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Abstract: To address the trade-off between detection accuracy and computational overhead in network intrusion detection systems 

within resource-constrained environments, this paper proposes a lightweight model based on adaptive knowledge distillation. Traditional 

knowledge distillation methods often exhibit low knowledge transfer efficiency and insufficient learning of hard samples when processing 

network traffic data. The proposed model achieves collaborative optimization of lightweight architecture and detection performance 

through two core mechanisms. First, a dynamic weight allocation strategy based on the Euclidean distance between teacher and student 

model outputs is designed to adaptively adjust the weights of soft targets and hard labels in the loss function, thereby enhancing the 

stability of knowledge transfer. Second, Focal Loss is introduced to strengthen the model's ability to learn hard samples, improving the 

recognition of complex attack patterns and rare threats. Experimental results on the NSL-KDD dataset demonstrate that the proposed 

method, while compressing the model parameters by nearly two orders of magnitude, still outperforms traditional knowledge distillation 

methods in detection performance, providing a feasible technical pathway for efficient intrusion detection in resource-constrained 

environments. 
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1. Introduction 
 

Driven by the deepening of digital transformation and the 

widespread adoption of 5G technology, cyberspace security is 

facing unprecedented challenges. Attack methods are 

becoming increasingly complex and diverse, evolving from 

traditional port scanning and denial-of-service attacks to 

advanced persistent threats and zero-day exploits. In this 

context, network intrusion detection systems (NIDS), as a key 

component of the cybersecurity defense architecture, have 

grown in importance [1,2]. 

 

Deep learning based network intrusion detection approaches 

have received increasing attention from both academia and 

industry in recent years owing to their powerful feature 

learning capability and promising generalization performance. 

Compared with conventional rule based or classical machine 

learning methods, deep models can automatically extract high 

level representations from raw network traffic, enabling 

effective identification of previously unseen attack patterns 

and sophisticated threat behaviors [3-5]. Representative 

architectures include convolutional neural networks, recurrent 

neural networks, long short term memory networks, and 

autoencoders, all of which have demonstrated superior 

detection accuracy on several public datasets. 

 

Nevertheless, high-performance deep-learning models are 

inherently coupled with substantial computational and 

memory costs. A seven-hidden-layer multilayer perceptron, 

for instance, typically entails more than 800 k trainable 

parameters and millions of floating-point operations during a 

single forward pass. Such complexity precludes real-time 

deployment on resource-constrained edge devices, IoT 

endpoints, or high-throughput network appliances. Moreover, 

operational environments impose stringent latency and energy 

budgets, further compounding the deployment challenge. 

 

Knowledge Distillation supplies a promising solution to the 

aforementioned problem. First presented by Hinton et al. in 

2015, the method compresses a large teacher network into a 

compact student by transferring the dark knowledge 

embedded in the teacher’s output distribution, namely the 

inter class similarity relationships, thereby maintaining 

accuracy while reducing size. Conventional KD introduces a 

temperature parameter to soften the teacher’s posterior, 

generating soft targets that convey rich similarity information 

and guide the training of the smaller model. 

 

However, directly applying traditional knowledge distillation 

to network intrusion detection systems still faces several key 

challenges, mainly due to the mismatch between the 

characteristics of network traffic data and the assumptions of 

conventional KD mechanisms. Specifically, network traffic 

data are high dimensional, non stationary, and exhibit severe 

class imbalance, leading to a mixture of easy and hard 

samples, with hard samples especially those from rare attack 

categories being particularly difficult to learn. Second, 

traditional KD methods typically rely on fixed loss weight 

combinations, which fail to adapt to the evolving state of the 

student model during training, thereby affecting the stability 

of knowledge transfer and the final performance. Although 

some studies have attempted to introduce adaptive weighting 

or sample reweighting strategies to improve KD, these 

methods are mostly designed for image data and depend on 

strong independent and identically distributed assumptions 

and clear class semantic structures, making them unsuitable 

for NIDS environments characterized by temporal 

correlations, concept drift, and extreme class imbalance. 

