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Abstract: To address the detection challenges posed by adaptive steganographic algorithms such as HUGO, HILL, and WOW, this paper 

proposes an improved deep learning model based on the ZhuNet architecture. The model introduces deep residual blocks with learnable 

scaling factors, replacing standard convolutional blocks to effectively mitigate the vanishing gradient problem in deep networks. 

Furthermore, the Spatial Pyramid Pooling (SPP) module is superseded by a Pyramid Scene Parsing (PSP) module to enhance multi-scale 

feature extraction capabilities. Experimental results demonstrate that at a 0.4 bpp embedding rate, the proposed model achieves a 

detection accuracy of 79.12%, marking a significant improvement over the original ZhuNet (71.58%) and the variant employing only the 

PSP module (74.38%). Additionally, the improved model exhibits more stable convergence behavior and faster performance improvement 

during training, validating the effectiveness of the proposed enhancements for steganalysis tasks. 
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1. Introduction 
 

With the rapid advancement of digital multimedia technology, 

steganography, as a highly covert information hiding 

technique, poses increasingly severe challenges to network 

security [1]. Attackers can embed malicious data or scripts 

into carriers such as digital images and web advertisements. 

These carriers appear visually normal to ordinary users, 

allowing the concealed harmful content to execute undetected, 

potentially leading to system damage, data breaches, and 

other security risks [2], or even being utilized to conspire 

illegal activities on public social platforms [3]. 

 

To address these challenges, steganalysis techniques have 

continuously evolved. Content-adaptive steganographic 

algorithms, represented by HUGO [4], HILL [5], and WOW 

[6], have become among the most covert steganographic 

methods currently available. By precisely modeling local 

image features and concentrating modification operations in 

complex texture regions, these algorithms effectively evade 

detection by traditional feature-domain steganalysis methods 

like SRM [7], presenting a significant challenge to existing 

detection frameworks. 

 

In recent years, deep learning-based steganalysis has achieved 

remarkable progress. Specifically, YeNet [8] employed 

end-to-end learning of SRM filters, achieving performance 

comparable to traditional handcrafted features. SRNet [9] 

utilized a residual architecture for direct pixel-domain 

processing, enabling automatic learning of feature 

representations suitable for steganalysis and demonstrating 

excellent detection accuracy. ZhuNet [10] integrated the 

domain knowledge of SRM filters with deep convolutional 

neural networks, significantly reducing model complexity and 

computational overhead while maintaining high detection 

accuracy. 

 

However, these advanced models exhibit respective 

limitations. YeNet’s relatively simple architecture, despite its  

 

enhanced feature selection capability via an attention 

mechanism, suffers from increased training difficulty due to 

its complex multi-branch design and shows limited 

performance improvement under low embedding rates. 

Although SRNet achieves the highest detection accuracy, its 

deep residual structure lacks dynamic regulation mechanisms, 

leading to convergence oscillations during training. 

Furthermore, its complex architecture and large parameter 

count result in significantly constrained training and inference 

efficiency. In comparison, ZhuNet strikes a better balance 

between efficiency and accuracy, featuring a lightweight 

structure and commendable detection performance. 

 

Nevertheless, ZhuNet still has room for improvement. Firstly, 

its standard convolutional blocks are prone to the vanishing 

gradient problem during training, restricting further network 

deepening. Secondly, the Spatial Pyramid Pooling (SPP) 

module [11] lacks an effective feature refinement mechanism 

during fusion, potentially causing loss of critical spatial 

contextual information and compromising multi-scale feature 

extraction efficiency. 

 

To overcome these limitations, this paper proposes an 

enhanced ZhuNet architecture. We design deep residual 

blocks [12] with learnable scaling factors to replace the 

original standard convolutional blocks, effectively mitigating 

the vanishing gradient problem and enabling the construction 

of deeper networks. A Pyramid Scene Parsing (PSP) module 

[13] is introduced to substitute the conventional SPP module, 

enhancing the model’s multi-scale perception of 

steganographic noise through integrated multi-scale pooling 

and feature reconstruction. Additionally, we optimize the 

network normalization strategy and classification head design, 

further improving model stability and generalization 

capability. Experimental results demonstrate that the 

proposed model achieves a peak accuracy of 79.12% in 

detecting the HUGO algorithm, representing a 7.54% 

improvement over the original ZhuNet, alongside faster 

convergence speed and superior training stability. 

