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Abstract: To enhance the global search capability, convergence accuracy, and stability of optimization algorithms, this paper improves 

the basic Kepler optimization algorithm and proposes an enhanced Kepler optimization algorithm. This algorithm incorporates a tent map 

to enhance the uniformity and diversity of population initialization; utilizes Lévy flight strategy to balance the algorithm's global 

exploration and local exploitation capabilities; and designs an adaptive perturbation mechanism to enable the algorithm to effectively 

escape from local optima in the later stages of iteration. To verify the performance of the proposed algorithm, comprehensive experiments 

were conducted on the CEC2022 benchmark test function set, and it was compared with six classic swarm intelligence optimization 

algorithms. The experimental results show that the improved algorithm exhibits significant advantages in convergence speed, solution 

accuracy, and robustness, especially when dealing with complex, high-dimensional optimization problems. This study provides new 

insights for the design of optimization algorithms, and the improved algorithm is expected to be widely applied in fields such as 

engineering optimization and machine learning parameter tuning. 
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1. Introduction 
 

Swarm intelligence optimization algorithms are optimization 

methods inspired by collective behavior in nature, possessing 

advantages such as strong global search capability, ease of 

implementation, and strong adaptability. Currently, 

mainstream swarm intelligence optimization algorithms 

include the classic Particle Swarm Optimization (PSO) [1], 

Ant Colony Optimization (ACO) [2], Firefly Algorithm (FA) 

[3], Grey Wolf Optimizer (GWO) [4], Bat Algorithm (BA) [5], 

Artificial Bee Colony (ABC) [6], Whale Optimization 

Algorithm (WOA) [7], as well as newly proposed algorithms 

such as Parrot Optimization Algorithm [8] and Kepler 

Optimization Algorithm (KOA) [9] in recent years. 

 

The Particle Swarm Optimization (PSO) algorithm, one of the 

most classic swarm intelligence methods, was proposed by 

Kennedy and Eberhart in 1995, which simulates the social 

behavior of bird flocks to solve problems [10]. This algorithm 

guides particles to search for the optimal solution in the 

solution space through the collaboration of individual and 

group experiences. To enhance its performance, researchers 

have proposed various improvement strategies, such as 

introducing dynamic inertia weight, designing adaptive 

learning factors, and integrating local search mechanisms, 

effectively balancing the exploration and exploitation 

capabilities of the algorithm. 

 

The Ant Colony Optimization (ACO) algorithm simulates the 

positive feedback mechanism of pheromone in the foraging 

paths of ants to solve combinatorial optimization problems. 

Each ant constructs a feasible solution, and the pheromone 

concentration represents the quality of the path (or solution 

component). ACO performs well in discrete search spaces, 

but its convergence speed may be limited on 

high-dimensional complex problems. Therefore, many studies 

have focused on integrating it with other algorithm 

frameworks such as Particle Swarm Optimization (PSO) [11] 

and Genetic Algorithm (GA) [12] to form hybrid strategies to  

 

enhance overall search efficiency. 

 

In recent years, novel meta-heuristic algorithms inspired by 

ecosystems or physical models have emerged continuously, 

providing new insights for solving complex optimization 

problems. For instance, the Grey Wolf Optimization 

Algorithm simulates the social hierarchy and hunting 

strategies of wolf packs, guiding the search direction by 

defining α, β, and δ wolves, demonstrating excellent global 

search performance and robustness [13], [14]. The Firefly 

Algorithm moves based on the attractiveness of individual 

light emission intensity, suitable for handling continuous 

optimization problems [15]; the Bat Algorithm combines 

frequency modulation and pulse response strategies, 

enhancing the ability for local fine-grained search [16]. The 

Artificial Bee Colony Algorithm mimics the division of roles 

(worker bees, forager bees, scout bees) during honey 

collection by bees, achieving a balance between global 

exploration and local exploitation through the collaboration of 

various search behaviors [17]. These algorithms, with their 

unique bionic mechanisms, have been widely validated and 

applied in various benchmark tests and engineering 

optimization problems. 