Therefore, designing a distillation framework that can adapt 

to the unique properties of network traffic data and 

dynamically optimize the knowledge transfer process is of 

great significance for achieving high performance and 

lightweight NIDS. To address these challenges, this paper 

proposes a lightweight intrusion detection model based on 

adaptive knowledge distillation, aiming to enhance the 

efficiency of knowledge transfer and the robustness of the 

model. Specifically, we design a dynamic weight adjustment 

mechanism based on the Euclidean distance between the 
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outputs of the teacher and student models, which adaptively 

balances the loss contributions of soft targets and hard label 

supervision in response to changes in the model state during 

training. Additionally, Focal Loss is introduced to increase the 

focus on hard samples, thereby improving the discrimination 

of complex attack patterns. 

 

2. Related Work 
 

Research on network intrusion detection has evolved from 

rule-based to data-driven paradigms. Early systems relied on 

handcrafted rule sets for pattern matching; although effective 

against known attacks, they generalize poorly to novel or 

mutated threats. 

 

Advances in machine learning have shifted the focus to 

statistical learning and feature engineering, making them the 

mainstream paradigm [6,7]. Conventional algorithms such as 

support-vector machines, decision trees, and random forests 

have been extensively applied to intrusion detection. These 

techniques extract traffic statistics, protocol fields, and 

behavioral descriptors to train classifiers that separate 

legitimate from malicious traffic. Nevertheless, their 

performance is tightly coupled to the quality of hand-crafted 

features, and their capacity to model high-dimensional 

nonlinear data remains limited. 

 

In recent years, deep learning has achieved remarkable 

progress in network intrusion detection. Convolutional neural 

networks have been employed to extract spatially local 

patterns from traffic, demonstrating particular strength when 

processing packet payloads [8]. Recurrent neural networks 

and their variants such as long short term memory and gated 

recurrent units effectively capture temporal dependencies, 

making them well suited for detecting time sensitive attacks 

including distributed denial of service [9]. Autoencoders 

perform anomaly detection through reconstruction error and 

offer unique advantages in unsupervised and semi supervised 

learning scenarios [10]. Although deep-learning models 

deliver superior detection accuracy, their computational 

complexity and memory footprint severely restrict real-world 

deployment. This limitation is especially acute in 

resource-constrained scenarios such as Internet-of-Things and 

edge-computing environments, where model lightweighting 

has become a critical imperative. 

 

Knowledge distillation has attracted broad attention as an 

effective model compression technique. Conventional KD 

originates from the pioneering work of Hinton et al. [11], 

where the Kullback Leibler divergence between the teacher 

and student output distributions is minimized to transfer inter 

class similarity information, the so called dark knowledge 

embedded in soft labels, to the student and thus improve 

generalization. Subsequent studies have extended the KD 

framework along multiple directions and have applied it to 

network intrusion detection. For example, a cooperative 

framework combining federated learning with distillation was 

introduced to address data heterogeneity [12], while self 

knowledge distillation was employed to design the 

lightweight TBCLNN model [13], and a distilled BERT 

framework tailored for efficient IoT intrusion detection was 

proposed in [14]. All of these approaches maintain or even 

improve detection accuracy while achieving significant model 

compression. Nevertheless, most of these enhancements still 

rely on the traditional KD transfer paradigm and do not fully 

account for the high dimensionality, severe class imbalance, 

and dynamic evolution that characterize network traffic data. 

Consequently, when facing rare attack categories or highly 

variable traffic patterns, both the efficiency and the robustness 

of knowledge transfer are often limited. Therefore, 

developing adaptive knowledge distillation methods 

specifically designed for NIDS scenarios has become 

essential for advancing detection performance in this domain. 