 

2. Improved Steganalysis Model Design 
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2.1 Overall Architecture 

 

To address the trade-off between performance and efficiency 

in existing deep steganalysis models, this paper proposes an 

improved ZhuNet architecture, whose overall structure is 

illustrated in Figure 1. The proposed model retains the 

advantageous SRM pre-processing of the original ZhuNet 

while achieving performance breakthroughs through the 

integration of residual connections and a Pyramid Scene 

Parsing (PSP) module. Specifically, during the feature 

extraction stage, standard convolutional layers are replaced 

with residual blocks incorporating learnable scaling factors to 

mitigate the vanishing gradient problem. In the feature 

aggregation stage, the Spatial Pyramid Pooling (SPP) module 

is superseded by a PSP module, enabling precise capture of 

multi-scale contextual features. Furthermore, the network 

incorporates Layer Normalization and a redesigned 

classification head at its terminal stage, which collectively 

reduce overfitting risks and enhance the model’s 

generalization capability on unseen samples. The model 

accepts 256×256 pixel grayscale images as input. These 

inputs are first processed by SRM filters, then sequentially 

passed through a separable convolutional enhancement 

module, a four-stage residual feature extraction backbone, and 

the PSP multi-scale fusion module, before the lightweight 

classification head ultimately produces the steganalysis result.  
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Figure 1: Overall Architecture of the Proposed Model 

3. Technical Improvements 
 

3.1 Learnable Residual Scaling Mechanism 

 

To address the vanishing gradient problem in the original 

ZhuNet caused by standard convolutional blocks, this paper 

introduces a residual block incorporating a learnable scaling 

factor. The core idea is to adaptively balance the contribution 

between the residual branch and the identity mapping. The 

specific implementation of this mechanism is described as 

follows: 

 

Let the input feature be 𝑥 ∈ ℝ𝐶×𝐻×𝑊 , where 𝐶、𝐻、𝑊 

denote the number of channels, height, and width, 

respectively. The primary forward propagation process within 

the residual block is defined by the following formula: 

 𝑧 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣 (𝑊2, 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝐶𝑜𝑛𝑣(𝑊1, 𝑥))))))  

where 𝑊1, 𝑊2 ∈ ℝ𝐶×𝐶×3×3 are the weight parameters of the 

two 3×3 convolutional layers. 𝐶𝑜𝑛𝑣 denotes the convolution 

operation, 𝐵𝑁  represents batch normalization, and 𝑅𝑒𝐿𝑈 is 

the activation function. 

 

The shortcut connection 𝑥𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 is defined as: 

 𝑥𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = {
𝑥 𝑖𝑓 𝑠𝑡𝑟𝑖𝑑𝑒 − 1 𝑎𝑛𝑑 𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡

𝐵𝑁(𝑊8 ∗ 𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where 𝐶𝑖𝑛  and 𝐶𝑜𝑢𝑡  represent the input and output channel 

dimensions of the residual block, 𝑊8 ∈ ℝ𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×1×1 

denotes the weights of the optional 1×1 convolutional 

projection, and stride refers to the stride of the convolution 

within the block. 

 

The final output 𝑦 is computed as: 

 𝑦 = 𝑅𝑒𝐿𝑈(𝑆𝑐𝑎𝑙𝑒(𝑧, 𝛼) + 𝑥𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡)  

where 𝛼 ∈ ℝ  is the learnable residual scaling factor, and 

𝑆𝑐𝑎𝑙𝑒 operation multiplies each element of 𝑧 by 𝛼. 

 

Compared to the traditional ResNet residual block, this work 

introduces the scaling parameter αα at the terminus of the 

residual path as a trainable variable. Initialized to 1 at the 

beginning of training, it is subsequently optimized 

automatically via gradient descent: 

 𝛼 = 𝛼 − 𝜂
𝜕𝐿

𝜕𝛼
  

where 𝜂 is the learning rate and 𝐿 is the loss function. 

