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Abstract: To address the detection challenges posed by adaptive steganographic algorithms such as HUGO, HILL, and WOW, this paper
proposes an improved deep learning model based on the ZhuNet architecture. The model introduces deep residual blocks with learnable
scaling factors, replacing standard convolutional blocks to effectively mitigate the vanishing gradient problem in deep networks.
Furthermore, the Spatial Pyramid Pooling (SPP) module is superseded by a Pyramid Scene Parsing (PSP) module to enhance multi-scale
feature extraction capabilities. Experimental results demonstrate that at a 0.4 bpp embedding rate, the proposed model achieves a
detection accuracy of 79.12%, marking a significant improvement over the original ZhuNet (71.58%) and the variant employing only the
PSP module (74.38%). Additionally, the improved model exhibits more stable convergence behavior and faster performance improvement
during training, validating the effectiveness of the proposed enhancements for steganalysis tasks.
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1. Introduction

With the rapid advancement of digital multimedia technology,
steganography, as a highly covert information hiding
technique, poses increasingly severe challenges to network
security [1]. Attackers can embed malicious data or scripts
into carriers such as digital images and web advertisements.
These carriers appear visually normal to ordinary users,
allowing the concealed harmful content to execute undetected,
potentially leading to system damage, data breaches, and
other security risks [2], or even being utilized to conspire
illegal activities on public social platforms [3].

To address these challenges, steganalysis techniques have
continuously evolved. Content-adaptive steganographic
algorithms, represented by HUGO [4], HILL [5], and WOW
[6], have become among the most covert steganographic
methods currently available. By precisely modeling local
image features and concentrating modification operations in
complex texture regions, these algorithms effectively evade
detection by traditional feature-domain steganalysis methods
like SRM [7], presenting a significant challenge to existing
detection frameworks.

In recent years, deep learning-based steganalysis has achieved
remarkable progress. Specifically, YeNet [8] employed
end-to-end learning of SRM filters, achieving performance
comparable to traditional handcrafted features. SRNet [9]
utilized a residual architecture for direct pixel-domain
processing, enabling automatic learning of feature
representations suitable for steganalysis and demonstrating
excellent detection accuracy. ZhuNet [10] integrated the
domain knowledge of SRM filters with deep convolutional
neural networks, significantly reducing model complexity and
computational overhead while maintaining high detection
accuracy.

However, these advanced models exhibit respective
limitations. YeNet’s relatively simple architecture, despite its

enhanced feature selection capability via an attention
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mechanism, suffers from increased training difficulty due to
its complex multi-branch design and shows limited
performance improvement under low embedding rates.
Although SRNet achieves the highest detection accuracy, its
deep residual structure lacks dynamic regulation mechanisms,
leading to convergence oscillations during training.
Furthermore, its complex architecture and large parameter
count result in significantly constrained training and inference
efficiency. In comparison, ZhuNet strikes a better balance
between efficiency and accuracy, featuring a lightweight
structure and commendable detection performance.

Nevertheless, ZhuNet still has room for improvement. Firstly,
its standard convolutional blocks are prone to the vanishing
gradient problem during training, restricting further network
deepening. Secondly, the Spatial Pyramid Pooling (SPP)
module [11] lacks an effective feature refinement mechanism
during fusion, potentially causing loss of critical spatial
contextual information and compromising multi-scale feature
extraction efficiency.

To overcome these limitations, this paper proposes an
enhanced ZhuNet architecture. We design deep residual
blocks [12] with learnable scaling factors to replace the
original standard convolutional blocks, effectively mitigating
the vanishing gradient problem and enabling the construction
of deeper networks. A Pyramid Scene Parsing (PSP) module
[13] is introduced to substitute the conventional SPP module,
enhancing the model’s multi-scale perception of
steganographic noise through integrated multi-scale pooling
and feature reconstruction. Additionally, we optimize the
network normalization strategy and classification head design,
further improving model stability and generalization
capability. Experimental results demonstrate that the
proposed model achieves a peak accuracy of 79.12% in
detecting the HUGO algorithm, representing a 7.54%
improvement over the original ZhuNet, alongside faster
convergence speed and superior training stability.

