Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-11, November 2025
DOI: 10.53469/jrse.2025.07(11).04

Design and Implementation of a Ship Target
Detection System Based on PyQt

Wangqiu Xu, Jialu Sun, Binghe Zhang

Jiangsu Maritime Institute, Nanjing 211170, Jiangsu

Abstract: With the advancement of intelligent shipping and smart port construction, ship target detection plays a crucial role in maritime
traffic safety, port monitoring, and environmental protection. Aiming at the shortcomings of traditional monitoring systems in real-time
performance and visualization, this paper designs and implements a ship target detection system based on the PyQt framework. The system
utilizes a deep learning model to detect ship targets in videos and employs PyQt to construct a visual interactive interface, enabling
real-time display and management of detection results. The system implements core functions such as data management, detection
processing, and result presentation, and exhibits good real-time performance and stability. It provides a technical foundation for
subsequent multi-source data fusion and the expansion of intelligent monitoring systems.

Keywords: PyQt, Ship Target Detection, Deep Learning, Visualization System.

1. Introduction

In recent years, the rapid development of the global shipping
industry has led to a continuous increase in maritime traffic
density. Ship monitoring and target detection have become
increasingly critical in maritime supervision, port scheduling,
and marine safety protection. Traditional monitoring methods
mainly rely on radar detection and manual video observation,
which not only suffer from limitations such as high workload
intensity and low recognition accuracy but also struggle to
achieve large-scale and all-weather automated monitoring. To
enhance the intelligence level of port and maritime traffic
management, ship detection technology based on computer
vision and deep learning has become a core research direction
at present.

In terms of technical research, relevant scholars have
conducted multi-dimensional explorations. Huang Jie et al. [1]
proposed a ship target detection method combining
Convolutional Neural Network (CNN) and Support Vector
Machine (SVM); Zhang Xu [2] designed a ship detection
scheme based on template matching and deep learning for
port scenarios; Sheng Mingwei et al. [3] focused on
addressing the problems of complex detection scenarios and
insufficient accuracy by optimizing the YOLOvV3
algorithm—through dataset augmentation using Mixup,
introducing an attention mechanism into the Darknet-53
network, and constructing a saliency detection branch for
secondary optimization, which effectively reduced the missed
detection rate. In terms of dataset construction, Shao et al. [4]
screened and built the inland ship dataset "SeaShips" in 2018,
covering 6 common types of ships and demonstrating high
practicality; for this dataset, their team further proposed a
saliency-aware detection method [5], which uses CNN to
predict the type and position of ships, corrects the position
with global contrast saliency region detection technology, and
integrates coastline data to achieve high-precision
classification and detection. In addition, Guang Ruizhi et al.
[6] proposed the FoveaSDet algorithm for UAV aerial images
of ships in waterways. By adopting a single-stage anchor-free
detection architecture and Foveahead to handle scale
variations, the algorithm significantly improved the detection
accuracy of small targets.

17

In terms of development tools, the rapid development of the
Python ecosystem provides support for technology
implementation. As a fully functional graphical interface
development framework, PyQt [7] features rich components,
a flexible signal-slot mechanism, and cross-platform
capabilities. It can seamlessly integrate with deep learning
frameworks such as PyTorch and TensorFlow, laying an ideal
technical foundation for building an integrated and interactive
ship detection system.

Based on the aforementioned research and technical
conditions, this paper designs and implements a visual ship
target detection system using PyQt as the development
framework and combining it with the YOLOVS8 deep learning
target detection algorithm. The system covers the complete
process from image/video input and target detection to result
visualization, enabling intuitive presentation of detection
results and supporting interactive operations.

2. System Design
2.1 Feasibility Analysis
2.1.1 Technical Feasibility

From a technical perspective, the technologies required for
system development are relatively mature, demonstrating
good feasibility:

1) PyQt Framework: PyQt is a Python binding based on the Qt
library, featuring cross-platform compatibility, rich
functionality, and ease of development. Currently, PyQt has
been widely used in graphical user interface (GUI)
development, with comprehensive documentation and
abundant open-source resources. Developers can quickly
master its usage and efficiently develop high-quality interface
applications.