 

2. Kepler Optimization Algorithm 
 

The Kepler Optimization Algorithm (KOA) is a 

nature-inspired metaheuristic algorithm derived from the 

three laws of the planetary motion of KOA. It is developed 

primarily to address single-objective and continuous 

optimization problems. The fundamental principle of KOA is 

to simulate the elliptical orbits of planets around a central 

mass, usually the Sun. This simulation helps guide candidate 

solutions toward the global optimum by imitating orbital 

dynamics. KOA demonstrates outstanding performance in 

terms of global search capability and solution precision. The 

following section presents a detailed exposition of the 

mathematical model and implementation framework of the 

algorithm. 
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2.1 Population Initialization 

 

In the initialization phase of KOA, 𝑁 planetary individuals 

are randomly generated within the whole solution space. Each 

individual has a dimensionality of 𝑑 . The mathematical 

expression is given by formula (1). 

 𝑋𝑖
𝑗
= 𝑋𝑖,𝑙𝑏

𝑗
+ 𝑟 × (𝑋𝑖,𝑢𝑏

𝑗
− 𝑋𝑖,𝑙𝑏

𝑗
), {
𝑖 = 1,2, …… ,𝑁
𝑗 = 1,2, …… , 𝑑

 (1) 

Where 𝑋𝑖
𝑗
 denotes the initial position of the 𝑖-𝑡ℎ planet in the 

𝑗-𝑡ℎ dimension, 𝑙𝑏 and 𝑢𝑏 are the lower and upper bounds of 

the 𝑗-𝑡ℎ dimension, respectively, and 𝑟 ∈ [0, 1] is a uniformly 

distributed random value. 

 

2.2 Velocity Calculation 

 

When a planet approaches the sun, its orbital velocity 

increases. Conversely, when it moves away from the star, its 

orbital velocity decreases. As an object gets closer to the Sun, 

the gravitational force exerted by the Sun becomes 

significantly stronger. To counteract this intense gravitational 

pull, each planet tries to accelerate its motion. The 

corresponding mathematical model is provided below.  

 𝑣⃗𝑖(𝑡) =

{
 
 

 
 𝛿 × (2𝑟4 × 𝑋⃗𝑖 − 𝑋⃗𝑏) + 𝛿̈ × (𝑋⃗𝑎 − 𝑋⃗𝑏) + (1 − 𝑅𝑖−𝑛𝑜𝑟𝑚(𝑡))

× 𝜎 × 𝑈⃗⃗⃗1 × 𝑟5 × (𝑋⃗𝑖,𝑢𝑏 − 𝑋⃗𝑖,𝑙𝑏), 𝑖𝑓 𝑅𝑖−𝑛𝑜𝑟𝑚(𝑡) ≤ 0.5

𝑟4 × 𝜅 × (𝑋⃗𝑎 − 𝑋⃗𝑖) + (1 − 𝑅𝑖−𝑛𝑜𝑟𝑚(𝑡))

× 𝜎 × 𝑈2 × 𝑟5 × (𝑟3 × 𝑋⃗𝑖,𝑢𝑏 − 𝑋⃗𝑖,𝑙𝑏), 𝑒𝑙𝑠𝑒

 (2) 

 𝛿 = 𝑈⃗⃗⃗ × 𝑀 × 𝜅, 𝛿̈ = (1 − 𝑈⃗⃗⃗) × 𝑀⃗⃗⃗ × 𝜅 (3) 

 𝜅 = [𝜇(𝑡) × (𝑚𝑖 +𝑀𝑠) × (
2

𝑅𝑖(𝑡)+𝜀
−

1

𝑎𝑖(𝑡)+𝜀
)]

1

2 (4) 

 𝑀 = (𝑟3 × (1 − 𝑟4) + 𝑟4), 𝑀⃗⃗⃗ = (𝑟3 × (1 − 𝑟5) + 𝑟5) (5) 

 𝑈⃗⃗⃗ = {
0, 𝑖𝑓 𝑟5 ≤ 𝑟6
1, 𝑒𝑙𝑠𝑒

 (6) 

 𝜎 = {
1, 𝑖𝑓 𝑟4 ≤ 0.5
−1, 𝑒𝑙𝑠𝑒

 (7) 

Where 𝑣⃗𝑖(𝑡) denotes the velocity of the 𝑖-𝑡ℎ planet at time 𝑡, 
𝑟3  and 𝑟4  are probabilistic variables that follow a uniform 

distribution in the interval [0,1] , 𝑟5  and 𝑟6  are two binary 

vectors whose elements are restricted to values of 0 or 1, 𝑋⃗𝑎 

and 𝑋⃗𝑏  represent two planets randomly selected from the 

current population, 𝜎 is a randomly selected scalar used to 

adjust the direction of motion. 

