Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025
DOI: 10.53469/jrse.2025.07(08).15

Threat-Model-Driven Incident Management for
AWS: Cost-Benefit Analysis of Elastic Logging
Architectures with Zero-Trust Security

Anis Mekhaimer

Abstract: Managing security alerts across a large - scale AWS environment with over 400 accounts poses significant challenges related
to log volume, cost, and security. AWS Guard Duty, enabled across all accounts, generates a substantial number of alerts, overwhelming
the operations team and complicating the configuration of log ingestion into Microsoft Sentinel for the Security Operations Centre (SOC).
The existing setup suffers from inefficiencies in log management, leading to increased operational costs and security concerns. This paper
proposes a comprehensive solution to address these issues through a structured approach involving threat modelling assessment and
secure log management practices. The solution begins with a threat modelling assessment based on Guard Duty use cases to identify high
- frequency alerts and their associated accounts. This analysis helps to design a targeted log management strategy by focusing on critical
alerts and reducing unnecessary log volume. A key component of the proposed solution is the creation of a sandbox environment to
simulate and analyse security issues. This environment enables the evaluation of various log configurations and their effectiveness in
capturing necessary security events. Additionally, a dedicated subnet is used to simulate false access requests and verify whether these
actions generate the required logs. The solution includes filtering relevant logs from a central storage bucket and transferring these
filtered logs to Microsoft Sentinel. Emphasis is placed on secure log configurations to protect data integrity and confidentiality. By
implementing this approach, the solution aims to streamline incident management, reduce costs, and address security issues effectively
across the AWS environment.

Keywords: Security alerts, AWS environment, Guard Duty, Microsoft Sentinel, Security Operations Centre, SOC, Log ingestion, Log
management, Operational costs, Threat modelling, High - frequency alerts, Log volume, Sandbox environment, security events, Subnet, False
access requests, Central storage bucket, Log filtering, Data integrity, Incident management

1. Introduction 1.3 Objectives

1.1. Background This paper aims to address these challenges by proposing a
comprehensive incident management solution tailored to
In the modern digital landscape, effective incident AWS environments. The objectives of this research are:

management is crucial for maintaining the security and ¢ To Develop a Threat Modelling Approach [12] [13]:

operational integrity of IT systems. For organizations Analyse Guard Duty use cases to identify high - frequency
leveraging cloud environments like Amazon Web Services alerts and the accounts generating them. This analysis will
(AWS), managing security incidents can become increasingly guide the creation of a targeted log management strategy.
complex due to the sheer volume of data and alerts generated. * To Design a Sandbox Environment: Implement a
AWS Guard Duty, a threat detection service that continuously simulated environment to evaluate and demonstrate the
monitors for malicious activity and unauthorized behaviour, effectiveness of different log configurations and their
plays a critical role in identifying potential security threats. ability to capture relevant security events.

However, with AWS Guard Duty enabled across a large - ¢ To Implement Secure Log Management [20]: Establish
scale environment of over 400 accounts, the volume of a process for filtering and securely transferring logs from
generated alerts can be overwhelming. This scenario poses a central storage bucket to Microsoft Sentinel, reducing
significant challenges in terms of managing log data, log volume and associated costs while ensuring data
controlling costs, and ensuring security. integrity and confidentiality.

1.2. Problem Statement 1.4 Scope

The operations team faces difficulties in efficiently handling ~ The proposed solution focuses on enhancing incident
and configuring the massive influx of alerts from AWS Guard ~ Management by leveraging threat modelling and sandbox
Duty. The primary challenges include: testing to optimize log management practices. It involves
« Volume and Cost: The high volume of alerts leads to ~ Setting up a sandbox environment to simulate security
increased data storage and processing costs. Identifying scenarios and using a dedicated subnet to validate log capture
and filtering relevant logs from a sea of data becomes a for various access requests. The solution emphasizes secure
time - consuming and expensive task. log configurations and efficient data processing to address
« Security and Configuration: The existing log costand security concerns effectively.
management practices lack organization and fail to ensure
that essential logs are securely configured and ingested 1.5 Significance

into Microsoft Sentinel, where the Security Operations]) o
Centre (SOC) team operates. By implementing a structured approach to incident

management in AWS, organizations can achieve more
efficient log management, reduce operational costs, and

76

https://www.ijsr.net/

enhance security posture. This case study provides a practical
framework for overcoming the challenges associated with
managing large volumes of security alerts and demonstrates
how targeted strategies can lead to improved incident
response and resource optimization.

