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Abstract: To enhance the global search capability, convergence accuracy, and stability of optimization algorithms, this paper improves
the basic Kepler optimization algorithm and proposes an enhanced Kepler optimization algorithm. This algorithm incorporates a tent map
to enhance the uniformity and diversity of population initialization; utilizes Lévy flight strategy to balance the algorithm's global
exploration and local exploitation capabilities; and designs an adaptive perturbation mechanism to enable the algorithm to effectively
escape from local optima in the later stages of iteration. To verify the performance of the proposed algorithm, comprehensive experiments
were conducted on the CEC2022 benchmark test function set, and it was compared with six classic swarm intelligence optimization
algorithms. The experimental results show that the improved algorithm exhibits significant advantages in convergence speed, solution
accuracy, and robustness, especially when dealing with complex, high-dimensional optimization problems. This study provides new
insights for the design of optimization algorithms, and the improved algorithm is expected to be widely applied in fields such as

engineering optimization and machine learning parameter tuning.
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1. Introduction

Swarm intelligence optimization algorithms are optimization
methods inspired by collective behavior in nature, possessing
advantages such as strong global search capability, ease of
implementation, and strong adaptability. Currently,
mainstream swarm intelligence optimization algorithms
include the classic Particle Swarm Optimization (PSO) [1],
Ant Colony Optimization (ACO) [2], Firefly Algorithm (FA)
[3], Grey Wolf Optimizer (GWO) [4], Bat Algorithm (BA) [5],
Artificial Bee Colony (ABC) [6], Whale Optimization
Algorithm (WOA) [7], as well as newly proposed algorithms
such as Parrot Optimization Algorithm [8] and Kepler
Optimization Algorithm (KOA) [9] in recent years.

The Particle Swarm Optimization (PSO) algorithm, one of the
most classic swarm intelligence methods, was proposed by
Kennedy and Eberhart in 1995, which simulates the social
behavior of bird flocks to solve problems [10]. This algorithm
guides particles to search for the optimal solution in the
solution space through the collaboration of individual and
group experiences. To enhance its performance, researchers
have proposed various improvement strategies, such as
introducing dynamic inertia weight, designing adaptive
learning factors, and integrating local search mechanisms,
effectively balancing the exploration and exploitation
capabilities of the algorithm.

The Ant Colony Optimization (ACO) algorithm simulates the
positive feedback mechanism of pheromone in the foraging
paths of ants to solve combinatorial optimization problems.
Each ant constructs a feasible solution, and the pheromone
concentration represents the quality of the path (or solution
component). ACO performs well in discrete search spaces,
but its convergence speed may be limited on
high-dimensional complex problems. Therefore, many studies
have focused on integrating it with other algorithm
frameworks such as Particle Swarm Optimization (PSO) [11]
and Genetic Algorithm (GA) [12] to form hybrid strategies to
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enhance overall search efficiency.

In recent years, novel meta-heuristic algorithms inspired by
ecosystems or physical models have emerged continuously,
providing new insights for solving complex optimization
problems. For instance, the Grey Wolf Optimization
Algorithm simulates the social hierarchy and hunting
strategies of wolf packs, guiding the search direction by
defining o, B, and & wolves, demonstrating excellent global
search performance and robustness [13], [14]. The Firefly
Algorithm moves based on the attractiveness of individual
light emission intensity, suitable for handling continuous
optimization problems [15]; the Bat Algorithm combines
frequency modulation and pulse response strategies,
enhancing the ability for local fine-grained search [16]. The
Artificial Bee Colony Algorithm mimics the division of roles
(worker bees, forager bees, scout bees) during honey
collection by bees, achieving a balance between global
exploration and local exploitation through the collaboration of
various search behaviors [17]. These algorithms, with their
unique bionic mechanisms, have been widely validated and
applied in various benchmark tests and engineering
optimization problems.

2. Kepler Optimization Algorithm

The Kepler Optimization Algorithm (KOA) is a
nature-inspired metaheuristic algorithm derived from the
three laws of the planetary motion of KOA. It is developed
primarily to address single-objective and continuous
optimization problems. The fundamental principle of KOA is
to simulate the elliptical orbits of planets around a central
mass, usually the Sun. This simulation helps guide candidate
solutions toward the global optimum by imitating orbital
dynamics. KOA demonstrates outstanding performance in
terms of global search capability and solution precision. The
following section presents a detailed exposition of the
mathematical model and implementation framework of the
algorithm.