2. Improved Steganalysis Model Design



2.1 Overall Architecture

To address the trade-off between performance and efficiency
in existing deep steganalysis models, this paper proposes an
improved ZhuNet architecture, whose overall structure is
illustrated in Figure 1. The proposed model retains the
advantageous SRM pre-processing of the original ZhuNet
while achieving performance breakthroughs through the
integration of residual connections and a Pyramid Scene
Parsing (PSP) module. Specifically, during the feature
extraction stage, standard convolutional layers are replaced
with residual blocks incorporating learnable scaling factors to
mitigate the vanishing gradient problem. In the feature
aggregation stage, the Spatial Pyramid Pooling (SPP) module
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is superseded by a PSP module, enabling precise capture of
multi-scale contextual features. Furthermore, the network
incorporates Layer Normalization and a redesigned
classification head at its terminal stage, which collectively
reduce overfitting risks and enhance the model’s
generalization capability on unseen samples. The model
accepts 256 X 256 pixel grayscale images as input. These
inputs are first processed by SRM filters, then sequentially
passed through a separable convolutional enhancement
module, a four-stage residual feature extraction backbone, and
the PSP multi-scale fusion module, before the lightweight
classification head ultimately produces the steganalysis result.
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Figure 1: Overall Architecture of the Proposed Model

3. Technical Improvements
3.1 Learnable Residual Scaling Mechanism

To address the vanishing gradient problem in the original
ZhuNet caused by standard convolutional blocks, this paper
introduces a residual block incorporating a learnable scaling
factor. The core idea is to adaptively balance the contribution
between the residual branch and the identity mapping. The
specific implementation of this mechanism is described as
follows:

Let the input feature be x € RE*#*W where C. H. W
denote the number of channels, height, and width,
respectively. The primary forward propagation process within
the residual block is defined by the following formula:

z = RelU (BN (Conv (Wz, ReLU (BN(Conv(Wl, x))))))

where W;, W, € R¢X¢*3%3 are the weight parameters of the
two 3x3 convolutional layers. Conv denotes the convolution
operation, BN represents batch normalization, and ReLU is
the activation function.

The shortcut connection Xgp oty 18 defined as:
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B {x if stride — 1 and Cy, =
Xshortcut = BN(Wg * x), otherwise

where Cy, and C,,; represent the input and output channel
dimensions of the residual block, Wy € RCout*Cinx1x1
denotes the weights of the optional 1x1 convolutional
projection, and stride refers to the stride of the convolution
within the block.

out

The final output y is computed as:
y = ReLU(Scale(z, @) + Xsnortcut)

where a € R is the learnable residual scaling factor, and
Scale operation multiplies each element of z by «a.

Compared to the traditional ResNet residual block, this work
introduces the scaling parameter aa at the terminus of the
residual path as a trainable variable. Initialized to 1 at the
beginning of training, it is subsequently optimized
automatically via gradient descent:

—q-—n2
a=a—n-
where 7 is the learning rate and L is the loss function.

This design enables the network to dynamically adjust the



contribution of features from the residual path relative to the
identity path, thereby adaptively balancing information flow,
mitigating the vanishing gradient problem, accelerating
convergence during training, and enhancing the network’s
capacity to capture subtle noise patterns characteristic of
steganographic features in deeper layers.

3.2.2 Pyramid Scene Parsing Module

n steganalysis tasks, steganographic noise is often distributed
across different scale spaces within an image. To effectively
capture these multi-scale features, this paper employs a
Pyramid Scene Parsing (PSP) module to replace the original
Spatial Pyramid Pooling (SPP) module. Through systematic
multi-scale pooling and feature reconstruction, the PSP
module significantly enhances the model’s perception of
contextual information. Its core operations are formally
described as follows:

Given an input feature map F;,, € RE*F*W  the module first
captures contextual information at different scales through
four parallel adaptive average pooling branches:

P, = Upsample(Conlel(Poolsk(Fl-n))), k=1,234

where, s, € {(1,1),(2,2),(3,3),(6,6)} represents the four
different pooling sizes, Conv,y; reduces the channel
dimension of each branch, and Upsample restores the feature
map to the original spatial dimensions via bilinear
interpolation.

The features from all branches are then concatenated:
Feoncat = [Fin, Py, P2, P3, Py] € R2CxHXW

Where F,p,cqc denotes the result of concatenating the
multi-scale branch outputs with the original input feature
along the channel dimension.

