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Abstract: To address the trade-off between detection accuracy and computational overhead in network intrusion detection systems
within resource-constrained environments, this paper proposes a lightweight model based on adaptive knowledge distillation. Traditional
knowledge distillation methods often exhibit low knowledge transfer efficiency and insufficient learning of hard samples when processing
network traffic data. The proposed model achieves collaborative optimization of lightweight architecture and detection performance
through two core mechanisms. First, a dynamic weight allocation strategy based on the Euclidean distance between teacher and student
model outputs is designed to adaptively adjust the weights of soft targets and hard labels in the loss function, thereby enhancing the
stability of knowledge transfer. Second, Focal Loss is introduced to strengthen the model's ability to learn hard samples, improving the
recognition of complex attack patterns and rare threats. Experimental results on the NSL-KDD dataset demonstrate that the proposed
method, while compressing the model parameters by nearly two orders of magnitude, still outperforms traditional knowledge distillation
methods in detection performance, providing a feasible technical pathway for efficient intrusion detection in resource-constrained
environments.
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1. Introduction 2015, the method compresses a large teacher network into a
compact student by transferring the dark knowledge

Driven by the deepening of digital transformation and the —embedded in the teacher’s output distribution, namely the
widespread adoption of 5G technology, cyberspace security is ~ inter class similarity relationships, thereby maintaining
facing unprecedented challenges. Attack methods are accuracy while reducing size. Conventional KD introduces a
becoming increasingly complex and diverse, evolving from  temperature parameter to soften the teacher’s posterior,
traditional port scanning and denial-of-service attacks to generating soft targets that convey rich similarity information
advanced persistent threats and zero-day exploits. In this and guide the training of the smaller model.

context, network intrusion detection systems (NIDS), as a key

component of the cybersecurity defense architecture, have ~ However, directly applying traditional knowledge distillation
grown in importance [1,2]. to network intrusion detection systems still faces several key

challenges, mainly due to the mismatch between the
Deep learning based network intrusion detection approaches ~ characteristics of network traffic data and the assumptions of
have received increasing attention from both academia and conventional KD mechanisms. Specifically, network traffic
industry in recent years owing to their powerful feature data are high dimensional, non stationary, and exhibit severe
learning capability and promising generalization performance. class imbalance, leading to a mixture of easy and hard
Compared with conventional rule based or classical machine ~ samples, with hard samples especially those from rare attack
learning methods, deep models can automatically extract high ~ categories being particularly difficult to learn. Second,
level representations from raw network traffic, enabling traditional KD methods typically rely on fixed loss weight
effective identification of previously unseen attack patterns ~ combinations, which fail to adapt to the evolving state of the
and sophisticated threat behaviors [3-5]. Representative student model during training, thereby affecting the stability
architectures include convolutional neural networks, recurrent of knowledge transfer and the final performance. Although
neural networks, long short term memory networks, and  some studies have attempted to introduce adaptive weighting

autoencoders, all of which have demonstrated superior O sample reweighting strategies to improve KD, these
detection accuracy on several public datasets. methods are mostly designed for image data and depend on

strong independent and identically distributed assumptions
Nevertheless, high-performance deep-learning models are  and clear class semantic structures, making them unsuitable
inherently coupled with substantial computational and for NIDS environments characterized by temporal
memory costs. A seven-hidden-layer multilayer perceptron, correlations, concept drift, and extreme class imbalance.
for instance, typically entails more than 800 k trainable Therefore, designing a distillation framework that can adapt
parameters and millions of floating-point operations duringa  to the unique properties of network traffic data and
single forward pass. Such complexity precludes real-time dynamically optimize the knowledge transfer process is of
deployment on resource-constrained edge devices, IoT  great significance for achieving high performance and
endpoints, or high-throughput network appliances. Moreover, ~ lightweight NIDS. To address these challenges, this paper
operational environments impose stringent latency and energy ~ Proposes a lightweight intrusion detection model based on
budgets, further compounding the deployment challenge. adaptive knowledge distillation, aiming to enhance the

efficiency of knowledge transfer and the robustness of the
Knowledge Distillation supplies a promising solution to the ~ model. Specifically, we design a dynamic weight adjustment
aforementioned problem. First presented by Hinton et al. in mechanism based on the Euclidean distance between the
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outputs of the teacher and student models, which adaptively
balances the loss contributions of soft targets and hard label
supervision in response to changes in the model state during
training. Additionally, Focal Loss is introduced to increase the
focus on hard samples, thereby improving the discrimination
of complex attack patterns.

