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Abstract: Finding patterns in DNA sequences, a challenging task in molecular biology and computer science, plays a crucial role in
understanding gene expression and transcription regulation. This article explores various computational methods for identifying
transcription factor binding sites TFBS and regulatory motifs in DNA sequences. We discuss the significance of these motifs in gene
expression and disease susceptibility research. The article categorizes motif discovery algorithms into enumerative, probabilistic,
combinatorial, and nature - inspired approaches, highlighting their strengths and limitations. It emphasizes the need for a
comprehensive motif discovery tool that can handle diverse motif types, perform global searches efficiently, and reduce user - defined

parameters.
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1. Introduction

One of the most difficult challenges in molecular biology as
well as computer science is finding patterns in DNA
sequences. ldentification of regulatory motifs is critical for
understanding the gene expression. The essential concept in
gene expression is that each a gene encodes the instructions
for making a protein. The process of expression begins with
the binding of several recognised protein factors. As
transcription factors, they bind to enhancer and promoter
sequences (Li and Li, 2019).

Transcription is the first stage, which involves creating an
RNA "copy" of a section of the DNA. This RNA sequence is
read and interpreted to create a protein in the second stage of
the process, known as translation. Gene expression is the
combined result of these two actions. Numerous regulatory
transcription factors (TFs), also known as Transcription
Factor Binding Sites (TFBS), bind to certain DNA regions to
control gene expression. In the past ten years, a significant
new method for understanding transcription regulation
networks has emerged: the computational identification of
TFBS through the study of DNA sequence data (Ruzicka et
al., 2017).

Finding sequence motifs can be challenging since intergenic
regions are extremely long and highly varied, while
sequence motifs are small (approximately 6-12 bp).
Sequence motifs are frequently repeated and conserved, and
they have a fixed size. These patterns are critical for
identifying Transcription Factor Binding Sites (TF - BSs),
which aids in understanding the mechanisms governing gene
expression 3. Motifs can be classified as planted, structured,
gapped, sequence, network, and motifs (Hashim et al.,
2019).

An important issue in computational biology is the finding
of weak matifs. It is challenging to solve because there are
S0 many inconsistencies between the actual theme and its
altered variants that false signals may mask the real ones.
Further, it is challenging to identify and uncover regulatory
elements using computer algorithms since they are typically
brief and varied. The task of solving the theme finding
problem is that of discovering overrepresented motifs as
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well as conserved motifs from the set of DNA sequences that
are good candidates for becoming sites where transcription
factors bind. Transcription factor is a protein that functions
as a gene expression regulator, specifically regulating the
start of the transcription process that produces mRNA using
DNA as a template. The common sequence is called a motif.
A "pattern” in a transcription factor's binding sites. Finding
motifs will aid in the development of illness therapies and
comprehension  disease  susceptibility (Mohanty and
Mohanty, 2020).

Many techniques for analysing gene function start with the
finding of a DNA motif. Finding Transcription Factor
Binding Sites (TFBSs), which aid in understanding the
mechanisms for controlling gene expression, is a crucial part
of motif discovery. The development of quick and precise
motif discovery technologies has utilised a variety of
algorithms over the years. These algorithms are typically
categorised as probabilistic or consensus techniques, and
many of them take a lot of time to run and are prone to get
stuck in local optimums. Recently, solutions to these issues
have been offered using both nature - inspired algorithms
and a variety of combinatorial algorithms (Hashim et al.,
2019).

Motif Discovery method

Given a group of genes with strikingly comparable
expression profiles, the mechanism behind the coordinated
behaviour of genes can be investigated. Co - regulation of
transcription is thought to be a common source of co -
expression. Co - regulated genes are known to have some
regulatory mechanisms in common, presumably at the
transcriptional level. As a result, their promoter regions may
share some patterns that serve as binding sites of
transcription regulators. In order to find these regulatory
elements, it makes sense to look for statistically significant
overrepresented patterns in the promoter area of a group of
co - expressed genes.

