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Abstract: In the field of Biomedical Natural Language Processing (BioNLP), particularly in Drug-Drug Interaction (DDI) relation 

extraction tasks, the development of high-performance deep learning models has long been constrained by the severe scarcity of 

high-quality annotated data. Although Large Language Models (LLMs) have demonstrated exceptional capabilities in text generation and 

understanding, directly applying them to data synthesis in specialized domains often faces severe challenges, including frequent “factual 

hallucinations,” monotonous logical structures, and privacy leakage. Existing data augmentation methods, such as simple synonym 

replacement or two-stage prompting approaches based on the “generate-filter” paradigm, alleviate the data scarcity issue to some extent 

but fail to guarantee the logical self-consistency and structural diversity of synthetic data from the source. To overcome this bottleneck, 

this paper proposes a novel “Semantic Deconstruction and Re-synthesis” (SDR) data synthesis framework. Unlike traditional black-box 

generation modes, SDR adopts a white-box methodology characterized by “Deconstruction-Planning-Reconstruction.” First, a small 

number of seed samples are deconstructed into fine-grained semantic fragments to construct an extensible semantic fragment repository. 

Subsequently, an LLM acts as a “Knowledge Architect” to logically recombine these fragments. Crucially, we introduce an In-process 

Verification mechanism to double-check the abstract factual skeleton before text generation, thereby blocking the propagation of logical 

fallacies. Extensive experiments on the DDI Corpus dataset demonstrate that a local model (BioBERT) fine-tuned with SDR-synthesized 

data significantly outperforms existing methods in 1-shot, 5-shot, and 10-shot settings. Notably, in the 10-shot scenario, SDR achieves an 

F1 score of 60.43%, demonstrating the framework’s superior effectiveness and generalization capabilities in low-resource scenarios. 

 

Keywords: Data Synthesis, Large Language Models, Relation Extraction, Semantic Deconstruction, In-process Verification, Drug-Drug 

Interaction.  

 

1. Introduction 
 

With the exponential growth of biomedical literature, 

automatically extracting structured knowledge, such as 

Drug-Drug Interactions (DDI), from massive unstructured 

texts has become a critical task in bioinformatics, 

computational pharmacology, and precision medicine. 

Relation Extraction (RE), a core component of information 

extraction, aims to identify semantic relationships between 

entity pairs in text. However, biomedical texts often contain 

complex syntactic structures and highly specialized 

terminology, necessitating large-scale, expert-annotated 

high-quality datasets to train high-precision RE models. The 

acquisition of such data is prohibitively expensive and 

involves legal and ethical issues regarding patient privacy, 

leading to a severe phenomenon of “data hunger”. 

 

To address the issue of data scarcity, Few-Shot Learning (FSL) 

has emerged. Its core objective is to enable models to adapt 

quickly to new tasks using only a minimal number of samples 

(e.g., 1 or 5 samples per class). In recent years, Pre-trained 

Language Models (PLMs) such as BioBERT [1] and 

ClinicalBERT [2] have achieved immense success in fully 

supervised settings. However, in few-shot scenarios, these 

models often face severe overfitting and drastic performance 

degradation due to the lack of sufficient samples to adjust 

their massive parameters. 

 

With the advent of Large Language Models (LLMs) like 

GPT-4 and Gemini, utilizing LLMs for data augmentation or 

direct reasoning has become a new research hotspot. However, 

Tang et al. [3] pointed out that directly using LLMs for 

Zero-shot clinical text mining yields suboptimal results, with 

F1 scores far lower than supervised models. More critically, 

LLMs suffer from inherent “Hallucination” problems, where 

generated text reads fluently but may contain erroneous 

biomedical facts (e.g., fabricating non-existent drug side 

effect mechanisms) [4]. Furthermore, uploading sensitive 

medical data to closed-source LLM APIs raises 

non-negligible privacy concerns. 

 

Addressing these challenges, this paper proposes the SDR 

(Semantic Deconstruction and Re-synthesis) framework. Our 

core insight is that high-quality biomedical synthetic data 

should not be the product of free association by LLMs, but 

rather a “controlled recombination” based on strict rules and 

logic. SDR transforms the data generation process from a 

“black box” to a “white box,” with the following specific 

contributions: 

 

(1) Proposal of the SDR Framework: We introduce a 

standardized data synthesis pipeline comprising five stages, 

applying the “Deconstruction-Planning-Reconstruction” 

paradigm to the high-risk biomedical RE domain for the first 

time. By constructing a “Semantic Fragment Library,” we 

achieve a balance between “hard content control” and “soft 

style control” during the data generation process. 