2.1 Population Initialization

In the initialization phase of KOA, N planetary individuals
are randomly generated within the whole solution space. Each
individual has a dimensionality of d. The mathematical
expression is given by formula (1).

DN (=12,
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Where X lj denotes the initial position of the i-th planet in the
j-th dimension, lb and ub are the lower and upper bounds of
the j-th dimension, respectively, and r € [0, 1] is a uniformly
distributed random value.
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2.2 Velocity Calculation

When a planet approaches the sun, its orbital velocity
increases. Conversely, when it moves away from the star, its
orbital velocity decreases. As an object gets closer to the Sun,
the gravitational force exerted by the Sun becomes
significantly stronger. To counteract this intense gravitational
pull, each planet tries to accelerate its motion. The
corresponding mathematical model is provided below.
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Where ¥;(t) denotes the velocity of the i-th planet at time t,
r; and 7, are probabilistic variables that follow a uniform
distribution in the interval [0,1], 75 and 7 are two binary

vectors whose elements are restricted to values of 0 or 1, )_fa

and )_()b represent two planets randomly selected from the
current population, o is a randomly selected scalar used to
adjust the direction of motion.

2.3 Local Optimum Escape Strategy

Most planets rotate counterclockwise when they are close to
the Sun, but some planets are exceptions and orbit the Sun in
the opposite direction. In the original KOA, this phenomenon
is utilized to adjust the search direction and facilitate escape
from local optima. To achieve this, KOA introduces a control
variable o that dynamically adjusts the search direction and
thereby controls the orbital trajectory of planets around the
Sun.

2.4 Position Update
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Planets follow Kepler’s laws and orbit the Sun along elliptical
paths. During their approach to the Sun, the planets
continuously revolve: they gradually move closer to the star
and then slowly move away. KOA is designed based on this
behavior and includes two main steps, exploration and
exploitation. When a planet moves away from the Sun, the
algorithm performs exploration to search for a broader
solution space; when a planet moves closer to the Sun, the
algorithm performs exploitation to focus on optimizing the
current solution. The mathematical model can be expressed
by formula (8).

Xi(t+1) =X(®) +ox V() + U x (F,
x (%s(0) = X))

2.5 Elite Retention Mechanism
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To ensure that the optimal solution is not destroyed, KOA
employs the following elite retention strategy.
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3. Enhancing Kepler Optimization

To address the inherent limitations of the original KOA, such
as premature con vergence and insufficient global search
capability. Specifically, a tent map mechanism is integrated to
improve population diversity during initialization, a Lévy
flight strategy is embedded to strengthen global exploration,
and dynamic opposition-based learning (DOBL) is adopted to
prevent stagnation and accelerate convergence. Furthermore,
the fit ness evaluation process is upgraded through a

multi-objective fitness function, which simultaneously
optimizes classification accuracy and feature subset
compactness.

3.1 Initialization based on Tent Map

We adopt tent map during the population initialization phase
to improve the quality of population distribution and enhance
the coverage of the search space. Chaotic mapping is a
nonlinear dynamic system that shows sensitivity to initial
conditions, ergodicity, and pseudo-randomness. The tent map
improves KOA’s initialization by promoting diversity and
preventing early convergence.

The tent map is a classical one-dimensional discrete chaotic
system, and the mathematical expression is given by formula

(10).
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The parameter u € (0,1) is a control parameter, and u = 0.5
is commonly selected to achieve the most desirable chaotic
behavior. The tent map exhibits excellent ergodicity and can
generate uniformly distributed chaotic sequences within the
interval [0,1]. The sample points generated by this map can
more effectively fill the search space, which is beneficial to
overcome the problem of premature convergence in the
algorithm.



The tent map is applied during the population initialization
phase. First, an initial seed x, € (0,1) is set, and a chaotic
sequence of length N X D is generated using the iterative Tent
map, where N is the population size and D is the dimension of
problem. Then, the chaotic sequence is converted into values
within the range of each dimension in the search space by
formula (11).

X, = xW
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where the chaotic sequence values x; ; € [0,1] are mapped to
the specific interval of the search space. Finally, the
transformed values x; ; are used as the initial positions of the
particles, which are then substituted into the main loop of the
KOA to begin the optimization process.

