Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-10, October 2025
DOI: 10.53469/jrse.2025.07(10).03

Multi-level Ship Trajectory Query System Based
on Flink

Jin Tao, Enze Wu, Taizhi Lv
College of Information Engineering, Jiangsu Maritime Institute, Nanjing 211170, Jiangsu, China

Abstract: Against the backdrop of increasingly frequent global maritime transportation and sustained growth in ship traffic, how to
efficiently process and display vast amounts of ship trajectory data has become an important issue in smart maritime management.
Traditional trajectory query systems mostly rely on batch processing, which is difficult to meet the multiple demands for real-time
performance, visualization levels, and query efficiency. To address this challenge, this paper designs and implements a multi-level ship
trajectory query system based on Flink, combining a stream computing framework with a front-end and back-end separation architecture
to achieve real-time processing, hierarchical management, and dynamic visualization of ship trajectories. The system possesses strong
practicality and promotional value. The back-end of the system uses Spring Boot to build core services, while the front-end uses HTML
and JavaScript frameworks to implement interactive interfaces for users and administrators respectively. Apache Flink is introduced as a
real-time data processing engine to perform high-throughput aggregation and thinning processing on AIS ship data. Trajectory data with
different granularities are displayed according to different map zoom levels, thus ensuring trajectory integrity while optimizing query
efficiency and front-end rendering performance.

Keywords: Flink, Ship trajectory, Stream computing, Multi-level visualization, Real-time processings.

1. Introduction employing Spring Boot to implement business logic and data
interfaces, and complementing this with MySQL for

With the continuous development of global trade, maritime ~ Managing trajectory data storage across different time
transportation, as an important mode of international logistics, ~ granularities, it is possible to effectively achieve high-
has become increasingly prominent, and the number of ships ~ performance response and multi-level display in a trajectory
and navigation frequency continue to increase [1][2]. The query system. Therefore, the design of a multi-level ship
Automatic Identification System (AIS) serves as a core means trajectory query system based on Flink not only aligns with
of monitoring ship movements, capable of collecting a large the development trend of smart maritime affairs but also
amount of real-time location information, speed, direction, provides a practical and feasible solution for the efficient
and other data, providing important data support for maritime =~ Mmanagement and visualization of massive trajectory data.
supervision, shipping scheduling, and traffic safety. However,

AIS data is characterized by high frequency, high This paper aims to design and implement a multi-tiered ship
dimensionality, and continuity. Faced with the increasingly trajectory query system based on Flink, addressing issues such
large scale of trajectory data, traditional storage and @S poor real-time performance, limited display options, and
processing methods have become difficult to meet the dual ~ Weak scalability in current ship trajectory data processing. By

requirements of real-time performance and visual display Introducing a stream computing framework, real-time
[3][4]. aggregation and hierarchical trajectory thinning of high-

frequency AIS data are achieved [7][8]. Combined with a

Currently, common ship trajectory systems mostly adopt front-end and back-end separation architecture, interactive
offline batch processing methods, which present significant ~ map display is realized. The system can dynamically adjust
bottlenecks in trajectory rendering and query efficiency, trajectory data granularity according to map zoom levels,
making it difficult to cope with complex business scenarios balancing trajectory completeness and system response
and changing user interaction demands. Especially in map efficiency, thereby enhancing the ship trajectory query and
trajectory display, as the zoom level changes, how to Visualization experience. The construction of this system not
dynamically adjust the granularity of trajectory data and only has strong practical engineering value but also serves as
achieve the loading and presentation of trajectory information 2 demonstration for the intelligent upgrade of maritime
at different levels becomes a key issue affecting system information systems. This project focuses on two core issues:
performance and user experience [5]. Therefore, exploring a "high-concurrency real-time trajectory processing” and
new system architecture that supports real-time processing, "multi-tiered data visualization". It integrates the stateful
hierarchical visualization, and efficient querying of massive ~ computing capabilities of Flink with the visualization

trajectory data holds significant research and application value ~ strengths of modern web development frameworks, forming a
[6]. trajectory query solution with real-time response capabilities,