 

2.3 Local Optimum Escape Strategy 

 

Most planets rotate counterclockwise when they are close to 

the Sun, but some planets are exceptions and orbit the Sun in 

the opposite direction. In the original KOA, this phenomenon 

is utilized to adjust the search direction and facilitate escape 

from local optima. To achieve this, KOA introduces a control 

variable 𝜎 that dynamically adjusts the search direction and 

thereby controls the orbital trajectory of planets around the 

Sun. 

 

2.4 Position Update 

 

Planets follow Kepler’s laws and orbit the Sun along elliptical 

paths. During their approach to the Sun, the planets 

continuously revolve: they gradually move closer to the star 

and then slowly move away. KOA is designed based on this 

behavior and includes two main steps, exploration and 

exploitation. When a planet moves away from the Sun, the 

algorithm performs exploration to search for a broader 

solution space; when a planet moves closer to the Sun, the 

algorithm performs exploitation to focus on optimizing the 

current solution. The mathematical model can be expressed 

by formula (8). 

 
𝑋⃗𝑖(𝑡 + 1) = 𝑋⃗𝑖(𝑡) + 𝜎 × 𝑉⃗⃗𝑖(𝑡) + 𝑈⃗⃗⃗ × (𝐹𝑔𝑖(𝑡) + |𝑟|)

× (𝑋⃗𝑆(𝑡) − 𝑋⃗𝑖(𝑡))
 (8) 

2.5 Elite Retention Mechanism 

 

To ensure that the optimal solution is not destroyed, KOA 

employs the following elite retention strategy. 

 𝑋⃗𝑖(𝑡 + 1) = {
𝑋⃗𝑖(𝑡 + 1), 𝑖𝑓 𝑓(𝑋⃗𝑖(𝑡 + 1)) ≤ 𝑓(𝑋⃗𝑖(𝑡))

𝑋⃗𝑖(𝑡), 𝑒𝑙𝑠𝑒
 (9) 

3. Enhancing Kepler Optimization 
 

To address the inherent limitations of the original KOA, such 

as premature con vergence and insufficient global search 

capability. Specifically, a tent map mechanism is integrated to 

improve population diversity during initialization, a Lévy 

flight strategy is embedded to strengthen global exploration, 

and dynamic opposition-based learning (DOBL) is adopted to 

prevent stagnation and accelerate convergence. Furthermore, 

the fit ness evaluation process is upgraded through a 

multi-objective fitness function, which simultaneously 

optimizes classification accuracy and feature subset 

compactness. 

 

3.1 Initialization based on Tent Map 

 

We adopt tent map during the population initialization phase 

to improve the quality of population distribution and enhance 

the coverage of the search space. Chaotic mapping is a 

nonlinear dynamic system that shows sensitivity to initial 

conditions, ergodicity, and pseudo-randomness. The tent map 

improves KOA’s initialization by promoting diversity and 

preventing early convergence. 

 

The tent map is a classical one-dimensional discrete chaotic 

system, and the mathematical expression is given by formula 

(10). 

 𝑥𝑛+1 = {

𝑥𝑛

𝜇
, 0 ≤ 𝑥𝑛 < 𝜇

1−𝑥𝑛

1−𝜇
, 𝜇 ≤ 𝑥𝑛 ≤ 1

 (10) 

The parameter 𝜇 ∈ (0,1) is a control parameter, and 𝜇 = 0.5 

is commonly selected to achieve the most desirable chaotic 

behavior. The tent map exhibits excellent ergodicity and can 

generate uniformly distributed chaotic sequences within the 

interval [0,1]. The sample points generated by this map can 

more effectively fill the search space, which is beneficial to 

overcome the problem of premature convergence in the 

algorithm. 
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The tent map is applied during the population initialization 

phase. First, an initial seed 𝑥0 ∈ (0,1) is set, and a chaotic 

sequence of length 𝑁 × 𝐷 is generated using the iterative Tent 

map, where 𝑁 is the population size and 𝐷 is the dimension of 

problem. Then, the chaotic sequence is converted into values 

within the range of each dimension in the search space by 

formula (11). 

