optimized model to
power prediction, which effectively suppressed the volatility
of wind power. However, the model accumulates predictions
for each component, which increases the computational
burden of the model significantly. Zhang et al. [6] propose a
CGAN-CNN-LSTM model that utilizes Conditional
Generative Adversarial Networks (CGAN) to complete the
missing parts of the dataset. A combined CNN-LSTM model
is constructed for feature extraction, after which the attention
mechanism is applied to assign weights to the features to
accelerate model convergence. The model has good
prediction and generalization ability. However, the CNN
model is not flexible enough to handle time series data, and
the feature relationships are not captured well enough.

In summary, a VMD-GRU-Transformer method for
ultra-short-term forecasting of wind power is proposed. VMD
decomposes the power series data into several smooth
components, which capture the non-linearity and
non-stationarity in the data characterized by changes at
different frequencies. Combining the information on wind
speed and historical wind power compose the input features of
the model. The combined GRU-Transformer prediction
model is constructed, utilizing GRU instead of the original
word embedding and positional coding links to fuse the
features of the input data, which significantly improves the
ultra-short-term prediction accuracy of wind power. The
public dataset is used to analyze the arithmetic cases and
compared with the other five existing models for validation.

2. Variational Mode Decomposition (VMD)

VMD is a fully non-recursive adaptive modal decomposition
and signal processing technique designed to decompose
complex original signals into multiple smoother IMFs,
effectively addressing challenges such as signal feature
extraction difficulties [7]. Compared to other existing modal
decomposition techniques, VMD is more suited for dealing
with strong non-linearity and non-stationarity in wind power,
reducing modal aliasing and enhancing prediction accuracy.
The decomposition process of the VMD model involves the
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following steps:

(1) Construct the constrained variational problem as follows:

   
 

   

2
j

, 1
2

1

jmin ( ) e

s.t.

k

k k

K
t

t ku k

K

k
k

F t u t
t

u t f t




 








              

 

(1)

where K is the number of modal decompositions set in
advance; f(t) is the original signal sequence; δ(t) is the Dirac
distribution; * is the convolution operator; {uk(t)} is the IMF
component; {ωk} is the center frequency of each IMF
component;

(2) Lagrange Multiplier λ(t) and penalty factor α are
introduced to turn the constrained variational problem into an
unconstrained variational problem, and the extended
Lagrangian function is expressed as:
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(3) The IMF component {uk(t)} and center frequency {ωk}
are updated using the alternating direction multiplier method,
yielding the final decomposition result.

3. Forecasting Model Combing GRU and
Transformer

3.1 Gated Recurrent Unit

GRU is an improvement of recurrent neural network (RNN),
which can effectively solve the problem of gradient vanishing.
GRU controls the updating and extraction of the input
information and its relative position through the structure of
the memory gate [8]. Relative to the Long Short-Term
Memory (LSTM) network structure is more concise, has
fewer parameters to be optimized, and has a faster
convergence speed. The model structure is shown in Figure 1.

Figure 1: The structure of GRU model

The zt and rt denote the update gate and reset gate,
respectively. The update gate quantifies the amount of
pertinent information from both the previous and current time
steps that should be transmitted to the next step, while the
reset gate regulates the extent to which prior information
should be disregarded. The GRU network uses the following

formula for forward propagation:
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where ht and are the hidden states of the unit to be updated and
the next node at moment t, respectively; xt is the input at
moment t; W is weight matrice; σ represents the sigmoid
activation function; and⊙ is the Hadamard product.

3.2 GRU-Transformer Neural Network

The GRU-Transformer combinatorial model consists of an
input layer, N Transformer coding layers, and an output layer.
Each layer of the encoder in Transformer uses residual
connections to improve the model fitting ability and
convergence speed. The input layer of the traditional
Transformer consists of word embedding and positional
coding links, which are designed to better handle natural
language-like problems. In this paper, GRU is used instead of
the input layer of the traditional Transformer model to feature
process the input vectors and improve the loss of temporal
positional information of Transformer to better target the
wind power prediction problem. The Transformer coding
layer is used to compute the self-attentive expression of the
input feature vectors, and the output layer is responsible for
outputting the prediction results of the model. The model
structure is shown in Figure 2.