The initial individuals generated by the tent map make the
population spread evenly in the search space. This helps
explore complex solution spaces and reduces the chance of
getting stuck in local optima.

3.2 Dynamic Opposition-Based Learning Strategy

Tizhoosh first proposed the Opposition-Based Learning (OBL)
strategy in 2005, which was inspired by the concept of
opposition [18]. To date, the OBL strategy and its improved
versions have been widely applied in various optimization
algorithms, demonstrating significant advantages in
improving algorithm performance [19]. The basic definition
of the OBL strategy is given by formula (12).

X, =LB+UB-X; (12)

Where X; and X; represent the original solution and its
opposite solution, respectively; the symbols LB and UB
denote the lower and upper limits of the search space.

In OBL strategy, the individual with the higher fitness value
between the original solution and its opposite solution is
selected for the next generation iteration. Although this
strategy can improve population diversity and quality to some
extent, it maintains a fixed distance between the original and
opposite solutions during generation, which leads to a lack of
necessary randomness in the search process. This limitation
may restrict the algorithm’s optimization capability during
global search.

This  paper introduces an  improved Dynamic
Opposition-Based Learning (DOBL) strategy to solve the
low-randomness problem of the traditional OBL strategy. The
aim is to increase population diversity and improve the quality
of solutions. The DOBL strategy adds a dynamic boundary
adjustment to the original OBL strategy. The mathematical
model of the DOBL strategy is presented by formula (13).

(13)

Where )?f ; and Xfy ; represent the opposite solution and the
original solution of the vector i-th in the dimension j-th
during the iteration t, respectively; a}? and bjt denote the lower
and upper bounds in the dimension j-th at the iteration ¢,
respectively. The mathematical model of af and b is
expressed as follows.

af = min(X{),bf = max(X)

ot _ t t_ yt.
XL'.]' =4q +b]' XL.]

(14)
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The pseudo-code of the DOBL is given in Table 1.
Table 1: Pseudo-code of DOBL Strategy

Algorithm 1 Pseudo-code of DOBL Strategy

1: Input: D, N, X // dimension, population size, original solutions
: Output: X
:fori=1to Ndo

forj=1toDdo

X!, = af + bf — X}, // generate opposite solution

end for
end for
: Calculate the fitness values of the original and opposite solutions
: X « select the optimal solutions from the set{X, X}

N

R AR AN g

3.3 Lévy Flight Strategy

To enhance the global exploration ability of KOA and avoid
premature convergence, recent studies have increasingly
focused on integrating KOA with other mechanisms. In
particular, the incorporation of random jump mechanisms has
proven effective in improving search diversity. Among these,
the Lévy Flight strategy has demonstrated remarkable
optimization potential due to its distinctive behavior of
combining frequent small steps with occasional long-distance
jumps, thereby introducing nonlinear perturbations and
long-range exploration into the algorithm.

Lévy flight follows a random walk mechanism governed by
the Lévy stable distribution. The step length of this
mechanism exhibits a heavy-tailed distribution characterized
by frequent small local searches interspersed with occasional
long distance jumps. This behavior has been widely observed
in nature, including animal foraging patterns, photon
trajectories, and even human mobility modeling. The
probability distribution function of the Lévy flight is given by
formula (15).

L(s) ~|s|*"F,0<p <2 (15)

Where f is the stability index of the L evy distribution, which
determines the frequency of long jumps. A commonly used
value is f = 1.5, which balances search stability and
diversity.

Lévy flight can be numerically simulated using the Mantegna
algorithm, with the jump step length L generated using the
formula below.

L=smu~N(00%,v~N(01) (16)
[ r@+B)sin(wp/2) 1P
B [r((1+3)/2)-ﬁ~2<ﬁ-1>/2] 1n

The random perturbations generated by this strategy can be
used for position updates in the algorithm, allowing
individuals to jump unpredictably to regions far from the
current solution. This enhances the algorithm’s ability to
escape local optima.

The main goal of incorporating the Lévy flight strategy into
the KOA is to improve population diversity and global search
capability. This paper uses Lévy perturbations in the position
update phase. The original KOA updates the positions of
particles by simulating the motion of celestial bodies. After
each update, the Lévy flight adds a jump-based perturbation.
The modified update equation is given by formula (18).