 𝑋𝑖,𝑗 = 𝑋𝑚𝑖𝑛
(𝑗)

+ 𝑥𝑖,𝑗 ⋅ (𝑋𝑚𝑎𝑥
(𝑗)

− 𝑋𝑚𝑖𝑛
(𝑗)
) (11) 

where the chaotic sequence values 𝑥𝑖,𝑗 ∈ [0,1] are mapped to 

the specific interval of the search space. Finally, the 

transformed values 𝑥𝑖,𝑗 are used as the initial positions of the 

particles, which are then substituted into the main loop of the 

KOA to begin the optimization process. 

 

The initial individuals generated by the tent map make the 

population spread evenly in the search space. This helps 

explore complex solution spaces and reduces the chance of 

getting stuck in local optima. 

 

3.2 Dynamic Opposition-Based Learning Strategy 

 

Tizhoosh first proposed the Opposition-Based Learning (OBL) 

strategy in 2005, which was inspired by the concept of 

opposition [18]. To date, the OBL strategy and its improved 

versions have been widely applied in various optimization 

algorithms, demonstrating significant advantages in 

improving algorithm performance [19]. The basic definition 

of the OBL strategy is given by formula (12). 

 𝑋̂𝑖 = 𝐿𝐵 + 𝑈𝐵 − 𝑋𝑖 (12) 

Where 𝑋𝑖  and 𝑋̂𝑖 represent the original solution and its 

opposite solution, respectively; the symbols 𝐿𝐵  and 𝑈𝐵 

denote the lower and upper limits of the search space. 

 

In OBL strategy, the individual with the higher fitness value 

between the original solution and its opposite solution is 

selected for the next generation iteration. Although this 

strategy can improve population diversity and quality to some 

extent, it maintains a fixed distance between the original and 

opposite solutions during generation, which leads to a lack of 

necessary randomness in the search process. This limitation 

may restrict the algorithm’s optimization capability during 

global search. 

 

This paper introduces an improved Dynamic 

Opposition-Based Learning (DOBL) strategy to solve the 

low-randomness problem of the traditional OBL strategy. The 

aim is to increase population diversity and improve the quality 

of solutions. The DOBL strategy adds a dynamic boundary 

adjustment to the original OBL strategy. The mathematical 

model of the DOBL strategy is presented by formula (13). 

 𝑋̂𝑖,𝑗
𝑡 = 𝑎𝑗

𝑡 + 𝑏𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡  (13) 

Where 𝑋̂𝑖,𝑗
𝑡  and 𝑋𝑖,𝑗

𝑡  represent the opposite solution and the 

original solution of the vector 𝑖-𝑡ℎ   in the dimension 𝑗-𝑡ℎ 

during the iteration t, respectively; 𝑎𝑗
𝑡 and 𝑏𝑗

𝑡 denote the lower 

and upper bounds in the dimension 𝑗-𝑡ℎ at the iteration 𝑡 , 
respectively. The mathematical model of 𝑎𝑗

𝑡  and 𝑏𝑗
𝑡  is 

expressed as follows. 

 𝑎𝑗
𝑡 = 𝑚𝑖𝑛(𝑋𝑗

𝑡), 𝑏𝑗
𝑡 = 𝑚𝑎𝑥(𝑋𝑗

𝑡) (14) 

The pseudo-code of the DOBL is given in Table 1. 