flexible data abstraction abilities, and excellent user
Apache Flink, as a new-generation distributed stream experience. This not only provides technical support for areas
processing framework, boasts advantages such as low latency, ~ such as ship supervision, shipping scheduling, and maritime
high throughput, and robust state management, making it €arly warning but also offers valuable references for the
highly suitable for handling real-time aggregation and architectural design of traffic trajectory systems. With the
trajectory thinning of AIS data. By integrating a front-end and advancement of concepts like smart ports and digital shipping,
back-end separation technical architecture, utilizing HTML the expansion potential of this system in practical applications
and JavaScript frameworks to construct interactive interfaces, ~ Will become more prominent, continuously supporting the

10

digital transformation of related industries. Building a system
architecture that integrates stream computing, hierarchical
trajectory display, and real-time interaction functions has
become a hot and challenging topic in current research on ship
trajectory systems both domestically and internationally.
Leveraging the technical advantages of Apache Flink in the
field of stream computing, combined with the efficient
rendering capabilities of HTML and JavaScript frameworks
on the front end and the modular service framework of Spring
Boot on the back end, exploring a scalable, visual, and real-
time responsive ship trajectory query system holds significant
practical and forward-looking value.

2. System Design
2.1 Overall Architecture

To achieve efficient collection, processing, storage, and
display of ship trajectory data, the overall functional structure
of this system is divided into multiple relatively independent
yet cooperating modules. Interaction between modules is
facilitated through a unified data interface, ensuring that the
system possesses good scalability, maintainability, and high
concurrency processing capabilities. The system primarily
includes the following functional modules:

1) Data acquisition module

This module is responsible for collecting ship trajectory data
from external AIS devices or data sources and pushing it into
the Kafka message queue. The collected data typically
includes fields such as MMSI, timestamp, latitude and
longitude, heading, and speed. Leveraging Kafka's high
throughput characteristics, reliable transmission of massive
real-time trajectory data is achieved, providing data support
for subsequent processing.

2) Flink stream processing module

As the core processing unit of the system, the Flink module
undertakes the real-time computation task of trajectory data.
The system performs windowed processing on ship data based
on Event Time, and aggregates it according to the set time
granularity (such as 5 minutes, 10 minutes, 30 minutes, 50
minutes) to generate multi-level trajectory data. This module
is also responsible for handling out-of-order data, data
cleaning, trajectory slicing, and other logics, ensuring the
temporal accuracy and completeness of the subsequent
displayed data.

3) Data storage module

The processed trajectory data will be stored in the MySQL
database according to its time granularity. The system has
established independent data table structures for different time
levels to achieve hierarchical management of trajectory data.
This module design follows database optimization strategies
such as efficient indexing and partitioned storage to improve
trajectory query efficiency.

4) Backend service module

The backend service, built on the Spring Boot framework,

11

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-10, October 2025

provides a unified API interface responsible for data
interaction with the frontend system. This module
encapsulates logic such as trajectory querying, condition
filtering, and paging loading. It supports rapid retrieval of
required trajectory information based on conditions such as
ship number, time range, and trajectory level, and returns the
results in JSON format to the frontend for invocation.

5) Front-end display module

The system frontend is implemented based on an HTML and
JavaScript framework, responsible for the visual display of
ship trajectories. This module integrates map components,
dynamically requests trajectory data of different granularities
according to the user's current zoom level, and renders them
as continuous and smooth track lines. It also provides
interactive query, timeline playback, and other functions to
enhance the user experience.

6) System management module

This module is primarily designed for system administrators,
offering functions such as basic configuration management,
data table monitoring, and operational status viewing.
Administrators can utilize this module to adjust database
structures, configure Kafka connection parameters, and
monitor Flink jobs, ensuring the continuous and stable
operation of the system.

