
Multi-level Ship Trajectory Query System Based

on Flink

Jin Tao, Enze Wu, Taizhi Lv

College of Information Engineering, Jiangsu Maritime Institute, Nanjing 211170, Jiangsu, China

Abstract: Against the backdrop of increasingly frequent global maritime transportation and sustained growth in ship traffic, how to

efficiently process and display vast amounts of ship trajectory data has become an important issue in smart maritime management.

Traditional trajectory query systems mostly rely on batch processing, which is difficult to meet the multiple demands for real-time

performance, visualization levels, and query efficiency. To address this challenge, this paper designs and implements a multi-level ship

trajectory query system based on Flink, combining a stream computing framework with a front-end and back-end separation architecture

to achieve real-time processing, hierarchical management, and dynamic visualization of ship trajectories. The system possesses strong

practicality and promotional value. The back-end of the system uses Spring Boot to build core services, while the front-end uses HTML

and JavaScript frameworks to implement interactive interfaces for users and administrators respectively. Apache Flink is introduced as a

real-time data processing engine to perform high-throughput aggregation and thinning processing on AIS ship data. Trajectory data with

different granularities are displayed according to different map zoom levels, thus ensuring trajectory integrity while optimizing query

efficiency and front-end rendering performance.

Keywords: Flink, Ship trajectory, Stream computing, Multi-level visualization, Real-time processings.

1. Introduction

With the continuous development of global trade, maritime

transportation, as an important mode of international logistics,

has become increasingly prominent, and the number of ships

and navigation frequency continue to increase [1][2]. The

Automatic Identification System (AIS) serves as a core means

of monitoring ship movements, capable of collecting a large

amount of real-time location information, speed, direction,

and other data, providing important data support for maritime

supervision, shipping scheduling, and traffic safety. However,

AIS data is characterized by high frequency, high

dimensionality, and continuity. Faced with the increasingly

large scale of trajectory data, traditional storage and

processing methods have become difficult to meet the dual

requirements of real-time performance and visual display

[3][4].

Currently, common ship trajectory systems mostly adopt

offline batch processing methods, which present significant

bottlenecks in trajectory rendering and query efficiency,

making it difficult to cope with complex business scenarios

and changing user interaction demands. Especially in map

trajectory display, as the zoom level changes, how to

dynamically adjust the granularity of trajectory data and

achieve the loading and presentation of trajectory information

at different levels becomes a key issue affecting system

performance and user experience [5]. Therefore, exploring a

new system architecture that supports real-time processing,

hierarchical visualization, and efficient querying of massive

trajectory data holds significant research and application value

[6].

Apache Flink, as a new-generation distributed stream

processing framework, boasts advantages such as low latency,

high throughput, and robust state management, making it

highly suitable for handling real-time aggregation and

trajectory thinning of AIS data. By integrating a front-end and

back-end separation technical architecture, utilizing HTML

and JavaScript frameworks to construct interactive interfaces,

employing Spring Boot to implement business logic and data

interfaces, and complementing this with MySQL for

managing trajectory data storage across different time

granularities, it is possible to effectively achieve high-

performance response and multi-level display in a trajectory

query system. Therefore, the design of a multi-level ship

trajectory query system based on Flink not only aligns with

the development trend of smart maritime affairs but also

provides a practical and feasible solution for the efficient

management and visualization of massive trajectory data.

This paper aims to design and implement a multi-tiered ship

trajectory query system based on Flink, addressing issues such

as poor real-time performance, limited display options, and

weak scalability in current ship trajectory data processing. By

introducing a stream computing framework, real-time

aggregation and hierarchical trajectory thinning of high-

frequency AIS data are achieved [7][8]. Combined with a

front-end and back-end separation architecture, interactive

map display is realized. The system can dynamically adjust

trajectory data granularity according to map zoom levels,

balancing trajectory completeness and system response

efficiency, thereby enhancing the ship trajectory query and

visualization experience. The construction of this system not

only has strong practical engineering value but also serves as

a demonstration for the intelligent upgrade of maritime

information systems. This project focuses on two core issues:

"high-concurrency real-time trajectory processing" and

"multi-tiered data visualization". It integrates the stateful

computing capabilities of Flink with the visualization

strengths of modern web development frameworks, forming a

trajectory query solution with real-time response capabilities,

flexible data abstraction abilities, and excellent user

experience. This not only provides technical support for areas

such as ship supervision, shipping scheduling, and maritime

early warning but also offers valuable references for the

architectural design of traffic trajectory systems. With the

advancement of concepts like smart ports and digital shipping,

the expansion potential of this system in practical applications

will become more prominent, continuously supporting the

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-10, October 2025

10

DOI: 10.53469/jrse.2025.07(10).03

digital transformation of related industries. Building a system

architecture that integrates stream computing, hierarchical

trajectory display, and real-time interaction functions has

become a hot and challenging topic in current research on ship

trajectory systems both domestically and internationally.

Leveraging the technical advantages of Apache Flink in the

field of stream computing, combined with the efficient

rendering capabilities of HTML and JavaScript frameworks

on the front end and the modular service framework of Spring

Boot on the back end, exploring a scalable, visual, and real-

time responsive ship trajectory query system holds significant

practical and forward-looking value.

2. System Design

2.1 Overall Architecture

To achieve efficient collection, processing, storage, and

display of ship trajectory data, the overall functional structure

of this system is divided into multiple relatively independent

yet cooperating modules. Interaction between modules is

facilitated through a unified data interface, ensuring that the

system possesses good scalability, maintainability, and high

concurrency processing capabilities. The system primarily

includes the following functional modules:

1) Data acquisition module

This module is responsible for collecting ship trajectory data

from external AIS devices or data sources and pushing it into

the Kafka message queue. The collected data typically

includes fields such as MMSI, timestamp, latitude and

longitude, heading, and speed. Leveraging Kafka's high

throughput characteristics, reliable transmission of massive

real-time trajectory data is achieved, providing data support

for subsequent processing.

2) Flink stream processing module

As the core processing unit of the system, the Flink module

undertakes the real-time computation task of trajectory data.

The system performs windowed processing on ship data based

on Event Time, and aggregates it according to the set time

granularity (such as 5 minutes, 10 minutes, 30 minutes, 50

minutes) to generate multi-level trajectory data. This module

is also responsible for handling out-of-order data, data

cleaning, trajectory slicing, and other logics, ensuring the

temporal accuracy and completeness of the subsequent

displayed data.

3) Data storage module

The processed trajectory data will be stored in the MySQL

database according to its time granularity. The system has

established independent data table structures for different time

levels to achieve hierarchical management of trajectory data.

This module design follows database optimization strategies

such as efficient indexing and partitioned storage to improve

trajectory query efficiency.

4) Backend service module

The backend service, built on the Spring Boot framework,

provides a unified API interface responsible for data

interaction with the frontend system. This module

encapsulates logic such as trajectory querying, condition

filtering, and paging loading. It supports rapid retrieval of

required trajectory information based on conditions such as

ship number, time range, and trajectory level, and returns the

results in JSON format to the frontend for invocation.

5) Front-end display module

The system frontend is implemented based on an HTML and

JavaScript framework, responsible for the visual display of

ship trajectories. This module integrates map components,

dynamically requests trajectory data of different granularities

according to the user's current zoom level, and renders them

as continuous and smooth track lines. It also provides

interactive query, timeline playback, and other functions to

enhance the user experience.

6) System management module

This module is primarily designed for system administrators,

offering functions such as basic configuration management,

data table monitoring, and operational status viewing.

Administrators can utilize this module to adjust database

structures, configure Kafka connection parameters, and

monitor Flink jobs, ensuring the continuous and stable

operation of the system.