Table 1: Pseudo-code of DOBL Strategy 
Algorithm 1 Pseudo-code of DOBL Strategy 

1: Input: D, N, X // dimension, population size, original solutions 
2: Output: X 

3: for i = 1 to N do  

4:      for j = 1 to D do  

5:          𝑋̂𝑖,𝑗
𝑡 = 𝑎𝑗

𝑡 + 𝑏𝑗
𝑡 −𝑋𝑖,𝑗

𝑡  // generate opposite solution  

6:      end for  

7:  end for 
8: Calculate the fitness values of the original and opposite solutions  

9: X ← select the optimal solutions from the set{𝑋, 𝑋̂} 

 

3.3 Lévy Flight Strategy 

 

To enhance the global exploration ability of KOA and avoid 

premature convergence, recent studies have increasingly 

focused on integrating KOA with other mechanisms. In 

particular, the incorporation of random jump mechanisms has 

proven effective in improving search diversity. Among these, 

the Lévy Flight strategy has demonstrated remarkable 

optimization potential due to its distinctive behavior of 

combining frequent small steps with occasional long-distance 

jumps, thereby introducing nonlinear perturbations and 

long-range exploration into the algorithm. 

 

Lévy flight follows a random walk mechanism governed by 

the Lévy stable distribution. The step length of this 

mechanism exhibits a heavy-tailed distribution characterized 

by frequent small local searches interspersed with occasional 

long distance jumps. This behavior has been widely observed 

in nature, including animal foraging patterns, photon 

trajectories, and even human mobility modeling. The 

probability distribution function of the Lévy flight is given by 

formula (15). 

 𝐿(𝑠) ∼ |𝑠|−1−𝛽 , 0 < 𝛽 ≤ 2 (15) 

Where 𝛽 is the stability index of the L évy distribution, which 

determines the frequency of long jumps. A commonly used 

value is 𝛽 = 1.5 , which balances search stability and 

diversity. 

Lévy flight can be numerically simulated using the Mantegna 

algorithm, with the jump step length L generated using the 

formula below. 

 𝐿 =
𝑢

|𝑣|1/𝛽
, 𝑢 ∼ 𝒩(0, 𝜎2), 𝑣 ∼ 𝒩(0,1) (16) 

 𝜎 = [
Γ(1+𝛽)sin (𝜋𝛽/2)

Γ((1+𝛽)/2)⋅𝛽⋅2(𝛽−1)/2
]
1/𝛽

 (17) 

The random perturbations generated by this strategy can be 

used for position updates in the algorithm, allowing 

individuals to jump unpredictably to regions far from the 

current solution. This enhances the algorithm’s ability to 

escape local optima. 

 

The main goal of incorporating the Lévy flight strategy into 

the KOA is to improve population diversity and global search 

capability. This paper uses Lévy perturbations in the position 

update phase. The original KOA updates the positions of 

particles by simulating the motion of celestial bodies. After 

each update, the Lévy flight adds a jump-based perturbation. 

The modified update equation is given by formula (18). 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⋅ Lévy(𝛽) ⋅ (𝑋𝑖
𝑡 − 𝑋best

𝑡 ) (18) 
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Where, 𝑋𝑖
𝑡 denotes the position of the particle 𝑖-𝑡ℎ in iteration 

𝑡, 𝑋best
𝑡  is the current global best solution, 𝛼 is the scaling 

factor controlling the jump magnitude, and Lévy(𝛽) 
represents the generated Lévy distributed perturbation. The 

parameter β is the Lévy index, which determines the shape of 

the distribution. 

 

3.4 Procedure of EKOA 

Table 2: Pseudo-code of EKOA 
Algorithm 2 Pseudo-code of EKOA 

1: Input: N, D, 𝑇𝑚𝑎𝑥,ub,lb,fobj 

2: Output: 𝑋𝑠 
3: Initialize population Positions using Tent chaotic mapping  

4: Evaluate fitness of each individual 

5: Select best individual 𝑋𝑠 
6: while t < Tmax do 

7:      Compute β  and α parameters for DOBL strategy 

8:      Update  𝑋𝑠 using DOBL strategy  

9:      for i=1:N do 

10:           Update semi-major axis a(t), orbit radius R(i), normalized masses M, 
MS, m, and gravitational factor F g(i)  

11:           Randomly select two individuals a, b 

12:          Generate dynamic mass V and random value r  
13:          if r < 0.5 then  

14:                Update position using Lévy flight strategy 

15:          else 
16:                Update position using original formula 

17:          end if  

18:      end for 

19:      Use elitism to update best individual 𝑋𝑠 
20:      t ← t + 1 

21: end while  

 
Figure 1: Flowchart of the EKOA Algorithm 

In this study, we improve the classical KOA by introducing 

tent chaotic mapping, Lévy flight strategy, and Dynamic 

Opposition-Based Learning. These methods help increase 

population diversity, speed up convergence, and improve the 

ability to escape local optima. The pseudocode of EKOA is 

shown in Table 2, and Figure 1 illustrates the flowchart of the 

proposed EKOA algorithm. 