 

This design enables the network to dynamically adjust the 
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contribution of features from the residual path relative to the 

identity path, thereby adaptively balancing information flow, 

mitigating the vanishing gradient problem, accelerating 

convergence during training, and enhancing the network’s 

capacity to capture subtle noise patterns characteristic of 

steganographic features in deeper layers.  

 

3.2.2 Pyramid Scene Parsing Module 

 

n steganalysis tasks, steganographic noise is often distributed 

across different scale spaces within an image. To effectively 

capture these multi-scale features, this paper employs a 

Pyramid Scene Parsing (PSP) module to replace the original 

Spatial Pyramid Pooling (SPP) module. Through systematic 

multi-scale pooling and feature reconstruction, the PSP 

module significantly enhances the model’s perception of 

contextual information. Its core operations are formally 

described as follows:  

 

Given an input feature map 𝐹𝑖𝑛 ∈ ℝ𝐶×𝐻×𝑊, the module first 

captures contextual information at different scales through 

four parallel adaptive average pooling branches: 

 𝑃𝑘 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐶𝑜𝑛𝑣1×1(𝑃𝑜𝑜𝑙𝑠𝑘
(𝐹𝑖𝑛))), 𝑘 = 1,2,3,4  

where, 𝑠𝑘 ∈ {(1,1), (2,2), (3,3), (6,6)}  represents the four 

different pooling sizes, 𝐶𝑜𝑛𝑣1×1  reduces the channel 

dimension of each branch, and 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 restores the feature 

map to the original spatial dimensions via bilinear 

interpolation. 

 

The features from all branches are then concatenated: 

 𝐹𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐹𝑖𝑛, 𝑃1, 𝑃2, 𝑃3, 𝑃4] ∈ ℝ2𝐶×𝐻×𝑊  

Where 𝐹𝑐𝑜𝑛𝑐𝑎𝑡  denotes the result of concatenating the 

multi-scale branch outputs with the original input feature 

along the channel dimension. 

 

Finally, a bottleneck layer performs feature fusion and 

dimensionality reduction: 

 𝐹𝑜𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝐹𝑐𝑜𝑛𝑐𝑎𝑡))) ∈ ℝ𝐶×𝐻×𝑊  

Compared to the original SPP module, the proposed PSP 

module introduces a 1×11×1 convolution after each pooling 

branch for feature transformation and dimensionality 

reduction, enhancing nonlinear representation capacity and 

strengthening feature expression. It replaces the vector 

unfolding operation in SPP with bilinear interpolation for 

upsampling, preserving the spatial structural integrity of the 

feature maps, which is beneficial for subsequent pixel-level 

analysis tasks. Furthermore, it controls parameter growth 

while integrating multi-scale features, improving 

computational efficiency and steganalysis accuracy. These 

characteristics enable the model to capture both local subtle 

noise anomalies and global statistical feature distributions, 

which is crucial for detecting the complex noise patterns 

generated by adaptive steganographic algorithms like HUGO 

and HILL. 

 

3.2.3 Stability Optimization Strategy 

 

In order to further enhance the training stability and 

generalization capability of the model, and to reduce the 

occurrence of gradient explosion, this paper introduces 

several stability optimization strategies in the classifier head 

design. After the global average pooling layer, Layer 

Normalization is introduced to stabilize the feature 

distribution. Its calculation process is as follows: 

 

Given the input feature 𝑥 ∈ ℝ𝐵×𝐶, where 𝐵 is the batch size 

and 𝐶  is the feature dimension, the output of layer 

normalization is calculated as: 

 𝑦 = 𝛾
𝑥−𝜇

√𝜎2+𝜖
+ 𝛽  

where 𝜇 =
1

𝐶
∑ 𝑥𝑖

𝐶
𝑖=1  is the mean of the input features, 𝜎2 =

1

𝐶
∑ (𝑥𝑖 − 𝜇)2𝐶

𝑖=1  is the variance, 𝛾 and 𝛽 are learnable scale 

and shift parameters that reduce the model’s sensitivity to 

different data distributions, and 𝜖  is a small constant to 

prevent division by zero, ensuring numerical stability. 