 

(2) Implementation of In-process Verification: Unlike 

existing “post-generation verification” strategies, SDR 

innovatively introduces a validation mechanism during the 

“Structured Fact Synthesis” stage. By utilizing LLMs to 

check the logical self-consistency of the abstract factual 

skeleton before text generation, we block the emergence of 

                                  Journal of Research in Science and Engineering (JRSE)
                                   ISSN: 1656-1996 Volume-7, Issue-12, December 2025

20

DOI: 10.53469/jrse.2025.07(12).04



  
  

  

  
 

  

factual hallucinations at the Source rather than the Outcome. 

 

(3) Superior Experimental Performance: We conducted 

extensive experiments on the DDI Corpus dataset. The results 

indicate that the local BioBERT model trained with 

SDR-generated synthetic data comprehensively surpasses 

strong baselines utilizing direct LLM inference in 1-shot, 

5-shot, and 10-shot settings. SDR not only resolves privacy 

and API dependency issues but also provides a generalizable 

solution for low-resource information extraction in vertical 

domains.  

 

2. Related Work 
 

This section systematically reviews two categories of work 

closely related to this study: few-shot relation extraction in the 

biomedical domain and data synthesis techniques based on 

Large Language Models 

 

2.1 Biomedical Few-Shot Relation Extraction 

 

Traditional biomedical relation extraction relies primarily on 

supervised learning. With the development of pre-trained 

models, BioBERT by Lee et al. and ClinicalBERT by 

Alsentzer et al. significantly improved downstream task 

performance through continued pre-training on massive 

biomedical corpora. However, these models perform poorly in 

few-shot scenarios. 

 

To cope with the few-shot challenge, Moscato et al. [5] 

proposed a multi-task learning framework based on MT-DNN, 

attempting to utilize knowledge from other datasets to assist 

the current task. Although this method improved recall, it 

relies heavily on task similarity and is prone to Negative 

Transfer. Guo et al. [6] introduced a Prompt Learning-based 

method combined with simple data augmentation (e.g., 

back-translation, synonym replacement), which enriched data 

diversity to some extent, but traditional augmentation means 

cannot generate new samples with significant syntactic 

structural differences. 

 

With the rise of LLMs, Agrawal et al. [7] explored the 

potential of LLMs as few-shot clinical information extractors, 

finding them capable of competing with fully supervised 

models on specific tasks. Yeh et al. [8] further proposed a 

template-based Prompt design method, converting relation 

extraction into a cloze test task. However, recent research by 

Nagar et al. [9] cast doubt on these findings, pointing out that 

LLMs are not “Zero-shot Reasoners”; they often exhibit a 

lack of reasoning ability when dealing with complex 

biomedical negations and conditional sentences. Additionally, 

Ma et al. [10] found that LLMs are not good “extractors” in 

few-shot settings but are better suited as “Rerankers”.  

 

2.2 Data Synthesis and Augmentation Based on LLMs 

 

Data augmentation is a classic method for solving data 

scarcity. Traditional NLP data augmentation techniques 

include back-translation [11] and contextual augmentation 

[12]. However, samples generated by these methods are 

highly dependent on the original samples in terms of 

semantics and structure, lacking Novelty. 

 

The emergence of LLMs has pushed data augmentation into a 

new stage of “Data Synthesis.” A survey by Wang et al. [13] 

points out that utilizing LLMs for From-scratch Generation 

has become a new trend. In the general domain, Zhou et al. 

[14] proposed the PGA-SciRE framework, comparing 

“rewriting” and “generation” strategies, finding that while 

rewriting preserves semantics, it lacks diversity, whereas 

direct generation offers diversity but contains significant 

noise. 

 

To address generation quality issues, Gero et al. [15] and Ma 

et al. [16] explored “Self-Verification” and “Structure-to-Text” 

generation modes, respectively. Ma et al.’s STAR framework 

improved extraction performance by generating structure first 

and then text, but its structure generation process lacks strict 

logical constraints. 