 

The algorithm begins by initializing the population positions 

using Tent chaotic mapping to ensure diversity in the search 

space. The fitness of each individual is then evaluated and the 

best solution is selected. During each iteration, a dynamic 

opposition-based learning strategy is applied to adjust the 

current best solution, enhancing the global search capability. 

Based on a random threshold, an individual’s position is 

updated either using the Lévy flight strategy to improve 

exploration and avoid local optima or by the original position 

update formula to maintain search stability. At the end of each 

iteration, an elitism strategy is used to preserve and update the 

best global solution. This process continues until the 

maximum number of iterations reached, enabling effective 

optimization of the problem. 

 

4. Numerical Experiments 
 

In this section, we designed two groups of experiments to 

comprehensively evaluate the performance and limitations of 

EKOA. To evaluate the numerical optimization performance 

of EKOA, a set of experiments is conducted on 12 benchmark 

functions derived from the CEC2022 test suite. The 

experimental results are compared with six mainstream 

metaheuristic algorithms, namely: Sine Cosine Algorithm 

(SCA), Seagull Optimization (SO), Harris Hawks 

Optimization (HHO), Grey Wolf Optimizer (GWO), Whale 

Optimization Algorithm (WOA), and the original KOA. 

 

4.1 Experiment Setting 

 

To ensure the accuracy and reliability of the experimental 

results, a consistent experimental setting is strictly followed in 

all algorithms. The same parameter configurations are applied 

uniformly for a fair comparison and reduce experimental bias, 

comparative algorithms are executed using their default 

parameters listed in Table 3. 

 

All experiments were carried out on a computer configured 

with a 64-bit Windows operating system, an Intel(R) Core 

(TM) i7-8750H CPU with a base frequency of 2.20 GHz and 8 

GB of RAM. The programming environment used was 

MATLAB 2024a. 

Table 3: Parameter Settings of Algorithms 
Algorithm Parameters 

Common 

Parameters 

Population Size (nPop) = 30 

Maximum Iterations (Maxiter) = 1000 Problem 

Dimension (dim) = 30 
Number of Runs (N) = 3 

SCA A=2(Default) 

SO 𝜃1=0.25, 𝜃2=0.6, c1=2=0.5, c3=2 

HHO b=[2,0], 𝛽=1.5(Default) 

GWO 𝛼=2-t*((2)/Max_iter) 

WOA 
𝛼=2-t*((2)/Max_iter) 

𝛼2=-1+t*((-1)/Max_iter) 

KOA, EKOA Tc=3, M0=0.1, 𝜆=15 
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4.2 Benchmarking one CEC2022 Benchmark Functions 

 

In this paper, we use the CEC2022 benchmark functions suite 

of complex test functions for evaluation, which cover a wide 

range of types, including unimodal functions, basic functions, 

hybrid functions, and composition functions. The detailed 

characteristics of the CEC2022 benchmark functions are 

listed in Table 4, where 𝐹𝑢𝑛𝑖
∗ denotes the global optimum of 

the 𝑖-𝑡ℎ function. 

Table 4: Test functions utilized in CEC2022 

NO. Function 𝑭𝒖𝒏𝒊
∗ 

Unimodal Function 

1 Shifted and full Rotated Zakharov Function 300 

Basic Function 

2 Shifted and full Rotated Rosenbrock’s Function 400 

3 Shifted and full Rotated Expanded Schaffer’s f6 Function 600 

4 
Shifted and full Rotated Non-Continuous Rastrigin’s f6 

Function 
800 

5 Shifted and full Rotated Levy Function 900 

Hybrid Function 

6 Hybrid Function 1 (N=3) 1800 
7 Hybrid Function 2 (N=6) 2000 

8 Hybrid Function 3 (N=5) 2200 

Composition Function 
9 Composition Function 1 (N=5) 2300 

10 Composition Function 2 (N=4) 2400 

11 Composition Function 3 (N=5) 2600 
12 Composition Function 4 (N=6) 2700 

Search range: [−100, 100]D 

 