2. Related Work

Research on network intrusion detection has evolved from
rule-based to data-driven paradigms. Early systems relied on
handcrafted rule sets for pattern matching; although effective
against known attacks, they generalize poorly to novel or
mutated threats.

Advances in machine learning have shifted the focus to
statistical learning and feature engineering, making them the
mainstream paradigm [6,7]. Conventional algorithms such as
support-vector machines, decision trees, and random forests
have been extensively applied to intrusion detection. These
techniques extract traffic statistics, protocol fields, and
behavioral descriptors to train classifiers that separate
legitimate from malicious traffic. Nevertheless, their
performance is tightly coupled to the quality of hand-crafted
features, and their capacity to model high-dimensional
nonlinear data remains limited.

In recent years, deep learning has achieved remarkable
progress in network intrusion detection. Convolutional neural
networks have been employed to extract spatially local
patterns from traffic, demonstrating particular strength when
processing packet payloads [8]. Recurrent neural networks
and their variants such as long short term memory and gated
recurrent units effectively capture temporal dependencies,
making them well suited for detecting time sensitive attacks
including distributed denial of service [9]. Autoencoders
perform anomaly detection through reconstruction error and
offer unique advantages in unsupervised and semi supervised
learning scenarios [10]. Although deep-learning models
deliver superior detection accuracy, their computational
complexity and memory footprint severely restrict real-world
deployment. This limitation is especially acute in
resource-constrained scenarios such as Internet-of-Things and
edge-computing environments, where model lightweighting
has become a critical imperative.

Knowledge distillation has attracted broad attention as an
effective model compression technique. Conventional KD

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-11, November 2025

originates from the pioneering work of Hinton et al. [11],
where the Kullback Leibler divergence between the teacher
and student output distributions is minimized to transfer inter
class similarity information, the so called dark knowledge
embedded in soft labels, to the student and thus improve
generalization. Subsequent studies have extended the KD
framework along multiple directions and have applied it to
network intrusion detection. For example, a cooperative
framework combining federated learning with distillation was
introduced to address data heterogeneity [12], while self
knowledge distillation was employed to design the
lightweight TBCLNN model [13], and a distilled BERT
framework tailored for efficient IoT intrusion detection was
proposed in [14]. All of these approaches maintain or even
improve detection accuracy while achieving significant model
compression. Nevertheless, most of these enhancements still
rely on the traditional KD transfer paradigm and do not fully
account for the high dimensionality, severe class imbalance,
and dynamic evolution that characterize network traffic data.
Consequently, when facing rare attack categories or highly
variable traffic patterns, both the efficiency and the robustness
of knowledge transfer are often limited. Therefore,
developing adaptive knowledge distillation methods
specifically designed for NIDS scenarios has become
essential for advancing detection performance in this domain.

3. Model Analysis

To overcome the accuracy bottleneck of lightweight network
intrusion detection systems, this paper proposes a lightweight
intrusion detection model based on adaptive knowledge
distillation. The core innovation is a cooperative optimization
mechanism driven by dynamic feedback throughout the
learning process, which introduces adaptive strategies to
refine and intelligently regulate knowledge transfer.
Specifically, the model continuously measures the
discrepancy between teacher and student predictions and
dynamically adjusts the relative weight of soft targets and
hard labels in the loss function. Simultaneously, it integrates
Focal Loss to emphasize difficult samples, enabling the
student to learn discriminative knowledge from the
high-performance teacher more efficiently and robustly, with
particular gains in detecting complex and stealthy threats. The
complete pipeline consists of three stages: data preprocessing,
teacher model training, and student model distillation. The
architecture of the knowledge distillation model is illustrated
in Figure 1.
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Figure 1: Knowledge distillation model structure
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3.1 Data Preprocessing

To improve training efficiency and generalization, raw
network traffic is systematically pre-processed. Categorical
fields are converted to numeric form via one-hot encoding,
while continuous variables are scaled to the interval [0, 1]
using Min-Max normalization. The resulting uniform feature
set is then used for both teacher and student training and
evaluation.

