

Design and Implementation of a Ship Target

Detection System Based on PyQt

Wanqiu Xu, Jialu Sun, Binghe Zhang

Jiangsu Maritime Institute, Nanjing 211170, Jiangsu

Abstract: With the advancement of intelligent shipping and smart port construction, ship target detection plays a crucial role in maritime

traffic safety, port monitoring, and environmental protection. Aiming at the shortcomings of traditional monitoring systems in real-time

performance and visualization, this paper designs and implements a ship target detection system based on the PyQt framework. The system

utilizes a deep learning model to detect ship targets in videos and employs PyQt to construct a visual interactive interface, enabling

real-time display and management of detection results. The system implements core functions such as data management, detection

processing, and result presentation, and exhibits good real-time performance and stability. It provides a technical foundation for

subsequent multi-source data fusion and the expansion of intelligent monitoring systems.

Keywords: PyQt, Ship Target Detection, Deep Learning, Visualization System.

1. Introduction

In recent years, the rapid development of the global shipping

industry has led to a continuous increase in maritime traffic

density. Ship monitoring and target detection have become

increasingly critical in maritime supervision, port scheduling,

and marine safety protection. Traditional monitoring methods

mainly rely on radar detection and manual video observation,

which not only suffer from limitations such as high workload

intensity and low recognition accuracy but also struggle to

achieve large-scale and all-weather automated monitoring. To

enhance the intelligence level of port and maritime traffic

management, ship detection technology based on computer

vision and deep learning has become a core research direction

at present.

In terms of technical research, relevant scholars have

conducted multi-dimensional explorations. Huang Jie et al. [1]

proposed a ship target detection method combining

Convolutional Neural Network (CNN) and Support Vector

Machine (SVM); Zhang Xu [2] designed a ship detection

scheme based on template matching and deep learning for

port scenarios; Sheng Mingwei et al. [3] focused on

addressing the problems of complex detection scenarios and

insufficient accuracy by optimizing the YOLOv3

algorithm—through dataset augmentation using Mixup,

introducing an attention mechanism into the Darknet-53

network, and constructing a saliency detection branch for

secondary optimization, which effectively reduced the missed

detection rate. In terms of dataset construction, Shao et al. [4]

screened and built the inland ship dataset "SeaShips" in 2018,

covering 6 common types of ships and demonstrating high

practicality; for this dataset, their team further proposed a

saliency-aware detection method [5], which uses CNN to

predict the type and position of ships, corrects the position

with global contrast saliency region detection technology, and

integrates coastline data to achieve high-precision

classification and detection. In addition, Guang Ruizhi et al.

[6] proposed the FoveaSDet algorithm for UAV aerial images

of ships in waterways. By adopting a single-stage anchor-free

detection architecture and Foveahead to handle scale

variations, the algorithm significantly improved the detection

accuracy of small targets.

In terms of development tools, the rapid development of the

Python ecosystem provides support for technology

implementation. As a fully functional graphical interface

development framework, PyQt [7] features rich components,

a flexible signal-slot mechanism, and cross-platform

capabilities. It can seamlessly integrate with deep learning

frameworks such as PyTorch and TensorFlow, laying an ideal

technical foundation for building an integrated and interactive

ship detection system.

Based on the aforementioned research and technical

conditions, this paper designs and implements a visual ship

target detection system using PyQt as the development

framework and combining it with the YOLOv8 deep learning

target detection algorithm. The system covers the complete

process from image/video input and target detection to result

visualization, enabling intuitive presentation of detection

results and supporting interactive operations.

2. System Design

2.1 Feasibility Analysis

2.1.1 Technical Feasibility

From a technical perspective, the technologies required for

system development are relatively mature, demonstrating

good feasibility:

1) PyQt Framework: PyQt is a Python binding based on the Qt

library, featuring cross-platform compatibility, rich

functionality, and ease of development. Currently, PyQt has

been widely used in graphical user interface (GUI)

development, with comprehensive documentation and

abundant open-source resources. Developers can quickly

master its usage and efficiently develop high-quality interface

applications.