Table 5 presents the performance comparison results of the 

EKOA algorithm with other comparative algorithms on the 

CEC2022 test function set. The data reveals that MOKOA 

excels in solving the 12 benchmark test functions in CEC2022, 

achieving a success rate of up to 75%. This advantage is 

reflected in multiple evaluation metrics, including the optimal 

solution, standard deviation, and average value. 

EKOA achieved the best performance in terms of optimal 

values on F1, F3, F4, F6, F7, F8, F9, F10, and F12. Although 

some algorithms, such as SCA, HHO, and GWO, surpassed 

EKOA in terms of optimal value metrics on F11, F2, and F5, 

respectively, their "Std" values were significantly larger, 

indicating poor convergence stability. However, EKOA 

showed almost no deviation on F3, F4, F5, and F10, 

demonstrating high convergence stability. Furthermore, in 

functions F3, F4, high-dimensional function F6, and complex 

function F10, EKOA significantly outperformed all 

algorithms, exhibiting good adaptability. 

 

Figure 2 illustrates the boxplots of the optimization results for 

each algorithm. Boxplots effectively reflect data distribution, 

variability, and stability. The proposed EKOA algorithm 

exhibits noticeably narrower boxes in most test functions, 

indicating lower variability and higher consistency over 

multiple runs. This highlights the algorithm’s robustness and 

stability, as its performance is less influenced by randomness 

and remains reliable between experiments. 

 

The convergence curves show how the algorithms improve 

during the iterations. They also show how fast and efficiently 

the algorithms reach the optimal solution. Observing the 

convergence curves, one can evaluate the stability and 

accuracy of the algorithms to approaching the optimal 

solution. In this study, based on the CEC2022 benchmark 

function, the convergence characteristics of the proposed 

EKOA and several comparative algorithms were analyzed. 

The relevant results are shown in Figure 3. The experimental 

results show that EKOA performs better than the other 

algorithms in convergence accuracy and speed in the 

CEC2022 benchmark functions. It has strong global search 

ability and good local optimization ability. 

Table 5: Performance of algorithms across 5 metrics and Friedman ranking on CEC2022 benchmark functions 
  SCA SO HHO GWO WOA KOA EKOA 