Finally, a bottleneck layer performs feature fusion and
dimensionality reduction:

Foue = ReLU(BN (Conv, 1 (Feoncat))) € REXHXW

Compared to the original SPP module, the proposed PSP
module introduces a 1 X 11 X 1 convolution after each pooling
branch for feature transformation and dimensionality
reduction, enhancing nonlinear representation capacity and
strengthening feature expression. It replaces the vector
unfolding operation in SPP with bilinear interpolation for
upsampling, preserving the spatial structural integrity of the
feature maps, which is beneficial for subsequent pixel-level
analysis tasks. Furthermore, it controls parameter growth
while integrating  multi-scale  features, improving
computational efficiency and steganalysis accuracy. These
characteristics enable the model to capture both local subtle
noise anomalies and global statistical feature distributions,
which is crucial for detecting the complex noise patterns
generated by adaptive steganographic algorithms like HUGO
and HILL.

3.2.3 Stability Optimization Strategy
In order to further enhance the training stability and

generalization capability of the model, and to reduce the
occurrence of gradient explosion, this paper introduces
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several stability optimization strategies in the classifier head
design. After the global average pooling layer, Layer
Normalization is introduced to stabilize the feature
distribution. Its calculation process is as follows:

Given the input feature x € REX¢, where B is the batch size
and C is the feature dimension, the output of layer
normalization is calculated as:

o, XK
}’—Vm'i'/)’

1 . .
where u = =¥ | x; is the mean of the input features, 02 =
c

1
c
and shift parameters that reduce the model’s sensitivity to
different data distributions, and € is a small constant to
prevent division by zero, ensuring numerical stability.

¢ (x; —p)? is the variance, y and f are learnable scale

3.2.4 Classifier Head Optimization Strategy

This paper redesigns the original classifier head, adopting a
lightweight architecture that combines global adaptive
average pooling with fully connected layers. Through this
optimization strategy, the model’s parameter count and
computational complexity are significantly reduced, while
convergence speed is accelerated. The specific operations are
as follows:

First, the feature map output from the PSP module is
converted into a feature vector through a global average
pooling layer:

f = Pool(F,sp)
Then, the feature vector is normalized using Layer
Normalization:
foorm = LayerNorm(f)

Finally, a two-layer classifier implements the final
classification through nonlinear transformation, significantly
reducing the number of model parameters while maintaining
performance:

h = ReLU(W1fuorm + b1)
harop = Dropout(h, 0.25)
0= WZhdrop + bz
where W, € R128%128 and W, € R?*128 are the weight
matrices of the fully connected layers, and the Dropout layer

randomly discards neurons with a probability of 0.25 to
prevent overfitting.

4. Experiments and Results Analysis

To comprehensively evaluate the effectiveness of the
improved ZhuNet model, this paper designs a systematic
experimental scheme. Comparative analyses with traditional
methods and mainstream deep learning models are conducted
on standard datasets.

4.1 Datasets

The experiments utilized the BOSSBase 1.01 and ALASKA2
datasets, from which 10,000 images were randomly selected.



All images were resized to 256 X256 pixels using the resize
function from the Python PIL library and were subsequently
randomly divided into a training set (7,000 images) and a test
set (3,000 images) in a 7:3 ratio. Three representative adaptive
steganographic algorithms —HUGO, HILL, and WOW —
were employed to generate stego images for subsequent
training and testing by embedding secret information into
cover images at a payload of 0.4 bpp.

4.2 Experimental Setup

All deep learning models were trained using the Adam
optimizer with an initial learning rate of 0.001, a batch size of
32, and for 100 epochs. The experiments were conducted in a
PyTorch 2.9 framework, utilizing a single NVIDIA RTX
5060 GPU.

4.3 Evaluation Metrics

The performance of the steganalysis models was assessed
using Accuracy (A) and the Area Under the ROC Curve
(AUC). Accuracy measures the overall detection performance
of the model, with a higher value indicating better
performance. In this binary steganalysis task, samples are
categorized into two classes: cover images and stego images
(containing secret information). Defining stego images as
Positive (P) samples and cover images as Negative (N)
samples, we denote:

® TP (True Positives): The number of correctly classified
stego images.

® TN (True Negatives): The number of correctly
classified cover images.

® FP (False Positives): The number of cover images
misclassified as stego.

® FN (False Negatives): The number of stego images
misclassified as cover.

The formula for calculating Accuracy is as follows:

_ TP+TN
T TP+TN+FP+FN

AUC (Area Under the ROC Curve) represents the area under
the Receiver Operating Characteristic curve and is used to
evaluate the model’s discriminative ability. A higher AUC
value indicates superior classification performance. The curve
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is constructed by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various classification
thresholds.