2) Target Detection Algorithms: Target detection algorithms

in the field of deep learning have achieved significant

progress. YOLO series algorithms (e.g., YOLOv5, YOLOv8)

offer advantages of fast detection speed and high accuracy,

which can meet the requirements of real-time ship detection.

Meanwhile, these algorithms are highly open-source,

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-11, November 2025

17

DOI: 10.53469/jrse.2025.07(11).04

allowing developers to conduct secondary development based

on open-source code and reducing the difficulty of algorithm

integration.

3) Image Processing Technology: The OpenCV library in

Python provides a wealth of image processing functions, such

as image reading, scaling, filtering, and edge detection. These

functions can meet the system's needs for ship image

preprocessing and improve the accuracy of subsequent target

detection.

4) Development Tools and Environment: The system can be

developed using PyCharm as the integrated development

environment (IDE). This tool supports Python code writing,

debugging, and execution, providing a good development

experience. Additionally, the Python language is

characterized by concise syntax and easy maintenance, which

can improve the efficiency of system development.

2.1.2 Economic Feasibility

The economic cost of system development is relatively low,

indicating high economic feasibility:

1) Software Costs: All software required for system

development is open-source or free, such as Python, PyQt,

OpenCV, and open-source code of YOLO algorithms. No

software copyright fees need to be paid, significantly reducing

development costs.

2) Hardware Costs: The system has moderate requirements

for hardware configuration. Ordinary desktop computers or

laptops can meet the needs of development and operation,

eliminating the need to purchase expensive dedicated

hardware equipment.

3) Maintenance Costs: The system adopts a modular design

with a clear code structure, facilitating subsequent

maintenance and upgrades. Meanwhile, development based

on open-source technologies enables access to extensive

community support, reducing maintenance difficulty and

costs.

2.1.3 Operational Feasibility

The system emphasizes user operation experience and

demonstrates good feasibility in terms of operation:

1) Interface Design: A intuitive and user-friendly GUI is

developed using PyQt, with a reasonable interface layout and

clear function buttons. Users do not require professional

computer knowledge and can proficiently operate the system

after simple training.

2) Operation Process: The system's operation process is

concise and clear. Users can complete ship detection tasks

through just a few simple operations (e.g., loading images,

clicking the detection button, and viewing results), avoiding

complex operation steps.

3) Error Handling: The system is equipped with a

comprehensive error handling mechanism. When users

perform improper operations, the system will pop up prompt

messages to guide correct operations, reducing the impact of

user operation errors.

2.2 System Process Design

The overall workflow of the system is shown in Figure 1,

which mainly includes three core stages: data input stage,

target detection stage, and result presentation stage. The

specific process is as follows:

1) Data Input Stage: The system supports importing images or

video streams from local files and can also select real-time

camera video as the input source. This stage completes data

reading and format standardization processing to ensure

efficient operation of subsequent algorithms.

2) Target Detection Stage: The core of the system adopts the

YOLOv8-based ship detection algorithm [8] to perform

feature extraction and target recognition on input images, and

outputs information such as bounding boxes and confidence

levels of ship targets. The algorithm model is loaded during

system initialization, and the detection process is performed

in an independent thread to ensure smooth interface response.

3) Result Presentation Stage: The PyQt front-end interface

displays detection results in real-time and performs visual

annotations on detected targets, including rectangular boxes,

category labels, and confidence levels. Users can choose to

save detection images or export result files, and the system

supports automatic generation and storage of detection

records.