Through the collaborative work of the aforementioned

modules, the system achieves an integrated ship trajectory

management capability, encompassing data collection, stream

processing, hierarchical storage, multidimensional query, and

visual display, effectively enhancing the utilization efficiency

and application value of massive trajectory data. The

functional module diagram of the system is shown in Figure

1.

Figure 1: Functional Module Diagram

2.2 Functional Module Design

The core function of the trajectory data processing and storage

module is to utilize Apache Flink to read the ship AIS

trajectory data pushed by Kafka in real-time, perform

aggregation processing using a fixed time window (Tumbling

Window) based on event time, and ultimately store the results

hierarchically in a MySQL database for subsequent querying,

analysis, and visualization. This module possesses

characteristics such as high throughput, low latency, and fault

tolerance, making it suitable for real-time processing

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-10, October 2025

11

scenarios involving massive trajectory data. The overall

system process is as follows:

1) Kafka data access: Real-time consumption of trajectory

data published by topics (such as "ais") in Kafka through

FlinkKafkaConsumer. The data format is a string, containing

fields such as timestamp, MMSI (unique identifier for ships),

longitude and latitude, and speed.

2) Event time extraction and watermark generation: Utilize the

Flink API, utilizing the time field (receive) from the trajectory

data as the event time, and establish a maximum allowable

delay time (such as 2 minutes) to generate watermarks,

ensuring accurate aggregation even in the event of data

disorder.

3) Fixed time window aggregation processing: Group by

MMSI using keyBy, and use time windows (such as 5 minutes,

10 minutes, or 30 minutes) to perform aggregation

calculations on the trajectory points of each ship within that

time period, such as trajectory point sets, average speed,

maximum speed, path range, etc. Compared to session

windows, fixed time windows help maintain the stability of

time period division and are more suitable for periodic

visualization display and analysis requirements.

4) Result mapping and hierarchical storage:

First, the original trajectory data is directly written into the

MySQL table based on the original fields. Then, the

aggregated results obtained through time window calculations

(such as average speed, trajectory segments) are written into

the corresponding time-separated data table. Finally, using a

custom Sink or JDBC Sink, the structured results are written

into MySQL, enabling hierarchical data management and

efficient query support.

The data flow diagram of this module is shown in Figure 2

below:

Figure 2: Flowchart of trajectory data processing

3. System Implementation

In this system, to meet users' demands for high-precision

analysis of trajectory data, a function for displaying ship

trajectory data based on 5-minute intervals is provided. The

front end is developed using an HTML and JavaScript

framework, which sends request parameters (such as MMSI

number, time range, and time interval) to the back end via

fetch. The back end, based on Spring Boot, receives the

request and queries the 5-minute interval data stored in the

hierarchical trajectory data table in MySQL.

The interface employs a combination of tables and maps,

allowing users to dynamically view the ship's trajectory points

on the map, while simultaneously viewing the corresponding

longitude, latitude, speed, and time information in the table.

The map component utilizes an open-source interactive map

library (Amap JS API). Trajectory points are connected by

lines to form a complete trajectory, and users can interact with

the map through dragging and zooming operations.

The key to implementing this feature lies in the layered

processing of backend data and the visual rendering of

trajectory points on the frontend, ensuring data loading

efficiency and user interaction experience. The interface

implementation effect is shown in Figure below.

Figure 3: Implementation of the ship trajectory 5-

minute/point interface

To support trajectory analysis with varying precision

requirements, the system provides a trajectory display

function based on a 10-minute time interval. Similar to the 5-

minute interface, after the user selects a trajectory interval of

10 minutes on the interface, the system sends a request to the

backend through a parameterized interface.

The backend accesses the 10-minute stratified data table

stored in MySQL based on the received time interval

parameter, and quickly returns the matching trajectory data.

The frontend loads the returned data into the map and connects

it with polylines to form a trajectory path. It also supports a

timeline playback function, facilitating user analysis of ship

movement trends.

Figure 4: Implementation of the ship trajectory 10-

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-10, October 2025

12

minute/point interface

The system also implements a trajectory display function

based on 30-minute intervals. This function is primarily used

to observe the overall trend and directional changes of ships

during long-distance voyages, and is suitable for large-scale

path evaluation and operational scheduling analysis.