3.2 Teacher and Student Model Design

The adaptive knowledge distillation intrusion detection
framework strictly adheres to the teacher student paradigm; its
efficacy hinges on a high quality knowledge source, namely
the teacher, and an efficient recipient, the student.

The efficacy of distillation is governed by the quality of the
teacher’s knowledge. A teacher that generalizes well produces
soft labels rich in inter class relations and uncertainty. We
adopt a deep multilayer perceptron with seven hidden layers
as the teacher. The network is trained end to end on the pre
processed training set using cross entropy loss, Adam
optimizer, and an initial learning rate of le-3 until full
convergence. After training, all parameters are frozen, and a
forward pass is performed on the entire training set to collect
soft labels. These labels carry class probabilities together with
the teacher’s estimate of pairwise similarity and uncertainty,
forming the primary supervisory signal for the student.

The student model is designed for extreme lightweight
deployment to meet the stringent latency and power
constraints of edge devices. We employ a compact two layer
multilayer perceptron whose parameter count is orders of
magnitude smaller than that of the teacher, enabling highly
efficient inference. The objective is to approach or exceed the
detection performance of conventional lightweight models
while maintaining minimal footprint, thereby achieving high
capability with a small architecture.

3.3 Dynamic Weighting via Teacher-Student Qutput
Discrepancy

Traditional knowledge distillation employs a constant
coefficient to balance soft label loss and hard label loss. This
static allocation cannot accommodate the evolving state of
training. To address this limitation we design a dynamic
weight adjustment mechanism that is driven by the prediction
similarity between teacher and student.

The core idea is that the relative weight of soft versus hard
supervision should evolve with the agreement between the
two models. When the student closely matches the teacher, it
has already absorbed the dark knowledge in the soft labels, so
the loss is shifted toward the hard target to consolidate
learning of the true label and prevent bias inherited from the
teacher. Conversely, when disagreement is large, soft label
weight is increased so that the student can continue to extract
knowledge from the teacher before relying on the hard signal.

Specifically, we employ the Euclidean distance D; between
the teacher and student output probability distributions as a
measure of their prediction consistency.
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Here P, and P, denote the output probability distributions of
the teacher and the student respectively. Building on this
distance we define a dynamic weight function a, that replaces
the previously fixed coefficient a:

ag=1—exp(—f-Ds) @)

In the equation, the parameter § governs the decay rate of the
weight with respect to increasing distance; during training, an
adaptive strategy B = 1/median(Dy) is employed to
dynamically rescale the distance magnitude, thereby ensuring
that a, varies smoothly within a reasonable range.

This function is designed with the following mathematical
properties:

Boundedness: since the exponential function maps to (0,1],
the weight is strictly confined to the desired interval [0,1).

Monotonicity: the weight a; increases monotonically as the
teacher-student discrepancy Dy, increases. This ensures that
when the discrepancy is large the soft-label loss Lgore
receives higher weight to guide the student to imitate the
teacher, whereas when the student performs well and closely
matches the teacher the soft weight is reduced and the relative
contribution of the hard-label loss L4 is increased.

The final adaptively weighted overall loss function is
formulated as:

Liotar = @ * Lsoft + (1 —at) - Lyara (3)

3.4 Hard-Label Focal Loss Optimization

In deep learning classification tasks network traffic data
exhibit severe class imbalance and contain numerous
ambiguous boundary instances as well as rare attack patterns.
The standard cross entropy loss assigns equal weight to every
sample so optimization is dominated by easy cases and the
model fails to learn discriminative features for hard examples.
To increase focus on difficult samples we adopt Focal Loss as
the hard label loss term in place of traditional cross entropy.
Focal Loss reweights each sample dynamically through its
modulation mechanism thereby intensifying supervision for
low confidence instances. The loss is expressed as follows:

i=1
c
Lew=Lia=—"Za(l—=p)"yilog(p;)

Here C denotes the total number of classes, y; is the ground
truth label in one hot form, and p; represents the predicted
probability for class i. The parameter y acts as a focusing
factor that controls the emphasis placed on low confidence
samples: a larger y increases the weight assigned to instances
whose predicted probabilities are small, i.e., the hard
examples. a; is a class specific coefficient that counteracts
bias introduced by imbalance in sample counts.