Figure 1: System Process Design

2.3 Functional Module Design

The system's functional modules mainly include: data

management module, detection processing module, and result

presentation module. The functions of each module are shown

in Table 1:

Table 1: Functional Module Design

Module Name Function Description

Data Management
Module

Responsible for reading images and videos

Detection Processing

Module

Performing ship target recognition using the

YOLOv8 model
Result Presentation

Module

Displaying detection results in the PyQt

interface

3. System Implementation

3.1 Development Environment and Technical Framework

Table 2: Development Environment and Technical

Framework
Item Specification

Operating System Windows 10

Development Language Python 3.8
Main Dependent Libraries opencv-python, PyQt5, Ultralytics, PyTorch

IDE Environment PyCharm

The environment configuration required for system

development and operation is shown in Table 2.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-11, November 2025

18

3.2 System Interface Design

From the perspective of functional design, the interface is

divided into two core areas: the left area is a vertically

arranged control component area, and the right area is a label

component area responsible for displaying input and output

content (see Figure 2). The control components are laid out

from top to bottom according to the operation process,

including: a single-line text box for displaying the model

weight path, a button for selecting the model weight path, a

drop-down box for selecting the detection mode, a button for

selecting input images/videos, a start detection button, and a

parameter setting button. Among them, clicking the parameter

setting button will pop up a configuration panel, allowing

adjustment of YOLOv8 inference parameters (consistent with

the parameter types supported by the command line).

In terms of layout structure, the interface adopts a

"three-vertical and one-horizontal" layout architecture: three

vertical layouts are used to arrange control components,

display input images, and show output results respectively,

while a horizontal layout integrates the left and right areas to

form the overall interface framework.

Figure 2: Interface Display

4. Conclusion

This paper designs and implements a ship target detection

system based on the PyQt framework, integrating a deep

learning model and a graphical visualization interface. The

system can realize real-time detection and display of ship

targets in port or maritime video streams. It operates stably,

has a user-friendly interface, and features strong scalability,

providing a reference and foundation for the development of

subsequent intelligent maritime monitoring systems.

In the future, by integrating Automatic Identification System

(AIS) data, the system will realize automatic matching

between detection results and ship identity information,

further improving its intelligence level and practical

application value. Meanwhile, a Web front-end interface can

be expanded to achieve remote monitoring and multi-source

information sharing, providing more comprehensive technical

support for smart ports and shipping safety.

Funding

1) Scientifc Research Project of Jiangsu Maritime Institute

(2024ZKyb11);

2) 2024 Jiangsu Provincial College Students' Innovation and

Entrepreneurship Training Program (GX-20240158).

References

[1] Huang J, Jiang Z G, Zhang H P, et al. Ship Target

Detection in Remote Sensing Images Based on

Convolutional Neural Network[J]. Journal of Beijing

University of Aeronautics and Astronautics, 2017,

43(09): 1841-1848.

[2] Zhang X. Port Ship Detection and Recognition Method

Based on Template Matching and Deep Learning[J].

Computer Application Technology, 2019, 4: 59-63.

[3] Sheng M W, Li J, Qin H D, et al. Ship Target Detection

Algorithm Based on Improved YOLOv3[J]. Navigation

and Control, 2021, 20(02): 95-109.

[4] Shao Z, Wu W, Wang Z, et al. SeaShips: A Large-Scale

Precisely Annotated Dataset for Ship Detection[J]. IEEE

Transactions on Multimedia, 2018, 20(10): 2593-2604.

[5] Shao Z, Wang L, Wang Z, et al. Saliency-Aware

Convolution Neural Network for Ship Detection in

Surveillance Video[J]. IEEE Transactions on Circuits

and Systems for Video Technology, 2019, 30(3):

781-794.

[6] Guang R Z, An B W, Pan S D. Ship Detection Algorithm

for Aerial Waterway Images Based on Anchor-Free

Network[J]. Computer Engineering and Applications,

2021, 57(15): 251-258.

[7] Rapid GUI Programming with Python and Qt; The

Definitive Guide to PyQt Programming[J]. Scitech Book

News, 2008, 32(1):

[8] Xu W. Research on Ship Target Detection Based on

YOLOv8[J]. World Journal of Innovation and Modern

Technology, 2025, 8(9): DOI:

10.53469/WJIMT.2025.08(09).14.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-11, November 2025

19

