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Abstract: In the field of Biomedical Natural Language Processing (BioNLP), particularly in Drug-Drug Interaction (DDI) relation
extraction tasks, the development of high-performance deep learning models has long been constrained by the severe scarcity of
high-quality annotated data. Although Large Language Models (LLMs) have demonstrated exceptional capabilities in text generation and
understanding, directly applying them to data synthesis in specialized domains often faces severe challenges, including frequent “factual
hallucinations,” monotonous logical structures, and privacy leakage. Existing data augmentation methods, such as simple synonym
replacement or two-stage prompting approaches based on the “generate-filter” paradigm, alleviate the data scarcity issue to some extent
but fail to guarantee the logical self-consistency and structural diversity of synthetic data from the source. To overcome this bottleneck,
this paper proposes a novel “Semantic Deconstruction and Re-synthesis” (SDR) data synthesis framework. Unlike traditional black-box
generation modes, SDR adopts a white-box methodology characterized by “Deconstruction-Planning-Reconstruction.” First, a small
number of seed samples are deconstructed into fine-grained semantic fragments to construct an extensible semantic fragment repository.
Subsequently, an LLM acts as a “Knowledge Architect” to logically recombine these fragments. Crucially, we introduce an In-process
Verification mechanism to double-check the abstract factual skeleton before text generation, thereby blocking the propagation of logical
fallacies. Extensive experiments on the DDI Corpus dataset demonstrate that a local model (BioBERT) fine-tuned with SDR-synthesized
data significantly outperforms existing methods in 1-shot, 5-shot, and 10-shot settings. Notably, in the 10-shot scenario, SDR achieves an
F1 score of 60.43%, demonstrating the framework’s superior effectiveness and generalization capabilities in low-resource scenarios.

Keywords: Data Synthesis, Large Language Models, Relation Extraction, Semantic Deconstruction, In-process Verification, Drug-Drug
Interaction.

1. Introduction

With the exponential growth of biomedical literature,
automatically extracting structured knowledge, such as
Drug-Drug Interactions (DDI), from massive unstructured
texts has become a critical task in bioinformatics,
computational pharmacology, and precision medicine.
Relation Extraction (RE), a core component of information
extraction, aims to identify semantic relationships between
entity pairs in text. However, biomedical texts often contain
complex syntactic structures and highly specialized
terminology, necessitating large-scale, expert-annotated
high-quality datasets to train high-precision RE models. The
acquisition of such data is prohibitively expensive and
involves legal and ethical issues regarding patient privacy,
leading to a severe phenomenon of “data hunger”.

To address the issue of data scarcity, Few-Shot Learning (FSL)
has emerged. Its core objective is to enable models to adapt
quickly to new tasks using only a minimal number of samples
(e.g., 1 or 5 samples per class). In recent years, Pre-trained
Language Models (PLMs) such as BioBERT [1] and
ClinicalBERT [2] have achieved immense success in fully
supervised settings. However, in few-shot scenarios, these
models often face severe overfitting and drastic performance
degradation due to the lack of sufficient samples to adjust
their massive parameters.

With the advent of Large Language Models (LLMs) like
GPT-4 and Gemini, utilizing LLMs for data augmentation or
direct reasoning has become a new research hotspot. However,
Tang et al. [3] pointed out that directly using LLMs for
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Zero-shot clinical text mining yields suboptimal results, with
F1 scores far lower than supervised models. More critically,
LLMs suffer from inherent “Hallucination” problems, where
generated text reads fluently but may contain erroneous
biomedical facts (e.g., fabricating non-existent drug side
effect mechanisms) [4]. Furthermore, uploading sensitive
medical data to closed-source LLM APIs raises
non-negligible privacy concerns.