This module is designed to be consistent with the 5-minute

and 10-minute interfaces, featuring a unified interaction

process and map display logic. Users simply need to switch

the time interval within the interface. The system will

automatically call the corresponding backend interface and

query the distinct_ais_new_30 layered table, returning data

that is sparser but covers a wider range.

Figure 5: Implementation of the ship trajectory 30-

minute/point interface

To meet users' needs for comprehensively grasping the ship's

operational trajectory, the system provides a "All

Trajectories" display function. Users can enter the ship's

identification code (MMSI) and the start and end time to query

and view all trajectory points of a specific ship within a

designated time period, and the results will be returned in

chronological order.

Figure 6: Implementation of the entire interface for ship

trajectory

4. Conclusion

This paper systematically explores the design and

implementation of a multi-level ship trajectory query system

based on Flink, covering aspects such as requirement analysis,

technology selection, architecture design, database design,

function implementation, and system testing. By utilizing

Apache Flink to implement real-time stream processing of

large-scale AIS data, combining Spring Boot to build efficient

and stable backend services, and employing HTML and

JavaScript frameworks to achieve a dynamic interactive

interface with front-end and back-end separation, the system

successfully demonstrates the ability to dynamically display

trajectories at different time intervals based on map zoom

levels, meeting the needs of multi-level and multi-granularity

trajectory queries.

Although this system has achieved relatively comprehensive

functions, there is still room for further improvement. In the

future, efforts can be made to enhance algorithm optimization,

such as introducing machine learning technology to improve

trajectory prediction and anomaly detection capabilities. In

terms of system architecture, consideration can be given to

splitting into microservices to enhance module independence

and elastic expansion. At the same time, the front end can

enhance the data interaction experience, supporting more

dimensions of trajectory analysis and visualization effects.

Acknowledgements

This work was financially supported by the funding of the

Science and technology project of the Jiangsu Maritime

Institute (2023ZKyb06), and the Fundamental Computer

Education and Teaching Research Project of the

Association of Fundamental Computing Education of Chinese

Universities (2025-AFCEC-488).

References

[1] Tengesdal, Trym, T. A. Pedersen, and T. A. Johansen.

"A Comparative Study of Rapidly-exploring Random

Tree Algorithms Applied to Ship Trajectory Planning

and Behavior Generation." Journal of Intelligent &

Robotic Systems 111.1(2025).

[2] Tengesdal, Trym, T. A. Pedersen, and T. A. Johansen.

"A Comparative Study of Rapidly-exploring Random

Tree Algorithms Applied to Ship Trajectory Planning

and Behavior Generation." (2024).

[3] Chen, Xinqiang, M. Wang, and W. C. Li. "Ship imaging

trajectory extraction via an aggregated you only look

once (YOLO) model." Engineering Applications of

Artificial Intelligence: The International Journal of

Intelligent Real-Time Automation 130. Apr. (2024):

107742.1-107742.9.

[4] Xiong, Yong, et al. "Data-driven ship trajectory tracking

control method." Chinese Journal of Ship Research

20.1(2025):232-246.

[5] Liu, Zhao, et al. "An online method for ship trajectory

compression using AIS data." Navigation News

Nov./Dec. (2024).

[6] Gil, Mateusz, et al. "A multiparameter simulation-driven

analysis of ship turning trajectory concerning a required

number of irregular wave realizations." Ocean

Engineering 299(2024).

[7] Pan, Jiale, et al. "A Graph Representation Learning

Approach for Imbalanced Ship Type Recognition Using

AIS Trajectory Data." Intelligent Transportation

Systems, IEEE Transactions on 26.8(2025): 12049-

12067.

[8] Jiang, Fan, and H. Yan. "Research on an improved ship

trajectory clustering method." Proceedings of SPIE

13018.000(2024):8.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-10, October 2025

13