The TPR, also referred to as sensitivity, quantifies the
proportion of stego images correctly identified. A higher TPR
is desirable and is calculated as:

TP
TP+FN

TPR =

The FPR, in contrast, measures the proportion of cover
images incorrectly classified as stego. A lower FPR is
preferred, and its calculation is given by:

FP
FP+TN

FPR =

4.4 Overall Performance Comparison

Table 1 presents a comparative analysis of the detection
accuracy achieved by various methods against three different
steganographic algorithms.

Table 1: Detection Accuracy (%) of Different Methods at 0.4

bpp Embedding Rate
Method HUGO | HILL WOwW Average
Accuracy
CovNet [14] 68.85 74.22 90.63 77.90
SiastegNet [15] 73.51 77.58 90.61 80.57
YeNet [8] 60.12 66.87 75.76 67.58
SRNet [9] 71.98 78.42 9137 80.59
ZhuNet [10] 71.58 76.89 88.74 79.07
PSP-ZhuNet 74.38 78.60 89.53 80.84
Proposed Method 79.12 82.95 93.72 85.26

As evidenced by the results in Table 1, the improved ZhuNet
model proposed in this paper achieves superior performance
across all three steganographic algorithms, attaining an
average accuracy of 85.26%. This represents a significant
improvement of 6.19 percentage points over the original
ZhuNet. Notably, the proposed method demonstrates a
substantial advantage in detecting the HUGO algorithm,
achieving a leading accuracy of 79.12%.

4.3 Ablation Study
To validate the individual contributions of each proposed

improvement module, a systematic ablation study was
conducted. The results are summarized in Table 2.

Table 2: Results of the Ablation Study (Accuracy: %)

Residual Block PSP Module Stability Optimization HUGO HILL WOW Average
x x x 71.58 76.89 88.74 79.07
x \ x 74.38 78.60 89.53 80.84
N x x 72.43 75.43 89.68 79.18
N N x 77.31 80.84 91.63 83.26
\ N N 79.12 82.95 93.72 85.26

As shown in Table 2, the introduction of the PSP module
alone, while keeping other components unchanged, increased
the average accuracy from 79.07% to 80.84%, a relative gain
of 1.77 percentage points. This improvement was most
pronounced for the HUGO algorithm, demonstrating that the
multi-scale feature fusion mechanism of the PSP module
effectively enhances the model’s ability to perceive complex
steganographic noise. In contrast, employing the residual
block alone provided only a marginal performance gain. This
observation suggests that the advantages of the residual block
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cannot be fully realized without the support of sufficient
multi-scale features provided by the PSP module.

When the residual block was combined with the PSP module,
a significant synergistic effect was observed, boosting the
average accuracy substantially to 83.26%. The rich,
multi-scale features provided by the PSP module establish a
foundation for effective deep feature learning within the
residual blocks, which in turn ensure these features are
utilized efficiently.
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Figure 2: Model Comparison

Figure 2 compares the loss and accuracy curves of the original
ZhuNet and the improved ZhuNet on the test set. In
conjunction with the data from Table 2, it can be observed that
the training process of the original model was characterized
by significant oscillations in both loss and accuracy, which
hindered further performance enhancement. However, after
integrating the stability optimization strategy on the
foundation of the residual block and PSP module, the model
achieved superior performance, attaining an average accuracy
of 85.26%. This strategy effectively improved the training
stability of the model and contributed to a notably faster
convergence speed.
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Figure 3: ROC Curve Comparison

Figure 3 presents a comparison of the ROC curves between
the original ZhuNet and the improved ZhuNet. The proposed
model demonstrates a larger AUC, indicating its superior
capability in discriminating between cover and stego images
and confirming its advantageous detection performance.

5. Conclusion

To address the challenges faced by current deep learning
steganalysis models in detecting adaptive steganographic
algorithms, this paper presents an enhanced model based on
the ZhuNet architecture. Extensive experimental results
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demonstrate that the proposed learnable residual scaling
mechanism effectively mitigates the vanishing gradient
problem in deep network training, enabling the construction
of deeper architectures without performance degradation. The
replacement of the SPP module with the PSP module
significantly strengthens the model’s multi-scale perception
of steganographic noise. Furthermore, the integration of Layer
Normalization and the redesigned classification head
substantially improve training stability. Comprehensive
experimental results confirm that the proposed improvements
lead to a remarkable enhancement in the detection
performance of the original model, providing an effective
technical solution for practical applications.
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