 

3. Model Analysis 
 

To overcome the accuracy bottleneck of lightweight network 

intrusion detection systems, this paper proposes a lightweight 

intrusion detection model based on adaptive knowledge 

distillation. The core innovation is a cooperative optimization 

mechanism driven by dynamic feedback throughout the 

learning process, which introduces adaptive strategies to 

refine and intelligently regulate knowledge transfer. 

Specifically, the model continuously measures the 

discrepancy between teacher and student predictions and 

dynamically adjusts the relative weight of soft targets and 

hard labels in the loss function. Simultaneously, it integrates 

Focal Loss to emphasize difficult samples, enabling the 

student to learn discriminative knowledge from the 

high-performance teacher more efficiently and robustly, with 

particular gains in detecting complex and stealthy threats. The 

complete pipeline consists of three stages: data preprocessing, 

teacher model training, and student model distillation. The 

architecture of the knowledge distillation model is illustrated 

in Figure 1. 
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Figure 1: Knowledge distillation model structure 
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3.1 Data Preprocessing 

 

To improve training efficiency and generalization, raw 

network traffic is systematically pre-processed. Categorical 

fields are converted to numeric form via one-hot encoding, 

while continuous variables are scaled to the interval [0, 1] 

using Min-Max normalization. The resulting uniform feature 

set is then used for both teacher and student training and 

evaluation. 

 

3.2 Teacher and Student Model Design 

 

The adaptive knowledge distillation intrusion detection 

framework strictly adheres to the teacher student paradigm; its 

efficacy hinges on a high quality knowledge source, namely 

the teacher, and an efficient recipient, the student. 

 

The efficacy of distillation is governed by the quality of the 

teacher’s knowledge. A teacher that generalizes well produces 

soft labels rich in inter class relations and uncertainty. We 

adopt a deep multilayer perceptron with seven hidden layers 

as the teacher. The network is trained end to end on the pre 

processed training set using cross entropy loss, Adam 

optimizer, and an initial learning rate of 1e-3 until full 

convergence. After training, all parameters are frozen, and a 

forward pass is performed on the entire training set to collect 

soft labels. These labels carry class probabilities together with 

the teacher’s estimate of pairwise similarity and uncertainty, 

forming the primary supervisory signal for the student. 

 

The student model is designed for extreme lightweight 

deployment to meet the stringent latency and power 

constraints of edge devices. We employ a compact two layer 

multilayer perceptron whose parameter count is orders of 

magnitude smaller than that of the teacher, enabling highly 

efficient inference. The objective is to approach or exceed the 

detection performance of conventional lightweight models 

while maintaining minimal footprint, thereby achieving high 

capability with a small architecture. 

 

3.3 Dynamic Weighting via Teacher-Student Output 

Discrepancy 

 

Traditional knowledge distillation employs a constant 

coefficient to balance soft label loss and hard label loss. This 

static allocation cannot accommodate the evolving state of 

training. To address this limitation we design a dynamic 

weight adjustment mechanism that is driven by the prediction 

similarity between teacher and student. 

 

The core idea is that the relative weight of soft versus hard 

supervision should evolve with the agreement between the 

two models. When the student closely matches the teacher, it 

has already absorbed the dark knowledge in the soft labels, so 

the loss is shifted toward the hard target to consolidate 

learning of the true label and prevent bias inherited from the 

teacher. Conversely, when disagreement is large, soft label 

weight is increased so that the student can continue to extract 

knowledge from the teacher before relying on the hard signal. 

 

Specifically, we employ the Euclidean distance 𝐷𝑠𝑡  between 

the teacher and student output probability distributions as a 

measure of their prediction consistency. 