F1 

Best 

Std 

Mean 

1337.877 

505.869 

1850.014 

6921.200 

1376.100 

8363.176 

302.485 

1.549 

304.257 

407.147 

744.102 

1266.356 

13625.210 

4293 348 

18582 333 

17893.408 

1721.139 

19850.635 

300.143 

16.916 

313 482 

F2 

Best 

Std 

Mean 

437.778 

15.296 

452.990 

560.514 

205.403 

724.438 

402.496 

14.339 

408.816 

407.200 

15.658 

424.590 

414.395 

115.374 

501.162 

701.256 

360.753 

1116.870 

405.497 

10.433 

414.985 

F3 

Best 

Std 

Mean 

617.894 

2.867 

621.117 

619.247 

19.820 

637 895 

628.973 

9.840 

636.157 

600.067 

0.030 

600.099 

628 363 

11.613 

640.930 

665.021 

6.543 

672.503 

600.000 

0.011 

600.007 

F4 

Best 

Std 

Mean 

843.040 

1.195 

844.270 

842.625 

8.692 

852.434 

815.070 

11.281 

823.062 

811.204 

2.600 

814.158 

820.941 

23 509 

843.210 

903.087 

7.244 

910.836 

804.975 

0.995 

805.970 

F5 

Best 

Std 

Mean 

945.472 

48.753 

994.935 

1427.859 

94.049 

1490.118 

1398.878 105.168 

1468.077 

900.195 

8.345 

905.827 

978.977 709.134 

1538.476 

2698.584 

466.348 

3149.453 

903.656 

0.156 

903.812 

F6 

Best 

Std 

Mean 

1218415.423 

2619875.427 

4241034.379 

1076547.097 

7439253.270 

51711006.360 

2811.627 2500.936 

4944.686 

2451.408 3330.429 

6296.914 

1944.258 1160.941 

2988.297 

104298946.800 

135555257.700 

224972310.400 

1832.953 1010.280 

2512.740 

F7 

Best 

Std 

Mean 

2052.086 

7.848 

2059.612 

2058.801 

30.770 

2084.092 

2035.412 17.963 

2053.748 

2029.690 16.061 

2039.014 

2052.271 16.906 

2069.476 

2146.406 

18.003 

2162.536 

2002.234 10.895 

2014.763 

F8 

Best 

Std 

Mean 

2229.352 

1.705 

2231.172 

2241.202 

20.984 

2254.252 

2226.681 19.402 

2248.872 

2225.131 

1.377 

2226.675 

2227.244 

4.520 

2232.412 

2272.448 

38.089 

2309.206 

2220.933 

2.175 

2223.270 

F9 

Best 

Std 

Mean 

2554.886 

14.037 

2567.397 

2659.032 

43.827 

2690.768 

2529.562 19.182 

2548.901 

2529.307 44.060 

2572.403 

2542.534 44.615 

2571.694 

2797.998 

75.438 

2880.637 

2485.508 17.559 

2495.726 

F10 

Best 

Std 

Mean 

2501.504 

0.258 

2501.709 

2522.292 

90.683 

2626.823 

2500.733 488.293 

2782.691 

2500.315 64.150 

2537.400 

2502.832 92.576 

2606.093 

2700.499 

242.706 

2974.837 

2500.267 

0.068 

2500.338 

F11 

Best 

Std 

Mean 

2776.259 

36.286 

2817.573 

4331.238 

127.968 

4431.454 

2605.440 181.124 

2710.326 

2730.879 107.777 

2854.971 

2736.308 145.667 

2904.072 

33210.625 10912.531 

41369.811 

2900.602 18.418 

2916.959 

F12 

Best 

Std 

Mean 

2869.201 

1.484 

2870.804 

2894.030 

51.598 

2930.703 

2868.183 29.409 

2886.841 

2863.206 11.203 

2870.026 

2867.322 27.218 

2898.655 

2956.326 

40.365 

2982.112 

2847.137 

2.776 

2848.909 
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Figure 2: Boxplots of optimization results obtained by each algorithm during the process 

 
Figure3: Convergence curves of EKOA and comparative algorithms on CEC2022 benchmark functions 
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5. Conclusion and Future Work 
 

Aiming at the limitations of the traditional Kepler 

Optimization Algorithm in handling complex optimization 

problems, such as susceptibility to local optima and 

insufficient convergence stability, this paper proposes EKOA 

incorporating multiple improvement strategies. During the 

population initialization stage, Tent chaotic mapping is 

introduced to generate a more diverse initial population, 

laying a foundation for global search. In the planetary motion 

simulation stage, a dynamically adjusted Lévy flight strategy 

is integrated to balance the algorithm's exploration and 

exploitation capabilities. In the orbital update mechanism, 

DOBL is adopted to enhance the efficiency of local refined 

search. To validate the performance of EKOA, systematic 

experiments were conducted on the CEC2022 benchmark 

function, and comparisons were made with several intelligent 

optimization algorithms such as KOA, GWO, and HHO. The 

experimental results show that EKOA significantly 

outperforms the compared algorithms in terms of convergence 

accuracy, stability, and robustness. Its best solution, average 

solution, and standard deviation metrics all demonstrate 

superior performance, and the convergence curves indicate 

faster convergence speed and stronger global optimization 

ability. 

 

In the future, this research can be further deepened in the 

following directions: First, further optimizing the parameter 

adaptation mechanism and strategy integration of EKOA to 

enhance its performance in high-dimensional, dynamic, and 

multi-constraint optimization problems. Second, applying 

EKOA to practical engineering fields, such as neural 

architecture search, power system scheduling, image 

segmentation, and path planning in complex scenarios, to 

verify its practical utility. Third, exploring hybrid models 

combining EKOA with other intelligent computing methods, 

such as deep learning and fuzzy systems, to expand its 

application scope and problem-solving capabilities. 
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