Xit+1 = Xit + a - Lévy(B) - (Xit - Xtt)est) (18)



Where, X} denotes the position of the particle i-th in iteration
t, Xpes is the current global best solution, a is the scaling
factor controlling the jump magnitude, and Lévy(f)
represents the generated Lévy distributed perturbation. The
parameter B is the Lévy index, which determines the shape of
the distribution.

3.4 Procedure of EKOA
Table 2: Pseudo-code of EKOA

Algorithm 2 Pseudo-code of EKOA

1: Input: N, D, T, 44,ub,lb,fobj

2: Output: X

3: Initialize population Positions using Tent chaotic mapping
4: Evaluate fitness of each individual

5: Select best individual X;

6: while t < Tmax do

7:  Compute B and o parameters for DOBL strategy
8:  Update X using DOBL strategy

9:  fori=1:Ndo

10: Update semi-major axis a(t), orbit radius R(i), normalized masses M,
MS, m, and gravitational factor F g(i)

11: Randomly select two individuals a, b

12: Generate dynamic mass V and random value r
13: if r <0.5 then

14: Update position using Lévy flight strategy
15: else

16: Update position using original formula

17: end if

18:  end for

19:  Use elitism to update best individual X;

20: tet+1

21: end while

Initialize individual position
translation through tent mapping

|

Calculate the fitness of each individual
and select the best individual X,

-

No

-

> t=T

Yes

Update X, using DOBL
strategy

'L End

Update each individual semi-major
axis a;ft) R, MM and Fj;

!

Randomly select two individual indices @ and &
to generate a perturbation vector ¥
and a random value r

t=t+1

Yes Mo

l R=<0.5
Y

Update individual Update individual
positions using the positions by
Levy flight strategy formula

Calculate the fitness of
each individual

|

Use elite mechanism to select the
best individuals X,

Figure 1: Flowchart of the EKOA Algorithm
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In this study, we improve the classical KOA by introducing
tent chaotic mapping, Lévy flight strategy, and Dynamic
Opposition-Based Learning. These methods help increase
population diversity, speed up convergence, and improve the
ability to escape local optima. The pseudocode of EKOA is
shown in Table 2, and Figure 1 illustrates the flowchart of the
proposed EKOA algorithm.

The algorithm begins by initializing the population positions
using Tent chaotic mapping to ensure diversity in the search
space. The fitness of each individual is then evaluated and the
best solution is selected. During each iteration, a dynamic
opposition-based learning strategy is applied to adjust the
current best solution, enhancing the global search capability.
Based on a random threshold, an individual’s position is
updated either using the Lévy flight strategy to improve
exploration and avoid local optima or by the original position
update formula to maintain search stability. At the end of each
iteration, an elitism strategy is used to preserve and update the
best global solution. This process continues until the
maximum number of iterations reached, enabling effective
optimization of the problem.

4. Numerical Experiments

In this section, we designed two groups of experiments to
comprehensively evaluate the performance and limitations of
EKOA. To evaluate the numerical optimization performance
of EKOA, a set of experiments is conducted on 12 benchmark
functions derived from the CEC2022 test suite. The
experimental results are compared with six mainstream
metaheuristic algorithms, namely: Sine Cosine Algorithm
(SCA), Seagull Optimization (SO), Harris Hawks
Optimization (HHO), Grey Wolf Optimizer (GWO), Whale
Optimization Algorithm (WOA), and the original KOA.

4.1 Experiment Setting

To ensure the accuracy and reliability of the experimental
results, a consistent experimental setting is strictly followed in
all algorithms. The same parameter configurations are applied
uniformly for a fair comparison and reduce experimental bias,
comparative algorithms are executed using their default
parameters listed in Table 3.

All experiments were carried out on a computer configured
with a 64-bit Windows operating system, an Intel(R) Core
(TM) i7-8750H CPU with a base frequency of 2.20 GHz and 8
GB of RAM. The programming environment used was
MATLAB 2024a.