The motif discovery method is divided into two main steps:
a) Pre processing
b) Discovering of the method



a) Pre processing

By using clean processes and assembly, it is getting the
DNA sequences ready for precise motif finding. It is
recommended that the researcher should choose as many
target sequences as you can in the assembly process that
might include motifs, work to keep sequences as brief as you
can, and eliminate any sequences that are unlikely to do so.
The input sequences are first clustered based on some data,
and the desired sequences are then extracted and placed in
the proper sequence database. Consequently, it is vital to
clean the input sequences to conceal or eliminate confusing
sequences (Sun et al., 2015).

b) Discovering of the method

The motif discovery strategy, which starts by modelling the
sequences, is what happens in the intermediate step. Position
- specific Weight Matrices (PWM) and consensus strings are
the two methods for representing the motifs. Consensus
strings allow degenerate symbols to be included in a string
using the IUPAC code and have the same length as DNA
sequence motifs, whereas PWM is a 4xm matrix, where m is
the length of the motif. The likelihood of each nucleotide
appearing at each motif index point is represented by each
position in the matrix. Following motif representation, the
proper goal function is chosen, and then the right search
method is used (Sun et al., 2015).
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Figure 1: Different type of motif discovery algorithm (Sun
etal., 2015)

Genetic algorithm for motif discovery

We create a method for anticipating binding site motifs
employing a genetic algorithm. The method investigates the
search space of all potential starting places of the binding
site motifs in various target sequences using a population
that goes through evolution. It is based on the general
framework of a genetic algorithm. Crossover participants
compete for space in the population, and mutations happen
with a particular probability. Initial tests showed that our
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method could produce good prediction accuracy in a short
amount of calculation time. The fact that the calculation time
of our approach does not explicitly depend upon the length
of the target sequences and may not dramatically rise as the
target sequences grow very long is a promising benefit
(Mohanty and Mohanty, 2020).

Principles of motif discovering algorithm

In order to distinguish biological signals from background
noise, approximation algorithms often create a probability
training model and score a statistical measure. Based on
Gibbs sampling and MEME, an especially effective class of
approximation algorithms is created. MEME discovers
motifs by optimising the PWMs using Expectation
Maximisation (EM), which continues to define three types
of motif discovery sequence models: OOPS, ZOOPS, and
TCM, which, respectively, correspond to one occurrence per
sequence, one or two occurrence every sequence, as well as
zero or more occurrences per sequence. Since they are
straightforward and stable, probability training algorithms
are frequently utilised (Zhang et al., 2016).

Enumeration strategy and probabilistic technique are the two
main categories of motif finding algorithms. When solving
the Panted (I, d) Motif Problem (PMP), which has a
maximum number of mismatches (d) and a maximum length
(I), the enumeration approach looks for consensus
sequences; motifs can be predicted based upon the
enumeration of words along with computing word
similarities. The algorithms that utilise the word
enumeration approach often discover the global optimum by
exhaustively searching the whole search space to identify
which ones emerge with potential substitutions (Hashim et
al., 2019).

The word enumeration method can be sped up by employing
specialised data structures like suffix trees with parallel
processing. Probabilistic methods make up the second
group. It creates a position - Specific Weight Matrix
(PSWM) or motif matrix, a probabilistic model that uses
minimal search parameters and specifies a distribution of
bases for each location in TFBS to distinguish between
motifs and non - motifs (Zhang et al., 2016).

A probabilistic strategy belongs to the second group. It
creates a position - Specific Weight Matrix (PSWM), also
known as a motif matrix, which specifies a distribution of
bases for each position in TFBS to discriminate between
motifs and non - motifs and only needs a small number of
search parameters.
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Figure 2: Steps involved in motif discovery process (Adapted from Hashim et al., 2019)



Classification of Enumerative Approach

Word Count Method

The first class is based on the simple act of counting words.
YMF 134 and DREME 9, are two algorithms in this class
that are currently in use. The YMF (Yeast Motif Finder)
technique was created by Sinha et al.29 and uses consensus
representation to find short motifs in yeast genomes with a
minimal number of degenerate sites. In the search space
approach, YMF counts all motifs and calculates the z - score
to produce the motifs with the highest z - scores. The
Fisher's Exact test proposed DREME (Discriminative
Regular Expression Motif Elicitation) algorithm to
determine the relevance of motifs (Sun et al., 2010).