2. Proposed Solution and Methodology
2.1 Overview of the Solution

The proposed solution aims to streamline AWS incident
management by addressing the challenges of high alert

\ 4
CloudTrail
Activity logs

API gateway

application ROS and SQL Logs

firewall log

Usecase-1Alert-category-1

»
Usecase-2Alert category-2

Query1 Query2
Sub queries based Sub queries based
on key metrics: on key metrics:
Log type and Log type and
metrics mapping to metrics mapping to
Sentinel log Sentinel log

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

volume, cost management, and security configuration. It
involves a multi - faceted approach that includes threat
modelling assessment, a sandbox environment for testing, and
a secure log management strategy. The primary components
of the solution are:

1) Threat Modelling Assessment

2) Sandbox Environment for Log Evaluation [16] [17]

3) Secure Log Management and Filtering

Amazon !

-
Config logs

D% Guard duty findings

Data
connectors.

SN
Usecase-n Alert category-n

Sub queries based
on key metrics:
Log type and
metrics mapping to
Sentinel log

Sentinel Workspace Q

i Usecase base
1 Investigations

v

Security Operations Team

https://www.ijsr.net/

2.2. Threat Modelling Assessment

2.2.1. Purpose and Approach

The first step in the proposed solution is conducting a threat

modelling assessment based on GuardDuty use cases. This

assessment focuses on:

o ldentifying High - Frequency Alerts: Analysing which
alerts are generated most frequently and identifying the
associated AWS accounts. This helps in understanding the
threat landscape and pinpointing where the most critical
security issues are occurring.

o Assessing Alert Relevance: Evaluating the relevance of
different alerts based on their potential impact on security.
This involves prioritizing alerts that indicate high - risk
activities or vulnerabilities.

2.2.2. Design of Threat Models

Based on the threat modeling assessment, design tailored

threat models that address:

o Common Attack Patterns: Recognizing patterns such as
unauthorized access, data exfiltration, and privilege
escalation.

o Account - Specific Threats: Customizing models for
accounts that generate a higher volume of alerts or exhibit
suspicious behavior.

2.3 Sandbox Environment for Log Evaluation

2.3.1 Purpose and Setup

The sandbox environment is designed to simulate various

security scenarios and validate log configurations. This

environment allows for:

« Simulating Security Events: Testing the capture of
security events by generating simulated access requests and
other activities that might trigger GuardDuty alerts.

« Validating Log Configurations: Ensuring that the logs
generated by these simulated events are captured, properly
configured, and available for analysis.

2.3.2. Implementation

« Subnet Configuration: Set up a dedicated subnet to
simulate false access requests and other activities. This
controlled environment helps in verifying whether these
actions generate the necessary logs.

« Log Capture and Analysis: Use the sandbox to filter and
analyze logs, identifying which configurations are most
effective in capturing relevant security events.

2.4. Secure Log Management and Filtering

2.4.1. Centralized Log Storage

The solution involves centralizing logs from all AWS

accounts into a primary storage bucket. This setup enables:

« Consolidated Access: Aggregating logs in a single
location for easier management and analysis.

« Efficient Filtering: Applying filters to extract only the
logs relevant to identified threats.

2.4.2. Filtering and Transfer to Microsoft Sentinel

a) Log Filtering: Implement a filtering process to extract and
retain only the logs that are critical based on the threat
modelling assessment. This helps in reducing the volume
of data and focusing on actionable information.

78

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

b) Secure Transfer: Securely transfer the filtered logs from
the central storage bucket to Microsoft Sentinel. This step
involves:

» Data Encryption: Ensuring that logs are encrypted
during transit to maintain data confidentiality and
integrity.

« Access Controls: Implementing strict access controls to
protect log data and prevent unauthorized access.

2.4.3. Security and Compliance Considerations

« Log Configuration: Review and configure log settings to
ensure compliance with security best practices and
regulatory requirements.

« Ongoing Monitoring and Adjustment: Continuously
monitor the effectiveness of the log management process
and adjust configurations as needed based on evolving
threats and operational requirements.

2.5. Expected Benefits

By implementing this solution, organizations can achieve:

« Reduced Log Volume: By filtering out irrelevant logs,
the volume of data that needs to be processed and stored
is minimized, leading to cost savings.

« Improved Incident Response: Enhanced focus on critical
alerts improves the efficiency of the incident response
process.

o Enhanced Security: Secure log configurations and
centralized management ensure better protection of log
data and adherence to security best practices.

3. Implementation and Configuration

3.1. Implementation Overview

The implementation of the proposed incident management
solution involves several key components: setting up the
sandbox environment, configuring centralized log storage and
filtering mechanisms, and securely transferring logs to
Microsoft Sentinel using Amazon SQS. This section details
the practical steps taken to deploy the solution and the
configuration settings applied.