)

To further suppress the effect of class imbalance, we define
the class weight coefficient as a function of sample frequency
in the form

— sumn
a; =
cn;

(1)



Here n; denotes the number of samples in class i and sum,, is
the total number of training samples. This design assigns
lower weights to more frequent classes, thereby reducing their
dominance in the loss. In the experiments y = 2 and «; are
set dynamically according to the training set distribution.

The core mechanism of this loss lies in the (1 — p;)" term that
explicitly highlights hard samples. For easy cases whose p; is
close to 1, the factor approaches 0 and their contribution is
sharply reduced. For hard cases with small p;, the weight is
amplified, forcing optimization to focus on these critical
instances. Through this design the proposed method enhances
recognition of complex and rare attack patterns in network
traffic.

3.5 Chapter Summary

This chapter presents the complete design of the lightweight
intrusion detection model based on adaptive knowledge
distillation. To overcome the limitations of conventional
methods when handling high dimensional and dynamic
network traffic, the main contribution is a cooperative
optimization loop with dynamic feedback. First, a prediction
consistency driven weighting strategy is proposed to
adaptively balance soft and hard supervision during
distillation, stabilizing knowledge transfer. Second, an
improved focal loss is introduced to enable fine grained
control over the training process through the loss function
itself.

4. Experimental Results and Analysis
4.1 Data Preprocessing

The experiments adopt NSL-KDD as the benchmark dataset.
This revised version of KDD Cup 99 mitigates excessive
redundancy and train-test distributional skew, making it a
standard corpus for evaluating network intrusion detection
systems. It contains diverse connection records that span
multiple attack categories and normal traffic. Each instance is
described by forty-one mixed-type features, including
protocol, service, and duration, which are numerical or
categorical.

To ensure consistent and numerically stable inputs,
categorical variables are converted via one-hot encoding and
continuous variables are min-max normalized to remove scale
differences. The official train-test split is strictly followed to
prevent information leakage.

4.2 Overall Performance Comparison

To validate the proposed approach we retain the large teacher
small student paradigm described in Chapter 3. The teacher is
a seven layer MLP with 824850 parameters while the student
is a lightweight two layer MLP containing 4466 parameters
yielding a reduction of almost two orders of magnitude.

The teacher model is first evaluated and achieves an F1 score
of 86.58 percent on the test set, serving as a high performance
baseline for knowledge transfer. Table 1 summarizes the test
set results of all compared methods.
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Table 1: Performance comparison of different methods on the
NSL-KDD test set (%)

Module Name ACC PRE REC F1

Student Model 80.62 94.57 69.98 80.43

Traditional KD 82.05 9491 72.35 82.11
Traditional+DW 83.02 96.72 72.63 82.96
Traditional+Focal 83.10 96.21 73.20 83.14
Proposed Method 83.84 96.85 74.02 83.91
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The experimental results of the proposed adaptive knowledge
distillation model on the NSL-KDD dataset demonstrate an
exceptional balance between model lightweighting and
detection performance. As shown in Table 1, the model
achieves an F1-score of 83.91% and a precision of 96.85%
while reducing the number of parameters by nearly two orders
of magnitude compared to the teacher model. Its performance
significantly outperforms traditional knowledge distillation
methods (with an F1 improvement of 1.8 percentage points)
and independently trained student models (with an Fl
improvement of 3.48 percentage points). Moreover, it attains
the highest recall rate of 74.02% among all compared methods,
indicating a stronger capability in detecting real attack
instances. These results confirm the synergistic effectiveness
of the dynamic weight adjustment mechanism (DW) and
Focal Loss: the former adaptively balances soft and hard label
supervision based on the discrepancy between teacher and
student outputs, ensuring stable knowledge transfer; the latter
enhances discrimination of rare attacks by focusing on hard
examples. Thus, the proposed approach offers a practical and
efficient solution for deploying NIDS in resource-constrained
environments.

5. Conclusion

The adaptive knowledge distillation model proposed in this
paper achieves significant results on the NSL-KDD dataset
through the synergistic optimization of dynamic weight
adjustment and focal loss. It reduces the model parameters by
nearly two orders of magnitude while maintaining superior
detection performance, offering a feasible solution for
intrusion  detection systems in resource-constrained
environments. Building on these findings, future work will
focus on adapting the framework to more complex network
architectures and further enhancing the model’s adaptability
and continual learning capability in dynamically evolving
network environments.
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