Figure 2: The structure of GRU-Transformer model

Transformer neural network has been gaining attention in
dealing with time series forecasting research because of their
long-term dependency and interaction with time series data
[9]. Transformer is a model based on the attention mechanism.
The coding component of Transformer consists of a
multilayer encoder, and each encoder layer consists of a
multi-head self-attention layer and a feed-forward Network
layer. The formula for the self-attention mechanism is

Attention( , , ) softmax
n
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where: n is the dimension of the Q and K matrices; Q is the
query matrix; K is the key-value matrix; V is the value matrix;
H is the input matrix; andW is the weight matrices.

The output of the Multi-head Attention mechanism layer is
obtained by concatenating several Attention outputs and then
applying a linear transformation. The mathematical
expression for the Multi-head Attention mechanism is:

1MultiHead Concat( , , )h o h h W (9)

Attention( , , )h Qh Kh Vhh QW KW VW (10)

where Wo is the matrix of linear transformation coefficients;
Concat denotes multiple matrix splicing, WQh, WKh, and WVh
are the parameter matrices for performing the linear
transformation; the subscript h is the number of heads of the
multi-head attention mechanism.

The Feed Forward neural network comprises two fully
connected layers. The activation function of the first layer is
Rectified Linear Unit (ReLU), while the second layer
employs a linear activation function with the given
expression.

1 1 2 2( ) max(0, )F   H HW b W b (11)

whereW is weight matrice, and b is bias matrice.

The output layer consists of fully connected layers and is
computed as

o o
DY  W X b (12)

where: Y is the output result of the output layer; XD is the
output result of the coding layer result; Wo, bo are the full
connection layer parameter matrix and bias.

3.3 Evaluation Metrics

This research chooses the following three indicators to
precisely evaluate the effectiveness of the wind power
forecast model: Root Mean Square Error (ERMSE), Mean
Absolute Error (EMAE), and Coefficient of Determination (R2).
They are calculated as follows:
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where yt and be the actual and predicted values at time t,
represents the average value of yt, and ρ denotes the length of
the predicted data.

4. Case Studies

The National Grid Renewable Energy Generation Forecasting

Competition data provided by the literature [10] is used as the
research object to validate the model and method proposed in
this paper. The output capacity of the wind farm is 99 MW,
and the turbine models are GW1500/85 and H93 L-2.0 mw.
The dataset used was gathered between January 16, 2019, and
March 16, 2020, with data collected every 15 minutes. The
goal is to predict wind power for the next 15 minutes in
advance. 80% of the dataset is allocated for training, while the
remaining 20% is divided equally between validation and
testing, with a 1:1 ratio for each.

4.1 VMD Decomposition of Wind Power Series

The wind power data information is shown in Figure 3.
According to its changes, it can be seen that the power of wind
power has a cyclic cycle characteristic, and with the
advancement of the time dimension, the data information has
a certain degree of evolutionary characteristics.
Simultaneously, as a result of the fluctuating and
unpredictable wind speed, the data includes certain elements
of randomness.

Figure 3:Wind power data information

In order to accurately analyze the variation of wind power and
to weaken the negative effects of nonlinear and nonsmooth
features, the sequence is modally decomposed using VMD to
improve the prediction accuracy of wind power. The modal
number K=9 is chosen and the decomposition results are
shown in Figure 4.

Figure 4:Wind power VMD decomposition results

4.2 Construction of Input Features

The dataset includes meteorological and calendar information
such as wind speed, wind direction, and day. When selecting
input characteristics for wind farms, it is important to avoid
using data that has little correlation with the output target.
Alternatively, it will increase the computational burden of the
model and affect the training efficiency of the model and the
prediction accuracy. Hence, this article uses the Pearson
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correlation coefficient to examine the link between various
parameters. The correlation heat map is shown in Figure 5.