2) Target Detection Algorithms: Target detection algorithms
in the field of deep learning have achieved significant
progress. YOLO series algorithms (e.g., YOLOvVS, YOLOVS)
offer advantages of fast detection speed and high accuracy,
which can meet the requirements of real-time ship detection.
Meanwhile, these algorithms are highly open-source,



allowing developers to conduct secondary development based
on open-source code and reducing the difficulty of algorithm
integration.

3) Image Processing Technology: The OpenCV library in
Python provides a wealth of image processing functions, such
as image reading, scaling, filtering, and edge detection. These
functions can meet the system's needs for ship image
preprocessing and improve the accuracy of subsequent target
detection.

4) Development Tools and Environment: The system can be
developed using PyCharm as the integrated development
environment (IDE). This tool supports Python code writing,
debugging, and execution, providing a good development
experience. Additionally, the Python language is
characterized by concise syntax and easy maintenance, which
can improve the efficiency of system development.

2.1.2 Economic Feasibility

The economic cost of system development is relatively low,
indicating high economic feasibility:

1) Software Costs: All software required for system
development is open-source or free, such as Python, PyQt,
OpenCV, and open-source code of YOLO algorithms. No
software copyright fees need to be paid, significantly reducing
development costs.

2) Hardware Costs: The system has moderate requirements
for hardware configuration. Ordinary desktop computers or
laptops can meet the needs of development and operation,
eliminating the need to purchase expensive dedicated
hardware equipment.

3) Maintenance Costs: The system adopts a modular design
with a clear code structure, facilitating subsequent
maintenance and upgrades. Meanwhile, development based
on open-source technologies enables access to extensive
community support, reducing maintenance difficulty and
costs.

2.1.3 Operational Feasibility

The system emphasizes user operation experience and
demonstrates good feasibility in terms of operation:

1) Interface Design: A intuitive and user-friendly GUI is
developed using PyQt, with a reasonable interface layout and
clear function buttons. Users do not require professional
computer knowledge and can proficiently operate the system
after simple training.

2) Operation Process: The system's operation process is
concise and clear. Users can complete ship detection tasks
through just a few simple operations (e.g., loading images,
clicking the detection button, and viewing results), avoiding
complex operation steps.

3) Error Handling: The system is equipped with a
comprehensive error handling mechanism. When users
perform improper operations, the system will pop up prompt

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-11, November 2025

messages to guide correct operations, reducing the impact of
user operation errors.

2.2 System Process Design

The overall workflow of the system is shown in Figure 1,
which mainly includes three core stages: data input stage,
target detection stage, and result presentation stage. The
specific process is as follows:

1) Data Input Stage: The system supports importing images or
video streams from local files and can also select real-time
camera video as the input source. This stage completes data
reading and format standardization processing to ensure
efficient operation of subsequent algorithms.

2) Target Detection Stage: The core of the system adopts the
YOLOvS8-based ship detection algorithm [8] to perform
feature extraction and target recognition on input images, and
outputs information such as bounding boxes and confidence
levels of ship targets. The algorithm model is loaded during
system initialization, and the detection process is performed
in an independent thread to ensure smooth interface response.

3) Result Presentation Stage: The PyQt front-end interface
displays detection results in real-time and performs visual
annotations on detected targets, including rectangular boxes,
category labels, and confidence levels. Users can choose to
save detection images or export result files, and the system
supports automatic generation and storage of detection
records.

Data Input Stage Target Detection Stage Result Presentation Stage

Figure 1: System Process Design
2.3 Functional Module Design
The system's functional modules mainly include: data
management module, detection processing module, and result

presentation module. The functions of each module are shown
in Table 1:

Table 1: Functional Module Design

Module Name Function Description
Data ﬁzﬁ'ﬁ:ment Responsible for reading images and videos
Detection Processing Performing ship target recognition using the
Module YOLOVS model
Result Presentation Displaying detection results in the PyQt
Module interface

18

3. System Implementation

3.1 Development Environment and Technical Framework

Table 2: Development Environment and Technical

Framework
Item Specification
Operating System Windows 10
Development Language Python 3.8
Main Dependent Libraries | opencv-python, PyQt5, Ultralytics, PyTorch
IDE Environment PyCharm
The environment configuration required for system

development and operation is shown in Table 2.