Through the collaborative work of the aforementioned
modules, the system achieves an integrated ship trajectory
management capability, encompassing data collection, stream
processing, hierarchical storage, multidimensional query, and
visual display, effectively enhancing the utilization efficiency
and application value of massive trajectory data. The
functional module diagram of the system is shown in Figure
1.

| Data acquisition module

Flink real-time processing module ‘

.
]

| Backend service module ‘

Data storage module ‘

Multi-level ship trajectory query system

| Front-end display module ‘

| System management module ‘
Figure 1: Functional Module Diagram

2.2 Functional Module Design

The core function of the trajectory data processing and storage
module is to utilize Apache Flink to read the ship AIS
trajectory data pushed by Kafka in real-time, perform
aggregation processing using a fixed time window (Tumbling
Window) based on event time, and ultimately store the results
hierarchically in a MySQL database for subsequent querying,
analysis, and visualization. This module possesses
characteristics such as high throughput, low latency, and fault
tolerance, making it suitable for real-time processing

scenarios involving massive trajectory data. The overall
system process is as follows:

1) Kafka data access: Real-time consumption of trajectory
data published by topics (such as "ais") in Kafka through
FlinkKatkaConsumer. The data format is a string, containing
fields such as timestamp, MMSI (unique identifier for ships),
longitude and latitude, and speed.

2) Event time extraction and watermark generation: Utilize the
Flink API, utilizing the time field (receive) from the trajectory
data as the event time, and establish a maximum allowable
delay time (such as 2 minutes) to generate watermarks,
ensuring accurate aggregation even in the event of data
disorder.

3) Fixed time window aggregation processing: Group by
MMSI using keyBy, and use time windows (such as 5 minutes,
10 minutes, or 30 minutes) to perform aggregation
calculations on the trajectory points of each ship within that
time period, such as trajectory point sets, average speed,
maximum speed, path range, etc. Compared to session
windows, fixed time windows help maintain the stability of
time period division and are more suitable for periodic
visualization display and analysis requirements.

4) Result mapping and hierarchical storage:

First, the original trajectory data is directly written into the
MySQL table based on the original fields. Then, the
aggregated results obtained through time window calculations
(such as average speed, trajectory segments) are written into
the corresponding time-separated data table. Finally, using a
custom Sink or JDBC Sink, the structured results are written
into MySQL, enabling hierarchical data management and
efficient query support.

The data flow diagram of this module is shown in Figure 2

below:
(Start)
‘ Kafka data ingestion ‘

]

‘ Event time extraction and watermark generation

l

| Window aggregation processing

I

| Result mapping and layering

}

‘ Write to MySQL database

1

< End >

Figure 2: Flowchart of trajectory data processing

3. System Implementation

In this system, to meet users' demands for high-precision
analysis of trajectory data, a function for displaying ship
trajectory data based on 5-minute intervals is provided. The
front end is developed using an HTML and JavaScript

12

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-10, October 2025

framework, which sends request parameters (such as MMSI
number, time range, and time interval) to the back end via
fetch. The back end, based on Spring Boot, receives the
request and queries the 5-minute interval data stored in the
hierarchical trajectory data table in MySQL.

The interface employs a combination of tables and maps,
allowing users to dynamically view the ship's trajectory points
on the map, while simultaneously viewing the corresponding
longitude, latitude, speed, and time information in the table.
The map component utilizes an open-source interactive map
library (Amap JS API). Trajectory points are connected by
lines to form a complete trajectory, and users can interact with
the map through dragging and zooming operations.

The key to implementing this feature lies in the layered
processing of backend data and the visual rendering of
trajectory points on the frontend, ensuring data loading
efficiency and user interaction experience. The interface
implementation effect is shown in Figure below.

Figure 3: Implementation of the ship trajectory 5-
minute/point interface

To support trajectory analysis with varying precision
requirements, the system provides a trajectory display
function based on a 10-minute time interval. Similar to the 5-
minute interface, after the user selects a trajectory interval of
10 minutes on the interface, the system sends a request to the
backend through a parameterized interface.

The backend accesses the 10-minute stratified data table
stored in MySQL based on the received time interval
parameter, and quickly returns the matching trajectory data.
The frontend loads the returned data into the map and connects
it with polylines to form a trajectory path. It also supports a
timeline playback function, facilitating user analysis of ship
movement trends.