Addressing these challenges, this paper proposes the SDR
(Semantic Deconstruction and Re-synthesis) framework. Our
core insight is that high-quality biomedical synthetic data
should not be the product of free association by LLMs, but
rather a “controlled recombination” based on strict rules and
logic. SDR transforms the data generation process from a
“black box” to a “white box,” with the following specific
contributions:

(1) Proposal of the SDR Framework: We introduce a
standardized data synthesis pipeline comprising five stages,
applying the “Deconstruction-Planning-Reconstruction”
paradigm to the high-risk biomedical RE domain for the first
time. By constructing a “Semantic Fragment Library,” we
achieve a balance between “hard content control” and “soft
style control” during the data generation process.

(2) Implementation of In-process Verification: Unlike
existing “post-generation verification” strategies, SDR
innovatively introduces a validation mechanism during the
“Structured Fact Synthesis” stage. By utilizing LLMs to
check the logical self-consistency of the abstract factual
skeleton before text generation, we block the emergence of



factual hallucinations at the Source rather than the Outcome.

(3) Superior Experimental Performance: We conducted
extensive experiments on the DDI Corpus dataset. The results
indicate that the local BioBERT model trained with
SDR-generated synthetic data comprehensively surpasses
strong baselines utilizing direct LLM inference in 1-shot,
5-shot, and 10-shot settings. SDR not only resolves privacy
and API dependency issues but also provides a generalizable
solution for low-resource information extraction in vertical
domains.

2. Related Work

This section systematically reviews two categories of work
closely related to this study: few-shot relation extraction in the
biomedical domain and data synthesis techniques based on
Large Language Models

2.1 Biomedical Few-Shot Relation Extraction

Traditional biomedical relation extraction relies primarily on
supervised learning. With the development of pre-trained
models, BioBERT by Lee et al. and ClinicalBERT by
Alsentzer et al. significantly improved downstream task
performance through continued pre-training on massive
biomedical corpora. However, these models perform poorly in
few-shot scenarios.

To cope with the few-shot challenge, Moscato et al. [5]
proposed a multi-task learning framework based on MT-DNN,
attempting to utilize knowledge from other datasets to assist
the current task. Although this method improved recall, it
relies heavily on task similarity and is prone to Negative
Transfer. Guo et al. [6] introduced a Prompt Learning-based
method combined with simple data augmentation (e.g.,
back-translation, synonym replacement), which enriched data
diversity to some extent, but traditional augmentation means
cannot generate new samples with significant syntactic
structural differences.

With the rise of LLMs, Agrawal et al. [7] explored the
potential of LLMs as few-shot clinical information extractors,
finding them capable of competing with fully supervised
models on specific tasks. Yeh et al. [8] further proposed a
template-based Prompt design method, converting relation
extraction into a cloze test task. However, recent research by
Nagar et al. [9] cast doubt on these findings, pointing out that
LLMs are not “Zero-shot Reasoners”; they often exhibit a
lack of reasoning ability when dealing with complex
biomedical negations and conditional sentences. Additionally,
Ma et al. [10] found that LLMs are not good “extractors” in
few-shot settings but are better suited as “Rerankers”.

2.2 Data Synthesis and Augmentation Based on LL.Ms

Data augmentation is a classic method for solving data
scarcity. Traditional NLP data augmentation techniques
include back-translation [11] and contextual augmentation
[12]. However, samples generated by these methods are
highly dependent on the original samples in terms of
semantics and structure, lacking Novelty.
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The emergence of LLMs has pushed data augmentation into a
new stage of “Data Synthesis.” A survey by Wang et al. [13]
points out that utilizing LLMs for From-scratch Generation
has become a new trend. In the general domain, Zhou et al.
[14] proposed the PGA-SciRE framework, comparing
“rewriting” and “generation” strategies, finding that while
rewriting preserves semantics, it lacks diversity, whereas
direct generation offers diversity but contains significant
noise.

To address generation quality issues, Gero et al. [15] and Ma
et al. [16] explored “Self-Verification” and “Structure-to-Text”
generation modes, respectively. Ma et al.’s STAR framework
improved extraction performance by generating structure first
and then text, but its structure generation process lacks strict
logical constraints.