3.2 System Interface Design

From the perspective of functional design, the interface is
divided into two core areas: the left area is a vertically
arranged control component area, and the right area is a label
component area responsible for displaying input and output
content (see Figure 2). The control components are laid out
from top to bottom according to the operation process,
including: a single-line text box for displaying the model
weight path, a button for selecting the model weight path, a
drop-down box for selecting the detection mode, a button for
selecting input images/videos, a start detection button, and a
parameter setting button. Among them, clicking the parameter
setting button will pop up a configuration panel, allowing
adjustment of YOLOVS inference parameters (consistent with
the parameter types supported by the command line).

In terms of layout structure, the interface adopts a
"three-vertical and one-horizontal" layout architecture: three
vertical layouts are used to arrange control components,
display input images, and show output results respectively,
while a horizontal layout integrates the left and right areas to
form the overall interface framework.

EHERYRE 2017-01-04 MNF= 11:19:40

:

et iy

Figure 2: Interface Display

4. Conclusion

This paper designs and implements a ship target detection
system based on the PyQt framework, integrating a deep
learning model and a graphical visualization interface. The
system can realize real-time detection and display of ship
targets in port or maritime video streams. It operates stably,
has a user-friendly interface, and features strong scalability,
providing a reference and foundation for the development of
subsequent intelligent maritime monitoring systems.

In the future, by integrating Automatic Identification System
(AIS) data, the system will realize automatic matching
between detection results and ship identity information,
further improving its intelligence level and practical
application value. Meanwhile, a Web front-end interface can
be expanded to achieve remote monitoring and multi-source
information sharing, providing more comprehensive technical
support for smart ports and shipping safety.

Funding
1) Scientifc Research Project of Jiangsu Maritime Institute

(2024ZKyb11);
2) 2024 Jiangsu Provincial College Students' Innovation and

19

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-11, November 2025

Entrepreneurship Training Program (GX-20240158).
References

[1] Huang J, Jiang Z G, Zhang H P, et al. Ship Target
Detection in Remote Sensing Images Based on
Convolutional Neural Network[J]. Journal of Beijing
University of Aeronautics and Astronautics, 2017,
43(09): 1841-1848.

Zhang X. Port Ship Detection and Recognition Method
Based on Template Matching and Deep Learning[J].
Computer Application Technology, 2019, 4: 59-63.
Sheng M W, Li J, Qin H D, et al. Ship Target Detection
Algorithm Based on Improved YOLOvV3[J]. Navigation
and Control, 2021, 20(02): 95-109.

Shao Z, Wu W, Wang Z, et al. SeaShips: A Large-Scale
Precisely Annotated Dataset for Ship Detection[J]. IEEE
Transactions on Multimedia, 2018, 20(10): 2593-2604.
Shao Z, Wang L, Wang Z, et al. Saliency-Aware
Convolution Neural Network for Ship Detection in
Surveillance Video[J]. IEEE Transactions on Circuits
and Systems for Video Technology, 2019, 30(3):
781-794.

Guang R Z, An B W, Pan S D. Ship Detection Algorithm
for Aerial Waterway Images Based on Anchor-Free
Network[J]. Computer Engineering and Applications,
2021, 57(15): 251-258.

Rapid GUI Programming with Python and Qt; The
Definitive Guide to PyQt Programming[J]. Scitech Book
News, 2008, 32(1):

Xu W. Research on Ship Target Detection Based on
YOLOvV8[J]. World Journal of Innovation and Modern
Technology, 2025, 8(9): DOLI:
10.53469/WIJIMT.2025.08(09).14.

(2]

(3]

(4]

(3]

(6]

(7]

(8]