3.2. Sandbox Environment Setup

3.2.1. Creating the Sandbox

To effectively test and validate the log management strategy,

a sandbox environment was established. This environment

replicates the AWS infrastructure and allows for controlled

simulation of security events. The setup includes:

« Virtual Private Cloud (VPC): A separate VPC was
created to isolate the sandbox environment from
production systems.

« Subnet Configuration: A dedicated subnet within the
VPC was configured to simulate false access requests and
other activities that might generate Guard Duty alerts.

3.2.2. Simulating Security Events

« Event Generation: Scripts and tools were used to
generate a variety of security events, including
unauthorized access attempts and data exfiltration
activities. These simulations help in verifying whether the

https://www.ijsr.net/

logs are captured correctly and meet the required security
standards.

e Log Capture: During the simulation, log data was
captured and analysed to assess the effectiveness of
different log configurations.

3.3. Centralized Log Storage and Filtering

3.3.1. Log Aggregation

« Central Storage Bucket: All logs from AWS Guard Duty
across the 400 accounts were centralized into a primary S3
bucket. This approach consolidates log data into a single
location, facilitating easier management and analysis.

o Access Permissions: Access to the central bucket was
controlled using 1AM policies to ensure only authorized
personnel and systems could interact with the log data.

3.3.2. Filtering Mechanism

e Log Filtering Configuration: Filtering rules were
applied to the centralized logs to extract only those that are
relevant based on the threat modeling assessment. This
process involved:

« AWS Lambda Functions: Custom Lambda functions
were created to automate the filtering process, applying
predefined rules to identify and extract critical logs.

« S3 Event Notifications: Notifications were configured to
trigger Lambda functions whenever new logs are uploaded
to the central bucket.

3.4. Secure Log Transfer Using Amazon SQS

3.4.1. Configuring Amazon SQS

To ensure reliable and secure log transfer, Amazon Simple

Queue Service (SQS) was used:

o Queue Setup: An SQS queue was created to temporarily
hold the filtered logs before they are transferred to
Microsoft Sentinel. This allows for reliable message
queuing and ensures that logs are processed in an orderly
manner.

o Integration with Lambda: Lambda functions were
configured to push filtered logs to the SQS queue. This
setup ensures that logs are efficiently and securely queued
for transfer.

3.4.2. Transferring Logs to Microsoft Sentinel

a) Data Preparation: Logs queued in Amazon SQS were
retrieved and transformed into JSON format for
compatibility with Microsoft Sentinel.

b) Automated Transfer Process: An automated process
was established to transfer logs from SQS to Microsoft
Sentinel:

« AWS Lambda Integration: A Lambda function was
created to poll the SQS queue, process the logs, and
send them to Microsoft Sentinel.

« Data Encryption: Logs were encrypted during transit
to ensure data confidentiality and integrity. AWS KMS
(Key Management Service) was used for encryption.

79

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

3.5. Security and Compliance Configuration

3.5.1. Log Security

Access Controls: Strict IAM policies and security groups
were configured to restrict access to logs and ensure only
authorized entities could access the data.

Audit Trails: AWS CloudTrail was used to monitor
access to log data and ensure compliance with security
policies.

3.5.2. Compliance Considerations

Regulatory Compliance: The log management and
transfer processes were designed to comply with relevant
regulatory requirements, including data protection and
privacy laws.

Continuous Monitoring and Adjustment: Ongoing
monitoring and auditing of log management processes
were established to ensure adherence to best practices and
regulatory standards.

3.6. Testing and Validation

3.6.1. Performance Testing

Load Testing: The solution was subjected to load testing
to ensure it can handle the expected volume of logs and
alerts without performance degradation.

Accuracy Testing: The accuracy of log filtering and
transfer processes was validated by comparing the results
against expected outcomes.

3.6.2. User Feedback and Iteration

SOC Team Feedback: The SOC team provided feedback on
the usability and effectiveness of the filtered logs and transfer
process. This feedback was used to refine the solution and
address any issues identified.

3.7. Results

3.7.1. Achievements

Cost Reduction: The filtering mechanism and use of SQS
significantly reduced the volume of logs, leading to lower
storage and processing costs.

Improved Efficiency: Enhanced log management and
secure transfer improved the efficiency of incident
detection and response.

3.7.2. Lessons Learned

Configuration Challenges: Initial challenges in
configuring the Lambda functions and SQS integration
were addressed through iterative testing and adjustments.
Best Practices: Key best practices for log management
and security were identified and incorporated into the final
solution.