 

Huang et al. [17] achieved a breakthrough in mathematical 

reasoning with the KPDDS method, which deconstructs 

mathematical problems into “key points” and then recombines 

them to generate new problems. The MEPG framework by 

Zhao and Liu [18] introduced the concept of “Multi-Expert 

Planning” in image generation. These “Deconstruction - 

Recombination” ideas provide an important theoretical basis 

for this paper. However, biomedical texts require not only 

logical coherence but also strict adherence to pharmacological 

Factuality. Most current general synthesis methods lack an 

“In-process Verification” mechanism specifically for 

domain-specific facts, which is precisely the gap filled by the 

SDR framework proposed in this paper. 

 

3. Methodology 
 

The proposed SDR framework consists of five cascaded 

stages: (1) Gold-Standard Seed Set Curation; (2) Semantic 

Fragment Deconstruction & Expansion; (3) Structured Fact 

Synthesis & In-process Verification; (4) Fluent Sentence 

Generation; (5) Dual Quality Assurance & Alignment. Given 

a minimal seed set 𝒟seed = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝐾 , our goal is to 

generate a large-scale high-quality dataset 𝒟𝑠𝑦𝑛, such that a 

model 𝑀 trained on 𝒟𝑠𝑦𝑛 maximizes performance on the test 

set. 

 

3.1 Stage 1: Gold-Standard Seed Set Curation 

 

High-quality generation begins with high-quality input. 

Instead of directly using all training data, we design a Prompt 

to guide the LLM to act as a “BioNLP Expert,” selecting the 

most representative samples from the raw data. We pay 

special attention to sentence diversity, ensuring the seed set 

contains various syntactic structures such as active voice, 

passive voice, conditional clauses, and negations. These seeds 

provide not only knowledge but also serve as “Style Anchors” 

for subsequent generation. We use Prompts to guide the LLM 

to select the most representative 𝐾 samples from the original 

training set (where 𝐾 ∈ {1,3,5,10} ). Let 𝑆style  be the 

linguistic style features of the seed set; our goal is to mine 

distinct features as much as possible. This stage extracts not 

only entities and relations but, more importantly, captures the 

syntactic features of medical texts to serve as style constraints 

for subsequent generation. 
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3.2 Stage 2: Semantic Fragment Deconstruction & 

Expansion 

 

Inspired by KPDDS, we deconstruct sentence 𝑥 into a set of 

semantic fragments. We define the deconstruction function 

𝑓dec (𝑥) → {𝐸, 𝑇, 𝐶}, where: 

 

⚫ E (Entity): Includes not only entity names (e.g., 

Warfarin) but also entity types (e.g., Drug, Protein) and 

attributes. 

 

⚫ T(Trigger/Relation): Core verbs or phrases carrying the 

relationship (e.g., inhibits, metabolizes, 

co-administration) and logical connectors (although, 

resulting in). 

 

⚫ C (Condition): Modifiers limiting the conditions under 

which the relationship occurs (e.g., at high doses, in 

vivo). 

 

To increase diversity, we introduce an expansion function 

𝑓exp (𝐹seed ) → 𝐹expanded . Leveraging the LLM’s knowledge 

base, we perform synonym replacement on triggers and 

scenario extension on context constraints, thereby 

constructing a massive “Biomedical Semantic Fragment 

Library”. 

 

3.3 Stage 3: Structured Fact Synthesis & In-process 

Verification 

 

This is the core innovation of SDR. Rather than generating 

text directly, we first synthesize an “Abstract Factual 

Skeleton.” First, we define a synthesis function 

𝑓syn(𝐹expanded) → 𝒮fact . The model randomly combines 

fragments to form new relational logic based on predefined 

pharmacological rules. 

 

Secondly, traditional generation methods perform checks 

after generating the complete text, at which point errors are 

already solidified and difficult to correct. SDR introduces an 

in-process verification function to intercept errors before the 

skeleton is “instantiated” into a concrete sentence. The 

verification function 𝑉logic(𝒮fact) is defined as follows: 

 𝑉
logic

(𝒮
fact

) = {
1, if Consistency(𝒮

fact
) 𝑖𝑠 True

0, otherwise
 (1) 

For example, if a skeleton contains both “Drug A antagonizes 

Drug B” and “Drug A potentiates Drug B” without a 

transitional logic, then 𝑉logic = 0, and the skeleton is directly 

discarded. This step blocks logical hallucinations at the 

source. 

 

3.4 Stage 4: Fluent Sentence Generation 

 

For a skeleton 𝑠 ∈ 𝒮fact  that passes verification, we utilize the 

LLM to model the conditional probability 𝑃(𝑦 ∣ 𝑠, 𝑆style ) to 

“translate” it into a natural language sentence 𝑦. 