 

3.2.4 Classifier Head Optimization Strategy 

 

This paper redesigns the original classifier head, adopting a 

lightweight architecture that combines global adaptive 

average pooling with fully connected layers. Through this 

optimization strategy, the model’s parameter count and 

computational complexity are significantly reduced, while 

convergence speed is accelerated. The specific operations are 

as follows: 

 

First, the feature map output from the PSP module is 

converted into a feature vector through a global average 

pooling layer: 

 𝑓 = 𝑃𝑜𝑜𝑙(𝐹𝑝𝑠𝑝)  

Then, the feature vector is normalized using Layer 

Normalization: 

 𝑓𝑛𝑜𝑟𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑓)  

Finally, a two-layer classifier implements the final 

classification through nonlinear transformation, significantly 

reducing the number of model parameters while maintaining 

performance: 

 ℎ = 𝑅𝑒𝐿𝑈(𝑊1𝑓𝑛𝑜𝑟𝑚 + 𝑏1)  

 ℎ𝑑𝑟𝑜𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ, 0.25)  

 𝑜 = 𝑊2ℎ𝑑𝑟𝑜𝑝 + 𝑏2  

where 𝑊1 ∈ ℝ128×128  and 𝑊2 ∈ ℝ2×128  are the weight 

matrices of the fully connected layers, and the Dropout layer 

randomly discards neurons with a probability of 0.25 to 

prevent overfitting. 

 

4. Experiments and Results Analysis 
 

To comprehensively evaluate the effectiveness of the 

improved ZhuNet model, this paper designs a systematic 

experimental scheme. Comparative analyses with traditional 

methods and mainstream deep learning models are conducted 

on standard datasets. 

 

4.1 Datasets 

 

The experiments utilized the BOSSBase 1.01 and ALASKA2 

datasets, from which 10,000 images were randomly selected. 
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All images were resized to 256×256 pixels using the resize 

function from the Python PIL library and were subsequently 

randomly divided into a training set (7,000 images) and a test 

set (3,000 images) in a 7:3 ratio. Three representative adaptive 

steganographic algorithms—HUGO, HILL, and WOW—
were employed to generate stego images for subsequent 

training and testing by embedding secret information into 

cover images at a payload of 0.4 bpp. 

 

4.2 Experimental Setup 

 

All deep learning models were trained using the Adam 

optimizer with an initial learning rate of 0.001, a batch size of 

32, and for 100 epochs. The experiments were conducted in a 

PyTorch 2.9 framework, utilizing a single NVIDIA RTX 

5060 GPU. 

 

4.3 Evaluation Metrics 

 

The performance of the steganalysis models was assessed 

using Accuracy (A) and the Area Under the ROC Curve 

(AUC). Accuracy measures the overall detection performance 

of the model, with a higher value indicating better 

performance. In this binary steganalysis task, samples are 

categorized into two classes: cover images and stego images 

(containing secret information). Defining stego images as 

Positive (P) samples and cover images as Negative (N) 

samples, we denote: 

 

⚫ TP (True Positives): The number of correctly classified 

stego images. 

⚫ TN (True Negatives): The number of correctly 

classified cover images. 

⚫ FP (False Positives): The number of cover images 

misclassified as stego. 

⚫ FN (False Negatives): The number of stego images 

misclassified as cover. 

 

The formula for calculating Accuracy is as follows: 

 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

AUC (Area Under the ROC Curve) represents the area under 

the Receiver Operating Characteristic curve and is used to 

evaluate the model’s discriminative ability. A higher AUC 

value indicates superior classification performance. The curve 

is constructed by plotting the True Positive Rate (TPR) 

against the False Positive Rate (FPR) at various classification 

thresholds. 

 

The TPR, also referred to as sensitivity, quantifies the 

proportion of stego images correctly identified. A higher TPR 

is desirable and is calculated as: 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

The FPR, in contrast, measures the proportion of cover 

images incorrectly classified as stego. A lower FPR is 

preferred, and its calculation is given by: 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  

4.4 Overall Performance Comparison 

 

Table 1 presents a comparative analysis of the detection 

accuracy achieved by various methods against three different 

steganographic algorithms. 