 𝐷𝑠𝑡 =∥ 𝑃𝑡 − 𝑃𝑠 ∥2 (1) 

Here 𝑃𝑡 and 𝑃𝑠 denote the output probability distributions of 

the teacher and the student respectively. Building on this 

distance we define a dynamic weight function 𝛼𝑡 that replaces 

the previously fixed coefficient 𝛼: 

 𝛼𝑡 = 1 − 𝑒𝑥𝑝( − 𝛽 ⋅ 𝐷𝑠𝑡) (2) 

In the equation, the parameter 𝛽 governs the decay rate of the 

weight with respect to increasing distance; during training, an 

adaptive strategy 𝛽 = 1/median(𝐷st)  is employed to 

dynamically rescale the distance magnitude, thereby ensuring 

that 𝛼𝑡 varies smoothly within a reasonable range. 

 

This function is designed with the following mathematical 

properties: 

 

Boundedness: since the exponential function maps to (0,1], 
the weight is strictly confined to the desired interval [0,1). 
 

Monotonicity: the weight 𝛼𝑡 increases monotonically as the 

teacher-student discrepancy 𝐷𝑠𝑡  increases. This ensures that 

when the discrepancy is large the soft-label loss 𝐿𝑠𝑜𝑓𝑡  

receives higher weight to guide the student to imitate the 

teacher, whereas when the student performs well and closely 

matches the teacher the soft weight is reduced and the relative 

contribution of the hard-label loss 𝐿ℎ𝑎𝑟𝑑 is increased. 

 

The final adaptively weighted overall loss function is 

formulated as: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑡 ⋅ 𝐿𝑠𝑜𝑓𝑡 + (1 − 𝛼𝑡) ⋅ 𝐿ℎ𝑎𝑟𝑑 (3) 

3.4 Hard-Label Focal Loss Optimization 

 

In deep learning classification tasks network traffic data 

exhibit severe class imbalance and contain numerous 

ambiguous boundary instances as well as rare attack patterns. 

The standard cross entropy loss assigns equal weight to every 

sample so optimization is dominated by easy cases and the 

model fails to learn discriminative features for hard examples. 

To increase focus on difficult samples we adopt Focal Loss as 

the hard label loss term in place of traditional cross entropy. 

Focal Loss reweights each sample dynamically through its 

modulation mechanism thereby intensifying supervision for 

low confidence instances. The loss is expressed as follows: 

 
𝐿

focal
= 𝐿

hard
= − ∑

𝑖=1
𝐶

𝛼𝑖(1 − 𝑝𝑖)
𝛾𝑦𝑖 𝑙𝑜𝑔( 𝑝𝑖)

 (5) 

Here 𝐶 denotes the total number of classes, 𝑦𝑖  is the ground 

truth label in one hot form, and 𝑝𝑖  represents the predicted 

probability for class 𝑖 . The parameter 𝛾  acts as a focusing 

factor that controls the emphasis placed on low confidence 

samples: a larger 𝛾 increases the weight assigned to instances 

whose predicted probabilities are small, i.e., the hard 

examples. 𝛼𝑖  is a class specific coefficient that counteracts 

bias introduced by imbalance in sample counts. 

 

To further suppress the effect of class imbalance, we define 

the class weight coefficient as a function of sample frequency 

in the form 

 𝛼𝑖 =
sum𝑛

𝐶⋅𝑛𝑖
 (1) 
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Here 𝑛𝑖 denotes the number of samples in class i and 𝑠𝑢𝑚𝑛 is 

the total number of training samples. This design assigns 

lower weights to more frequent classes, thereby reducing their 

dominance in the loss. In the experiments 𝛾 = 2 and 𝛼𝑖  are 

set dynamically according to the training set distribution. 

 

The core mechanism of this loss lies in the (1 − 𝑝𝑖)
𝛾 term that 

explicitly highlights hard samples. For easy cases whose 𝑝𝑖  is 

close to 1, the factor approaches 0 and their contribution is 

sharply reduced. For hard cases with small 𝑝𝑖 , the weight is 

amplified, forcing optimization to focus on these critical 

instances. Through this design the proposed method enhances 

recognition of complex and rare attack patterns in network 

traffic. 