 

To simulate real data distribution, we require the model to 

generate multiple syntactic variants (e.g., inverted sentences, 

relative clauses) for the same 𝑠 , ensuring the syntactic  

 

diversity of 𝒟syn. For example: 

 

Original (Standard Statement): Drug A inhibits the 

metabolism of Drug B. 

 

Variant A (Passive + Condition): The metabolism of Drug B 

is significantly inhibited when co-administered with Drug A. 

 

Variant B (Complex Clause): Patients taking Drug A may 

experience elevated levels of Drug B due to metabolic 

inhibition. 

 

3.5 Stage 5: Dual Quality Assurance & Alignment 

 

Finally, to ensure the label accuracy of the synthetic data, we 

implement a strict “Post-hoc Dual Check,” defined as 

𝑉final (𝑦, 𝑠): 

 𝑉
final 

(𝑦, 𝑠) = 𝑉
fidelity 

(𝑦, 𝑠) ∧ 𝑉
alignment 

(𝑦, 𝑅) (2) 

Here, the fidelity check 𝑉fidelity  ensures that the generated text 

𝑦 does not omit key information from skeleton 𝑠 and does not 

introduce new entities or erroneous relations. The alignment 

check 𝑉alignment  verifies whether text 𝑦  can be clearly 

classified into the target relation 𝑅 without ambiguity. Only 

when 𝑉final (𝑦, 𝑠) = 1 is the sample (𝑦, 𝑅) added to the final 

dataset 𝒟syn . 

 

Through this precise five-stage pipeline, SDR is capable of 

generating large-scale, high-fidelity, and logically rigorous 

synthetic datasets. 

 

4. Experiments 
 

4.1 Experimental Setup 

 

We selected the SemEval-2013 DDI (Drug-Drug Interaction) 

Corpus as our experimental benchmark. This dataset includes 

two subsets, MedLine and DrugBank, and defines four 

interaction types: Mechanism, Effect, Advice, and Int. To 

simulate real-world low-resource scenarios, we adopted the 

standard K-shot N-way setting. For each relation type, we 

randomly sampled 1, 5, and 10 examples from the training set 

as seeds. Experiments were repeated 5 times, and the average 

was reported. 

 

We compared SDR with three categories of strong baselines: 

 

Standard Fine-tuning: Clinical-BERT and BioBERT directly 

fine-tuned on K-shot real data. 

 

LLM Direct Inference: Simple Prompt using the Google 

Gemini-Flash 2.0 model with basic instructions for 

zero/few-shot inference. 

 

Complex Prompting Methods: Extract-Verify Prompt, 

referencing Gero et al., incorporating a self-verification step 

into the extraction process. 

 

Ours: BioBERT + SDR. We first used Gemini-Flash 2.0 to 

generate synthetic data via the SDR framework, then used this 

data to fine-tune the BioBERT model locally. 
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4.2 Main Results 

 

Table 1 shows the Micro-F1 scores of different methods on 

the DDI dataset. 

Table 1: Micro-F1 Scores (%) on DDI Dataset under 

Different Shot Settings. 
Model / Method 1-shot 5-shot 10-shot 

Clinical-BERT 9.55 22.45 31.20 

BioBERT 10.62 25.88 35.40 
Simple Prompt 39.75 42.60 43.23 

Extract-Verify Prompt 43.89 45.12 48.50 

BioBERT + SDR (Ours) 50.85 54.75 60.43 

 

As seen in the table, under the 1-shot setting, traditional 

fine-tuning methods almost completely fail because a single 

sample is insufficient to support parameter updates in deep 

neural networks. Even the powerful Extract-Verify method 

struggles to break through, limited by the capacity ceiling of 

In-context Learning. In contrast, SDR achieved an F1 score of 

50.85%. This proves that SDR’s “Semantic Expansion” 

mechanism effectively infers general patterns from a single 

instance (“drawing inferences about other cases from one 

instance”), generating data covering the latent feature space 

via fragment recombination, thus enabling the local model to 

learn robust decision boundaries. 

 

As the shot count increases from 1 to 10, the performance gain 

of Extract-Verify slows down. This is because prompting 

methods are constrained by context window length and 

struggle to fully utilize information from more samples. 