Clustering - based method

The second class was presented as an alternative to
employing two loops to find various motifs. In order to find
small theme in big sequences (up to 50 Mb), it is further
suggested a word clustering algorithm called CIS Finder. In
order to calculate Position Frequency Matrices (PFMs) for n
- mer word counts with and without gaps in both the test and
control sets, one must first define nucleotide substitution
matrices for each n - mer word. PFMs are stretched over
flanking and gap areas, then clustered to produce non -
redundant motifs (Bailey, 2010).

For exact terms (words without wildcards), our motif search
is comprehensive; however, for words containing wildcards,
it is heuristic in order to speed up the process. We use the
Fisher's Exact Test to quantify the significance resulting
from the relative enrichment for every motif in two sets of
sequences in order to find statistically significant,
discriminative motifs. The chance that the proportion of
sequences in the first set that match the motif would be as
high as what was observed (or higher) is calculated using the
proportion of matching sequences in the second set (Bailey,
2010).

Tree - based method

A tree - based search to quicken the word enumeration
method is the third class. The Weeder algorithm, which is
based on count matching patterns with the most severe
mismatches. The motifs are initially represented using
consensus sequence, and based on the difference between
the k - mers of the input sequences and the consensus under
a specified number of substitutions, k - mers are built. Each
group is then assessed with a particular measure of
significance. For discovering lengthy (I, d) motifs in big
DNA sequences under ZOMOPS (Zero, one or multiple
occurrence (s) of the motif instance (s) per sequence)
constraints, the generated suffix tree was suggested in
FMotif 11 algorithm (Sharov and Ko, 2009).

Conclusion

There are several subclasses of each of the four groups of
motif discovery algorithms, enumerative, probabilistic,
combinatorial, and nature - inspired. The enumerative
strategy is the only one that guarantees to locate all motifs
(aside from weak motifs) and is an exhaustive search with a
straightforward notion. But because it is so sluggish and
needs so many parameters, dealing with extended motifs or
large amounts of data becomes challenging. Additionally, the
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degenerative places are the motif

representation restrictions.

constrained by

Many of the enumerative approach's weaknesses, such as
speed, handling lengthy motifs and large amounts of data,
the quantity of necessary parameters, degraded positions,
and the inability to detect weak motifs, are overcome by the
probability approach. But because probability is a
complicated idea, not all motifs can be found using this
method. The key components of the first two categories are
combined in the third category, which is called a nature -
inspired approach. This strategy uses a straightforward idea
and a global search, yet it can also handle large amounts of
data and lengthy motifs. Its flexible motif encoding allows
for an infinite number of degraded places. The last group is
the combinatorial method, which depends on the hybrid
algorithms that come together to generate the necessary
algorithm for its effectiveness.

A useful tool for motif discovery can be created from the
many suggested solutions to the challenge. These elements
need to be present in the tool: All models, including OOPS,
ZOOPS, TCM, should be identified. It ought to be capable
of doing global searches, optimise scoring, It should have
optimised data structures, parallel processing capability, and
It must be able to distinguish between long and short motifs.
It must be able to locate numerous motifs simultaneously,
without having to discard the first one in order to find the
next, and it must be able to find multiple motifs of different
lengths. It must feature an automatic mechanism that
reduces the amount of user - determined necessary
parameters.

2. Conclusion

The primary objective of the motif finding challenge is to
find unique, highly prevalent, unidentified signals in a
collection of sequences. The most popular algorithms for
discovering motifs attempt to create profiles that maximise
the information content score by generating a generative
probabilistic representation of these overrepresented signals.
Although these profiles provide a very effective way to
represent the signals, the optimal motif corresponds to the
global maximum of a non - convex continuous function,
which poses a significant challenge. The employment of EM
in conjunction with various random starts or any of the other
potent stochastic global techniques that could produce
fruitful initial hypotheses (such as projection algorithms)
aims to enhance the quality of the outcomes. Global
techniques instead suggest that a viable solution is in the
nearby region rather than making first predictions in the
convergence zone of the most advantageous local maximum.
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