Table 1: Detection Accuracy (%) of Different Methods at 0.4 

bpp Embedding Rate 

Method HUGO HILL WOW 
Average 
Accuracy 

CovNet [14] 68.85 74.22 90.63 77.90 

SiastegNet [15] 73.51 77.58 90.61 80.57 

YeNet [8] 60.12 66.87 75.76 67.58 

SRNet [9] 71.98 78.42 91.37 80.59 

ZhuNet [10] 71.58 76.89 88.74 79.07 

PSP-ZhuNet 74.38 78.60 89.53 80.84 

Proposed Method 79.12 82.95 93.72 85.26 

 

As evidenced by the results in Table 1, the improved ZhuNet 

model proposed in this paper achieves superior performance 

across all three steganographic algorithms, attaining an 

average accuracy of 85.26%. This represents a significant 

improvement of 6.19 percentage points over the original 

ZhuNet. Notably, the proposed method demonstrates a 

substantial advantage in detecting the HUGO algorithm, 

achieving a leading accuracy of 79.12%. 

 

4.3 Ablation Study 

 

To validate the individual contributions of each proposed 

improvement module, a systematic ablation study was 

conducted. The results are summarized in Table 2. 

Table 2: Results of the Ablation Study (Accuracy: %) 
Residual Block PSP Module Stability Optimization HUGO HILL WOW Average 

× × × 71.58 76.89 88.74 79.07 

× √ × 74.38 78.60 89.53 80.84 

√ × × 72.43 75.43 89.68 79.18 

√ √ × 77.31 80.84 91.63 83.26 

√ √ √ 79.12 82.95 93.72 85.26 

 

As shown in Table 2, the introduction of the PSP module 

alone, while keeping other components unchanged, increased 

the average accuracy from 79.07% to 80.84%, a relative gain 

of 1.77 percentage points. This improvement was most 

pronounced for the HUGO algorithm, demonstrating that the 

multi-scale feature fusion mechanism of the PSP module 

effectively enhances the model’s ability to perceive complex 

steganographic noise. In contrast, employing the residual 

block alone provided only a marginal performance gain. This 

observation suggests that the advantages of the residual block 

cannot be fully realized without the support of sufficient 

multi-scale features provided by the PSP module. 

 

When the residual block was combined with the PSP module, 

a significant synergistic effect was observed, boosting the 

average accuracy substantially to 83.26%. The rich, 

multi-scale features provided by the PSP module establish a 

foundation for effective deep feature learning within the 

residual blocks, which in turn ensure these features are 

utilized efficiently. 
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Figure 2: Model Comparison 

Figure 2 compares the loss and accuracy curves of the original 

ZhuNet and the improved ZhuNet on the test set. In 

conjunction with the data from Table 2, it can be observed that 

the training process of the original model was characterized 

by significant oscillations in both loss and accuracy, which 

hindered further performance enhancement. However, after 

integrating the stability optimization strategy on the 

foundation of the residual block and PSP module, the model 

achieved superior performance, attaining an average accuracy 

of 85.26%. This strategy effectively improved the training 

stability of the model and contributed to a notably faster 

convergence speed. 

 
Figure 3: ROC Curve Comparison 

Figure 3 presents a comparison of the ROC curves between 

the original ZhuNet and the improved ZhuNet. The proposed 

model demonstrates a larger AUC, indicating its superior 

capability in discriminating between cover and stego images 

and confirming its advantageous detection performance. 

 

5. Conclusion 
 

To address the challenges faced by current deep learning 

steganalysis models in detecting adaptive steganographic 

algorithms, this paper presents an enhanced model based on 

the ZhuNet architecture. Extensive experimental results 

demonstrate that the proposed learnable residual scaling 

mechanism effectively mitigates the vanishing gradient 

problem in deep network training, enabling the construction 

of deeper architectures without performance degradation. The 

replacement of the SPP module with the PSP module 

significantly strengthens the model’s multi-scale perception 

of steganographic noise. Furthermore, the integration of Layer 

Normalization and the redesigned classification head 

substantially improve training stability. Comprehensive 

experimental results confirm that the proposed improvements 

lead to a remarkable enhancement in the detection 

performance of the original model, providing an effective 

technical solution for practical applications. 
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