Conversely, the performance of the SDR method shows 

sustained growth as the shot count increases. This indicates 

that SDR can effectively mine the rich semantic patterns 

contained in more seed samples and amplify them into 

large-scale training signals. 

 

5. Analysis and Discussion 
 

5.1 Ablation Study 

 

To investigate the contribution of individual components 

within the SDR framework, we conducted an ablation study 

under the 10-shot setting. The results are shown in Table 2. 

Table 2: Ablation Study of SDR Components (10-shot, DDI 

Corpus). 
Variant Micro-F1 (%) 

Full SDR Framework 60.43 

w/o Semantic Expansion 55.39 

w/o In-process Verification 58.80 

w/o Dual QA 59.21 

 

Table 2 highlights that Semantic Expansion is crucial; 

removing it resulted in a 5.04% performance drop. This 

suggests that merely reordering original sentences (similar to 

traditional data augmentation) is insufficient. The 

“brainstorming” capability of the LLM—introducing external 

knowledge such as synonyms and related mechanism 

descriptions—plays a decisive role in covering the long-tail 

distribution of the test set. Removing In-process Verification 

also caused a performance decline. This strongly supports our 

view: Logical errors must be intercepted before generation. 

Once fluent but logically flawed text (i.e., hallucination) is 

generated, subsequent QA steps are often deceived by its 

superficial fluency and fail to eliminate it precisely. 

In-process verification effectively acts as a “logical firewall”. 

 

5.2 Case Study 

 

To visually demonstrate the advantages of SDR, we selected a 

specific DDI instance for comparative analysis. 

 

⚫ Original Seed: “Co-administration of drugs metabolized 

by CYP2D6 may require dose adjustment.” (Type: 

Advice)  

 

⚫ Test Sample: “Although Warfarin is typically 

metabolized by CYP2C9, simultaneous use with 

Amiodarone significantly inhibits this pathway, leading 

to potential toxicity.” (Type: Mechanism & Advice)  

 

The Extract-Verify method incorrectly predicted Metabolism 

or Effect. The reason is that the model focused excessively on 

the keyword metabolized and failed to correctly process the 

complex transitional and negative logic of “Although... 

inhibits...”, leading to a misjudgment of the sentence’s core 

intent (mechanism of inhibition). 

 

In Stage 2 of SDR, metabolized by was expanded to inhibits 

the pathway of; in Stage 3, a skeleton containing Constraint: 

Negation/Concession was constructed. SDR generated the 

following synthetic sample for training: 

 

⚫ “Despite being a substrate for CYP3A4, the drug’s 

clearance is halted when introduced with strong 

inhibitors, suggesting a mechanism based on enzymatic 

competition.”  

 

Consequently, BioBERT correctly predicted the relationship 

as Mechanism. Since the local model encountered a large 

volume of complex sentence structures generated by SDR 

containing logical connectors like Although/Despite during 

training, it learned to capture the deep semantic dependencies 

of sentences rather than relying solely on keyword matching. 

 

5.3 Error Analysis 

 

Although SDR performs excellently, the improvement in 

certain categories (such as Int, general interactions) is 

relatively small. The main reason is that the definition of such 

relationships is rather vague. SDR’s “structured” generation 

tends to produce sentences with clear definitions and logic 

(such as Mechanism), and it struggles to simulate the vague, 

atypical expressions found in the Int class. Future work could 

explore introducing noise injection mechanisms to simulate 

non-standard expressions in real data. 

 

6. Conclusion 
 

Addressing the challenges of data scarcity and privacy in 

biomedical relation extraction tasks, this paper proposes the 

SDR (Semantic Deconstruction and Re-synthesis) data 

synthesis framework based on Large Language Models. By 

formalizing the data generation process into a white-box flow 

of “Deconstruction-Planning-Reconstruction” and 

introducing a critical “In-process Verification” mechanism, 

SDR successfully overcomes the issues of factual 

hallucination and logical monotony inherent in traditional 
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LLM generation. Experiments demonstrate that SDR can 

generate high-quality, diverse synthetic data in few-shot 

scenarios, significantly improving downstream model 

performance and exhibiting excellent scalability. 

SDR not only provides a low-cost data production paradigm 

for BioNLP but its concept of “In-process Verification” also 

offers important insights for LLM applications in other 

vertical domains requiring high factuality (such as law and 

finance). Future work will focus on extending the SDR 

framework to more complex tasks such as entity recognition 

and event extraction. 
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