Huang et al. [17] achieved a breakthrough in mathematical
reasoning with the KPDDS method, which deconstructs
mathematical problems into “key points” and then recombines
them to generate new problems. The MEPG framework by
Zhao and Liu [18] introduced the concept of “Multi-Expert
Planning” in image generation. These “Deconstruction -
Recombination” ideas provide an important theoretical basis
for this paper. However, biomedical texts require not only
logical coherence but also strict adherence to pharmacological
Factuality. Most current general synthesis methods lack an
“In-process  Verification” mechanism specifically for
domain-specific facts, which is precisely the gap filled by the
SDR framework proposed in this paper.

3. Methodology

The proposed SDR framework consists of five cascaded
stages: (1) Gold-Standard Seed Set Curation; (2) Semantic
Fragment Deconstruction & Expansion; (3) Structured Fact
Synthesis & In-process Verification; (4) Fluent Sentence
Generation; (5) Dual Quality Assurance & Alignment. Given
a minimal seed set Dyq = {(x;,Vi)}<,, our goal is to
generate a large-scale high-quality dataset Ds,,,, such that a
model M trained on Ds,,, maximizes performance on the test
set.

3.1 Stage 1: Gold-Standard Seed Set Curation

High-quality generation begins with high-quality input.
Instead of directly using all training data, we design a Prompt
to guide the LLM to act as a “BioNLP Expert,” selecting the
most representative samples from the raw data. We pay
special attention to sentence diversity, ensuring the seed set
contains various syntactic structures such as active voice,
passive voice, conditional clauses, and negations. These seeds
provide not only knowledge but also serve as “Style Anchors”
for subsequent generation. We use Prompts to guide the LLM
to select the most representative K samples from the original
training set (where K € {1,3,5,10} ). Let Sy, be the
linguistic style features of the seed set; our goal is to mine
distinct features as much as possible. This stage extracts not
only entities and relations but, more importantly, captures the
syntactic features of medical texts to serve as style constraints
for subsequent generation.



3.2 Stage 2: Semantic Fragment Deconstruction &
Expansion

Inspired by KPDDS, we deconstruct sentence x into a set of
semantic fragments. We define the deconstruction function
faee () = {E, T, C}, where:

® E (Entity): Includes not only entity names (e.g.,
Warfarin) but also entity types (e.g., Drug, Protein) and
attributes.

T(Trigger/Relation): Core verbs or phrases carrying the
relationship (e.g., inhibits, metabolizes,
co-administration) and logical connectors (although,
resulting in).

C (Condition): Modifiers limiting the conditions under
which the relationship occurs (e.g., at high doses, in
Vivo).

To increase diversity, we introduce an expansion function
fexp (Fsced ) = Fexpanded - Leveraging the LLM’s knowledge
base, we perform synonym replacement on triggers and
scenario extension on context constraints, thereby
constructing a massive “Biomedical Semantic Fragment
Library”.

3.3 Stage 3: Structured Fact Synthesis & In-process
Verification

This is the core innovation of SDR. Rather than generating
text directly, we first synthesize an ‘“Abstract Factual
Skeleton.” First, we define a synthesis function
foyn(Fexpanded) = Stacte - The model randomly combines
fragments to form new relational logic based on predefined
pharmacological rules.

Secondly, traditional generation methods perform checks
after generating the complete text, at which point errors are
already solidified and difficult to correct. SDR introduces an
in-process verification function to intercept errors before the
skeleton is “instantiated” into a concrete sentence. The
verification function Vjogic (Spae) is defined as follows:

(Sf )= {1' if COnSistency(sfact) is True
act 0, othorwise

)

logic

For example, if a skeleton contains both “Drug A antagonizes
Drug B” and “Drug A potentiates Drug B” without a
transitional logic, then Vj,,i. = 0, and the skeleton is directly
discarded. This step blocks logical hallucinations at the
source.