Figure 5: Heat map of Pearson correlation coefficient for
wind power

Table 1: Input and output features for the forecasting model
Input feature Output feature

Wind power IMFs in the previous three hours Wind power to
be forecast at the

moment
Wind speeds at different heights in the previous three

hours

Considering the high correlation between data with
correlation coefficients of 0.5 and above in absolute value,
wind speed and power were selected as input features. Among
them, the wind speed contains data related to the heights of 10
meters, 30 meters, 50 meters, and wheel hubs. The wind speed
at different heights and the VMD decomposition result of
wind power together form the input features of the model. The
corresponding parameter settings are shown in Table 1

4.3 Comparison of Different Forecasting Models

To validate the accuracy of the proposed prediction model, we
conducted wing power forecasting and comparative analysis
using existing individual models such as BiLSTM, GRU, and
TCN, as well as existing hybrid models like CNN-BiLSTM,
in comparison to the proposed VMD-GRU-Transformer
hybrid model. Figure 6 shows the prediction results of the
different models and their local scaling plots. The green curve
represents the forecast made by the VMD-GRU-Transformer
model, while the red curve represents the actual measured
wind power value. The VMD-GRU-Transformer model has
superior accuracy in predicting test results compared to other
existing models.

Figure 6:Wind power forecasting results of different models

The evaluation metrics of the prediction results of different
models on the test set are shown in Table 2. The R2, EMAE and
ERMSE metrics of the prediction results of the combined
VMD-GRU-Transformer model are 0.9971, 0.7005 MW, and
0.9391 MW, respectively, which are better than the prediction
results of any one of the existing single models such as
BiLSTM, GRU and TCN. Moreover, compared with the
combined GRU-TRransformer and CNN-BiLSTM models,
the R2 metrics of the proposed model are improved by
1.7552% and 1.7345%, the EMAE metrics are reduced by
0.9920 MW and 0.9928 MW, and the ERMSE metrics are
decreased by 1.5146 MW and 1.5019 MW, and the prediction
accuracies are significantly improved. To summarize, the
VMD-GRU-Transformer model integrates the strengths of the
VMD and GRU-Transformer models, with more accurate
prediction results and better applicability in wind power
prediction.

Table 2:Metrics of different forecasting models for wind
power

Prediction Model R2 EMAE/MW ERMSE/MW
GRU 0.9796 1.7150 2.4724

BiLSTM 0.9799 1.7052 2.4575
GRU-TRransformer 0.9799 1.6925 2.4537

TCN 0.9800 1.6948 2.4484
CNN-BiLSM 0.9801 1.6933 2.4410

VMD-GRU-Transformer 0.9971 0.7005 0.9391

5. Conclusion

Upon analysis of the acquired findings, the following
conclusions can be proposed:

(1) Considering the non-linear and non-stationary
characteristics of wind power, and combined with wind speed
and other meteorological factors, an ultra-short-term
prediction model of wind power based on the combination of
VMD-GRU-Transformer is proposed.

(2) Construct a mathematical model of VMD decomposition
of wind power, and use the variational modal decomposition
to decompose the wind power sequence into different IMFs,
which effectively extracts the characteristics of sequence
changes and weakens the complexity of the power sequence.

(3) Design the network structure of the combined GRU and
Transformer wind power prediction model, and perform
feature fusion of the input sequences through GRU as the
input embedding layer to fill the gap of Transformer that does
not fully consider the relevant information. The Transformer
utilizes the self-attention mechanism to capture the temporal
dependencies in sequence data, hence enhancing prediction
accuracy.

(4) The evaluation metrics for the prediction results of the
combined VMD-GRU-Transformer model are superior to
those of existing single models like BiLSTM, GRU, and TCN,
as well as combined models like CNN-BiLSTM. In the future,
the VMD-GRU-Transformer model can be practically applied
to wind power prediction by combining various application
scenarios based on site requirements. Our goal is to enhance
the precision of ultra-short-term wind power forecasting in
wind farms.
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