Figure 4: Implementation of the ship trajectory 10-

minute/point interface

The system also implements a trajectory display function
based on 30-minute intervals. This function is primarily used
to observe the overall trend and directional changes of ships
during long-distance voyages, and is suitable for large-scale
path evaluation and operational scheduling analysis.

This module is designed to be consistent with the 5-minute
and 10-minute interfaces, featuring a unified interaction
process and map display logic. Users simply need to switch
the time interval within the interface. The system will
automatically call the corresponding backend interface and
query the distinct_ais_new_30 layered table, returning data
that is sparser but covers a wider range.

30435
<mmm

Figure 5: Implementation of the ship trajectory 30-
minute/point interface

To meet users' needs for comprehensively grasping the ship's
operational trajectory, the system provides a "All
Trajectories”" display function. Users can enter the ship's
identification code (MMSI) and the start and end time to query
and view all trajectory points of a specific ship within a
designated time period, and the results will be returned in
chronological order.

1748
SHE \
e

\
Figure 6: Implementation of the entire interface for ship
trajectory

4. Conclusion

This paper systematically explores the design and
implementation of a multi-level ship trajectory query system
based on Flink, covering aspects such as requirement analysis,
technology selection, architecture design, database design,
function implementation, and system testing. By utilizing
Apache Flink to implement real-time stream processing of
large-scale AIS data, combining Spring Boot to build efficient
and stable backend services, and employing HTML and

13

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-10, October 2025

JavaScript frameworks to achieve a dynamic interactive
interface with front-end and back-end separation, the system
successfully demonstrates the ability to dynamically display
trajectories at different time intervals based on map zoom
levels, meeting the needs of multi-level and multi-granularity
trajectory queries.

Although this system has achieved relatively comprehensive
functions, there is still room for further improvement. In the
future, efforts can be made to enhance algorithm optimization,
such as introducing machine learning technology to improve
trajectory prediction and anomaly detection capabilities. In
terms of system architecture, consideration can be given to
splitting into microservices to enhance module independence
and elastic expansion. At the same time, the front end can
enhance the data interaction experience, supporting more
dimensions of trajectory analysis and visualization effects.

Acknowledgements

This work was financially supported by the funding of the
Science and technology project of the Jiangsu Maritime
Institute (2023ZKyb06), and the Fundamental Computer
Education and Teaching Research Project of the
Association of Fundamental Computing Education of Chinese
Universities (2025-AFCEC-488).

References

[1] Tengesdal, Trym, T. A. Pedersen, and T. A. Johansen.
"A Comparative Study of Rapidly-exploring Random
Tree Algorithms Applied to Ship Trajectory Planning
and Behavior Generation." Journal of Intelligent &
Robotic Systems 111.1(2025).

Tengesdal, Trym, T. A. Pedersen, and T. A. Johansen.
"A Comparative Study of Rapidly-exploring Random
Tree Algorithms Applied to Ship Trajectory Planning
and Behavior Generation." (2024).

Chen, Xingiang, M. Wang, and W. C. Li. "Ship imaging
trajectory extraction via an aggregated you only look
once (YOLO) model." Engineering Applications of
Artificial Intelligence: The International Journal of
Intelligent Real-Time Automation 130. Apr. (2024):
107742.1-107742.9.

Xiong, Yong, et al. "Data-driven ship trajectory tracking
control method." Chinese Journal of Ship Research
20.1(2025):232-246.

Liu, Zhao, et al. "An online method for ship trajectory
compression using AIS data." Navigation News
Nov./Dec. (2024).

Gil, Mateusz, et al. "A multiparameter simulation-driven
analysis of ship turning trajectory concerning a required
number of irregular wave realizations." Ocean
Engineering 299(2024).

Pan, Jiale, et al. "A Graph Representation Learning
Approach for Imbalanced Ship Type Recognition Using
AIS Trajectory Data." Intelligent Transportation
Systems, IEEE Transactions on 26.8(2025): 12049-
12067.

Jiang, Fan, and H. Yan. "Research on an improved ship
trajectory clustering method." Proceedings of SPIE
13018.000(2024):8.

[2]

[3]

[5]

[6]

[7]