 

3.5 Chapter Summary 

 

This chapter presents the complete design of the lightweight 

intrusion detection model based on adaptive knowledge 

distillation. To overcome the limitations of conventional 

methods when handling high dimensional and dynamic 

network traffic, the main contribution is a cooperative 

optimization loop with dynamic feedback. First, a prediction 

consistency driven weighting strategy is proposed to 

adaptively balance soft and hard supervision during 

distillation, stabilizing knowledge transfer. Second, an 

improved focal loss is introduced to enable fine grained 

control over the training process through the loss function 

itself. 

 

4. Experimental Results and Analysis 
 

4.1 Data Preprocessing 

 

The experiments adopt NSL-KDD as the benchmark dataset. 

This revised version of KDD Cup 99 mitigates excessive 

redundancy and train-test distributional skew, making it a 

standard corpus for evaluating network intrusion detection 

systems. It contains diverse connection records that span 

multiple attack categories and normal traffic. Each instance is 

described by forty-one mixed-type features, including 

protocol, service, and duration, which are numerical or 

categorical. 

 

To ensure consistent and numerically stable inputs, 

categorical variables are converted via one-hot encoding and 

continuous variables are min-max normalized to remove scale 

differences. The official train-test split is strictly followed to 

prevent information leakage. 

 

4.2 Overall Performance Comparison 

 

To validate the proposed approach we retain the large teacher 

small student paradigm described in Chapter 3. The teacher is 

a seven layer MLP with 824850 parameters while the student 

is a lightweight two layer MLP containing 4466 parameters 

yielding a reduction of almost two orders of magnitude. 

 

The teacher model is first evaluated and achieves an F1 score 

of 86.58 percent on the test set, serving as a high performance 

baseline for knowledge transfer. Table 1 summarizes the test 

set results of all compared methods. 

Table 1: Performance comparison of different methods on the 

NSL-KDD test set (%) 
Module Name ACC PRE REC F1 

Student Model 80.62 94.57 69.98 80.43 
Traditional KD  82.05 94.91 72.35 82.11 

Traditional+DW 83.02 96.72 72.63 82.96 

Traditional+Focal 83.10 96.21 73.20 83.14 
Proposed Method 83.84 96.85 74.02 83.91 

 

The experimental results of the proposed adaptive knowledge 

distillation model on the NSL-KDD dataset demonstrate an 

exceptional balance between model lightweighting and 

detection performance. As shown in Table 1, the model 

achieves an F1-score of 83.91% and a precision of 96.85% 

while reducing the number of parameters by nearly two orders 

of magnitude compared to the teacher model. Its performance 

significantly outperforms traditional knowledge distillation 

methods (with an F1 improvement of 1.8 percentage points) 

and independently trained student models (with an F1 

improvement of 3.48 percentage points). Moreover, it attains 

the highest recall rate of 74.02% among all compared methods, 

indicating a stronger capability in detecting real attack 

instances. These results confirm the synergistic effectiveness 

of the dynamic weight adjustment mechanism (DW) and 

Focal Loss: the former adaptively balances soft and hard label 

supervision based on the discrepancy between teacher and 

student outputs, ensuring stable knowledge transfer; the latter 

enhances discrimination of rare attacks by focusing on hard 

examples. Thus, the proposed approach offers a practical and 

efficient solution for deploying NIDS in resource-constrained 

environments. 

 

5. Conclusion 
 

The adaptive knowledge distillation model proposed in this 

paper achieves significant results on the NSL-KDD dataset 

through the synergistic optimization of dynamic weight 

adjustment and focal loss. It reduces the model parameters by 

nearly two orders of magnitude while maintaining superior 

detection performance, offering a feasible solution for 

intrusion detection systems in resource-constrained 

environments. Building on these findings, future work will 

focus on adapting the framework to more complex network 

architectures and further enhancing the model’s adaptability 

and continual learning capability in dynamically evolving 

network environments. 
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