3.4 Stage 4: Fluent Sentence Generation

For a skeleton s € Sg, that passes verification, we utilize the
LLM to model the conditional probability P (y [ s,Sstyle) to
“translate” it into a natural language sentence y.

To simulate real data distribution, we require the model to
generate multiple syntactic variants (e.g., inverted sentences,
relative clauses) for the same s, ensuring the syntactic
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diversity of Dyy,. For example:

Original (Standard Statement): inhibits the

metabolism of Drug B.

Drug A

Variant A (Passive + Condition): The metabolism of Drug B
is significantly inhibited when co-administered with Drug A.

Variant B (Complex Clause): Patients taking Drug A may
experience elevated levels of Drug B due to metabolic
inhibition.

3.5 Stage S: Dual Quality Assurance & Alignment

Finally, to ensure the label accuracy of the synthetic data, we
implement a strict “Post-hoc Dual Check,” defined as

Vﬁnal (y’ S):

Vina @ 8) = Vﬁdelity . s)AV,

alignment

. R) 2)

Here, the fidelity check Vg, €nsures that the generated text
y does not omit key information from skeleton s and does not
introduce new entities or erroneous relations. The alignment
check Vijignmen: Verifies whether text y can be clearly
classified into the target relation R without ambiguity. Only
when Vg, (7, 5) = 1 is the sample (y, R) added to the final
dataset Dy, .
Through this precise five-stage pipeline, SDR is capable of
generating large-scale, high-fidelity, and logically rigorous
synthetic datasets.

4. Experiments
4.1 Experimental Setup

We selected the SemEval-2013 DDI (Drug-Drug Interaction)
Corpus as our experimental benchmark. This dataset includes
two subsets, MedLine and DrugBank, and defines four
interaction types: Mechanism, Effect, Advice, and Int. To
simulate real-world low-resource scenarios, we adopted the
standard K-shot N-way setting. For each relation type, we
randomly sampled 1, 5, and 10 examples from the training set
as seeds. Experiments were repeated 5 times, and the average
was reported.

We compared SDR with three categories of strong baselines:

Standard Fine-tuning: Clinical-BERT and BioBERT directly
fine-tuned on K-shot real data.

LLM Direct Inference: Simple Prompt using the Google

Gemini-Flash 2.0 model with basic instructions for
zero/few-shot inference.
Complex Prompting Methods: Extract-Verify Prompt,

referencing Gero et al., incorporating a self-verification step
into the extraction process.

Ours: BioBERT + SDR. We first used Gemini-Flash 2.0 to
generate synthetic data via the SDR framework, then used this
data to fine-tune the BioBERT model locally.



4.2 Main Results
Table 1 shows the Micro-F1 scores of different methods on
the DDI dataset.

Table 1: Micro-F1 Scores (%) on DDI Dataset under
Different Shot Settings.

Model / Method 1-shot 5-shot 10-shot
Clinical-BERT 9.55 22.45 31.20
BioBERT 10.62 25.88 35.40
Simple Prompt 39.75 42.60 43.23
Extract-Verify Prompt 43.89 45.12 48.50
BioBERT + SDR (Ours) 50.85 54.75 60.43

As seen in the table, under the 1-shot setting, traditional
fine-tuning methods almost completely fail because a single
sample is insufficient to support parameter updates in deep
neural networks. Even the powerful Extract-Verify method
struggles to break through, limited by the capacity ceiling of
In-context Learning. In contrast, SDR achieved an F1 score of
50.85%. This proves that SDR’s “Semantic Expansion”
mechanism effectively infers general patterns from a single
instance (“drawing inferences about other cases from one
instance”), generating data covering the latent feature space
via fragment recombination, thus enabling the local model to
learn robust decision boundaries.

As the shot count increases from 1 to 10, the performance gain
of Extract-Verify slows down. This is because prompting
methods are constrained by context window length and
struggle to fully utilize information from more samples.
Conversely, the performance of the SDR method shows
sustained growth as the shot count increases. This indicates
that SDR can effectively mine the rich semantic patterns
contained in more seed samples and amplify them into
large-scale training signals.