Table 3: Parameter Settings of Algorithms

Algorithm Parameters

Population Size (nPop) = 30

Common Maximum Iterations (Maxiter) = 1000 Problem
Parameters Dimension (dim) = 30
Number of Runs (N) =3
SCA A=2(Default)

SO 01=0.25, 62=0.6, c1=2=0.5, c3=2

HHO b=[2,0], B=1.5(Default)
GWO a=2-t*((2)/Max_iter)
a=2-t*((2)/Max_iter)

WOA a2=-1+t*((-1)/Max_iter)
KOA, EKOA Tc=3, M0=0.1, =15




4.2 Benchmarking one CEC2022 Benchmark Functions

In this paper, we use the CEC2022 benchmark functions suite
of complex test functions for evaluation, which cover a wide
range of types, including unimodal functions, basic functions,
hybrid functions, and composition functions. The detailed
characteristics of the CEC2022 benchmark functions are
listed in Table 4, where Fun; denotes the global optimum of
the i-th function.

Table 4: Test functions utilized in CEC2022

NO. Function Fun;
Unimodal Function
1 Shifted and full Rotated Zakharov Function 300
Basic Function
2 Shifted and full Rotated Rosenbrock’s Function 400
3 Shifted and full Rotated Expanded Schaffer’s f6 Function 600
Shifted and full Rotated Non-Continuous Rastrigin’s f6
4 . 800
Function
5 Shifted and full Rotated Levy Function 900
Hybrid Function
6 Hybrid Function 1 (N=3) 1800
7 Hybrid Function 2 (N=6) 2000
8 Hybrid Function 3 (N=5) 2200
Composition Function
9 Composition Function 1 (N=5) 2300
10 Composition Function 2 (N=4) 2400
11 Composition Function 3 (N=5) 2600
12 Composition Function 4 (N=6) 2700

Search range: [-100, 100]°

Table 5 presents the performance comparison results of the
EKOA algorithm with other comparative algorithms on the
CEC2022 test function set. The data reveals that MOKOA
excels in solving the 12 benchmark test functions in CEC2022,
achieving a success rate of up to 75%. This advantage is
reflected in multiple evaluation metrics, including the optimal
solution, standard deviation, and average value.
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EKOA achieved the best performance in terms of optimal
values on F1, F3, F4, F6, F7, F8, F9, F10, and F12. Although
some algorithms, such as SCA, HHO, and GWO, surpassed
EKOA in terms of optimal value metrics on F11, F2, and F5,
respectively, their "Std" values were significantly larger,
indicating poor convergence stability. However, EKOA
showed almost no deviation on F3, F4, F5, and F10,
demonstrating high convergence stability. Furthermore, in
functions F3, F4, high-dimensional function F6, and complex
function F10, EKOA significantly outperformed all
algorithms, exhibiting good adaptability.

Figure 2 illustrates the boxplots of the optimization results for
each algorithm. Boxplots effectively reflect data distribution,
variability, and stability. The proposed EKOA algorithm
exhibits noticeably narrower boxes in most test functions,
indicating lower variability and higher consistency over
multiple runs. This highlights the algorithm’s robustness and
stability, as its performance is less influenced by randomness
and remains reliable between experiments.

The convergence curves show how the algorithms improve
during the iterations. They also show how fast and efficiently
the algorithms reach the optimal solution. Observing the
convergence curves, one can evaluate the stability and
accuracy of the algorithms to approaching the optimal
solution. In this study, based on the CEC2022 benchmark
function, the convergence characteristics of the proposed
EKOA and several comparative algorithms were analyzed.
The relevant results are shown in Figure 3. The experimental
results show that EKOA performs better than the other
algorithms in convergence accuracy and speed in the
CEC2022 benchmark functions. It has strong global search
ability and good local optimization ability.

Table 5: Performance of algorithms across 5 metrics and Friedman ranking on CEC2022 benchmark functions

SCA SO HHO GWO WOA KOA EKOA
Best 1337877 6921.200 302.485 307.147 13625210 17893 408 300,143

Fl sd 505.869 1376.100 1.549 744.102 4293 348 1721139 16916
Mean  1850.014 8363.176 304257 1266.356 18582 333 19850.635 313 482
Best | 437.778 560514 402.49 407.200 414395 701,256 405497

2 osd 15.296 205.403 14339 15.658 115.374 360.753 10.433
Mean 452990 724438 408.816 424590 501,162 1116.870 414.985
Best  617.894 619.247 628.973 600.067 628 363 665.021 600.000

3 osd 2.867 19.820 9.840 0.030 11.613 6.543 0.011
Mean 621117 637 895 636.157 600.099 640.930 672.503 600.007
Best  843.040 842,625 815.070 811.204 820,941 903.087 804.975

P4 sd 1,195 8.692 11281 2.600 23 509 7.244 0.995
Mean 844270 852.434 823.062 814.158 843210 910.836 805.970
Best 945472 1427859 900.195 2608.584 903.656

F5  Sud 48.753 94.049 PSETS o108 8.345 978‘1957378740796134 466.348 0.156
Mean  994.935 1490118 : 905.827 : 3149.453 903.812
Best 1218415423 1076347.097 501} 637 2500.936 2451.408 3330.429 1944.258 1160.941 104298946.800 1832.953 1010.280

F6 St 2619875427 7439253270 T o S 135555257700 SRR
Mean 4241034379 51711006.360 : : : 224972310.400 :
Best 2052086 2058801 2035.412 17.963 2029.690 16.061 2052.271 16.906 2146406 2002.234 10.895

F7. sd 7.848 30.770 2053.748 2039.014 2069.476 18.003 2014.763
Mean  2059.612 2084.092 : : : 2162.536 :
Best | 2229352 2241.202 2225.131 2227244 2272.448 2220933

P8 s 1705 20984 2226081 19402 1377 4,520 38.089 2.175
Mean 2231172 2254252 : 2226.675 232412 2309.206 2223270
Best 2554886 2059.032 2529.562 19.182 2529.307 44.060 2542.534 44.615 2797.998 2485.508 17.550

Fo - Sd 14.037 43.827 2548.901 2572.403 2571.694 75.438 2495.726
Mean  2567.397 2690.768 : : : 2880.637 :
Best  2501.504 2522292 2500.733 488.293 2500.315 64.150 2502.832 92.576 2700.499 2300.267

FI0 St 0.258 90.683 LT3 a8 O3 e 242706 0.068
Mean  2501.709 2626.823 : : : 2074.837 2500.338

e 2776259 518 2605.440 181.124 2730.879 107.777 2736.308 145.667 33210.625 10912.531 2900.602 18.418
g 30286 P 2710326 2854.971 2904.072 41369.811 2916.959
Best  2869.201 2894.030 2868.183 29.409 2863.206 11.203 2867.32227.218 2956.326 2847137

FI2 s 1.484 51.508 jeton S TR 40.365 2.776
Mean  2870.804 2930.703 : : : 2082.112 2848.909
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Figure 2: Boxplots of optimization results obtained by each algorithm during the process
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Figure3: Convergence curves of EKOA and comparative algorithms on CEC2022 benchmark functions
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5. Conclusion and Future Work

Aiming at the limitations of the traditional Kepler
Optimization Algorithm in handling complex optimization
problems, such as susceptibility to local optima and
insufficient convergence stability, this paper proposes EKOA
incorporating multiple improvement strategies. During the
population initialization stage, Tent chaotic mapping is
introduced to generate a more diverse initial population,
laying a foundation for global search. In the planetary motion
simulation stage, a dynamically adjusted Lévy flight strategy
is integrated to balance the algorithm's exploration and
exploitation capabilities. In the orbital update mechanism,
DOBL is adopted to enhance the efficiency of local refined
search. To validate the performance of EKOA, systematic
experiments were conducted on the CEC2022 benchmark
function, and comparisons were made with several intelligent
optimization algorithms such as KOA, GWO, and HHO. The
experimental results show that EKOA significantly
outperforms the compared algorithms in terms of convergence
accuracy, stability, and robustness. Its best solution, average
solution, and standard deviation metrics all demonstrate
superior performance, and the convergence curves indicate
faster convergence speed and stronger global optimization
ability.

In the future, this research can be further deepened in the
following directions: First, further optimizing the parameter
adaptation mechanism and strategy integration of EKOA to
enhance its performance in high-dimensional, dynamic, and
multi-constraint optimization problems. Second, applying
EKOA to practical engineering fields, such as neural
architecture search, power system scheduling, image
segmentation, and path planning in complex scenarios, to
verify its practical utility. Third, exploring hybrid models
combining EKOA with other intelligent computing methods,
such as deep learning and fuzzy systems, to expand its
application scope and problem-solving capabilities.
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