S. Analysis and Discussion

5.1 Ablation Study

To investigate the contribution of individual components
within the SDR framework, we conducted an ablation study
under the 10-shot setting. The results are shown in Table 2.

Table 2: Ablation Study of SDR Components (10-shot, DDI
Corpus).

Variant Micro-F1 (%)
Full SDR Framework 60.43
w/o Semantic Expansion 55.39
w/o In-process Verification 58.80
w/o Dual QA 59.21

Table 2 highlights that Semantic Expansion is crucial,
removing it resulted in a 5.04% performance drop. This
suggests that merely reordering original sentences (similar to
traditional data augmentation) is insufficient. The
“brainstorming” capability of the LLM—introducing external
knowledge such as synonyms and related mechanism
descriptions—plays a decisive role in covering the long-tail
distribution of the test set. Removing In-process Verification
also caused a performance decline. This strongly supports our
view: Logical errors must be intercepted before generation.
Once fluent but logically flawed text (i.e., hallucination) is
generated, subsequent QA steps are often deceived by its
superficial fluency and fail to eliminate it precisely.
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In-process verification effectively acts as a “logical firewall”.
5.2 Case Study

To visually demonstrate the advantages of SDR, we selected a
specific DDI instance for comparative analysis.

®  Original Seed: “Co-administration of drugs metabolized
by CYP2D6 may require dose adjustment.” (Type:
Advice)

® Test Sample: “Although Warfarin is typically

metabolized by CYP2C9, simultaneous use with
Amiodarone significantly inhibits this pathway, leading
to potential toxicity.” (Type: Mechanism & Advice)

The Extract-Verify method incorrectly predicted Metabolism
or Effect. The reason is that the model focused excessively on
the keyword metabolized and failed to correctly process the
complex transitional and negative logic of “Although...
inhibits...”, leading to a misjudgment of the sentence’s core
intent (mechanism of inhibition).

In Stage 2 of SDR, metabolized by was expanded to inhibits
the pathway of; in Stage 3, a skeleton containing Constraint:
Negation/Concession was constructed. SDR generated the
following synthetic sample for training:

® “Despite being a substrate for CYP3A4, the drug’s
clearance is halted when introduced with strong
inhibitors, suggesting a mechanism based on enzymatic
competition.”

Consequently, BioBERT correctly predicted the relationship
as Mechanism. Since the local model encountered a large
volume of complex sentence structures generated by SDR
containing logical connectors like Although/Despite during
training, it learned to capture the deep semantic dependencies
of sentences rather than relying solely on keyword matching.

5.3 Error Analysis

Although SDR performs excellently, the improvement in
certain categories (such as Int, general interactions) is
relatively small. The main reason is that the definition of such
relationships is rather vague. SDR’s “structured” generation
tends to produce sentences with clear definitions and logic
(such as Mechanism), and it struggles to simulate the vague,
atypical expressions found in the Int class. Future work could
explore introducing noise injection mechanisms to simulate
non-standard expressions in real data.

6. Conclusion

Addressing the challenges of data scarcity and privacy in
biomedical relation extraction tasks, this paper proposes the
SDR (Semantic Deconstruction and Re-synthesis) data
synthesis framework based on Large Language Models. By
formalizing the data generation process into a white-box flow
of “Deconstruction-Planning-Reconstruction” and
introducing a critical “In-process Verification” mechanism,
SDR successfully overcomes the issues of factual
hallucination and logical monotony inherent in traditional



LLM generation. Experiments demonstrate that SDR can
generate high-quality, diverse synthetic data in few-shot
scenarios, significantly improving downstream model
performance and exhibiting excellent scalability.

SDR not only provides a low-cost data production paradigm
for BioNLP but its concept of “In-process Verification” also
offers important insights for LLM applications in other
vertical domains requiring high factuality (such as law and
finance). Future work will focus on extending the SDR
framework to more complex tasks such as entity recognition
and event extraction.
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