4. Evaluation and Results

4.1 Evaluation Criteria

To assess the effectiveness of the proposed solution, several
criteria were used:

Cost Efficiency: Measuring the reduction in costs
associated with log storage and processing.

https://www.ijsr.net/

e Log Management Efficiency: Evaluating the efficiency
of log filtering and transfer processes.

e Security Posture Improvement: Assessing
improvements in security incident detection and response.

e Operational Impact: Gauging the impact on the
operations team's ability to manage alerts and incidents.

4.2 Performance Metrics

4.2.1. Cost Efficiency

e Storage Costs: The centralized log storage in Amazon S3,
combined with filtering, resulted in a significant reduction
in data volume. The average storage costs decreased by
approximately 35% compared to pre - implementation
levels.

e Processing Costs: The use of Lambda functions and SQS
for automated log management reduced the costs
associated with manual processing and handling. Overall
processing costs were reduced by about 30%.

4.2.2. Log Management Efficiency

e Filter Accuracy: The filtering mechanism achieved an
accuracy rate of over 95% in extracting relevant logs
based on the threat modelling assessment. This high
accuracy reduced the noise in the logs and improved the
relevance of the data ingested into Microsoft Sentinel.

e Processing Time: The time required to process and
transfer logs from S3 to Sentinel was reduced by 50% due
to the automation introduced by SQS and Lambda
functions. This improvement facilitated more timely
incident detection and response.

4.2.3. Security Posture Improvement

e Incident Detection: The refinement in log filtering
enhanced the SOC team's ability to detect critical
incidents. The number of missed critical alerts was
reduced by 25%, leading to quicker identification and
resolution of potential security threats.

e Log Integrity: The encryption and secure transfer of logs
ensured that data integrity was maintained, and no
unauthorized access to sensitive log data was reported.

4.2.4. Operational Impact

o Efficiency Gains: The operations team reported improved
efficiency in managing and analysing alerts. The
streamlined log management process allowed for better
focus on high - priority incidents.

e User Feedback: The SOC team provided positive
feedback on the usability of the filtered logs and the
effectiveness of the automated transfer process. They
noted that the improved log quality and reduced volume
facilitated faster and more accurate incident response.

4.3 Lessons Learned

4.3.1 Configuration Challenges

e Lambda and SQS Integration: Integrating Lambda
functions with SQS required careful configuration and
testing to ensure reliable message processing. Initial
challenges included handling message retries and ensuring
that logs were not lost during transfer.

o Filtering Rules: Fine - tuning filtering rules was essential
to strike a balance between capturing relevant logs and

80

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

avoiding unnecessary data. Iterative adjustments were
made based on testing and feedback.

4.3.2. Best Practices

Automated Log Management: Implementing
automation for log filtering and transfer proved to be
highly effective. Leveraging AWS Lambda and SQS for
these tasks helped in managing large volumes of logs
efficiently.

Secure Transfer: Ensuring secure data transfer through
encryption and access controls was critical for maintaining
data integrity and confidentiality. Regular reviews of
security configurations were necessary to address
emerging threats.

4.4. Summary of Results

The implementation of the proposed solution led to notable
improvements in cost efficiency, log management, and
security posture. Key achievements included a significant
reduction in storage and processing costs, enhanced log
filtering accuracy, and better incident detection capabilities.
The solution also provided valuable insights into best
practices for managing AWS security alerts and optimizing
incident response processes.

4.5. Future Work

4.5.1. Continuous Improvement

Ongoing Monitoring: Continuous monitoring and
refinement of the log management process are necessary
to adapt to evolving security threats and operational needs.
Scalability: Future work will involve scaling the solution
to accommodate changes in the environment, such as the
addition of new AWS accounts or changes in alert volume.

4.5.2. Enhancements

Advanced Analytics: Exploring advanced analytics and
machine learning techniques to further enhance threat
detection and response.

Integration with Other Tools: Evaluating integration
with other security tools and platforms to provide a more
comprehensive incident management solution.

5. Conclusion and Recommendations

5.1. Conclusions

The implementation of the proposed AWS incident
management solution achieved significant improvements
across several dimensions:

5.1.1. Cost Efficiency

The solution led to a 35% reduction in storage costs due to
effective log filtering and consolidation. By centralizing logs
in Amazon S3 and applying automated filtering, the overall
volume of stored data was reduced, which directly impacted
cost savings.

5.1.2. Log Management

Automating the log filtering and transfer processes using
AWS Lambda and Amazon SQS improved the efficiency of
handling logs. The accuracy of filtering exceeded 95%,

https://www.ijsr.net/

ensuring that only relevant logs were processed and sent to
Microsoft Sentinel. This resulted in a more manageable
volume of high - quality log data, which is critical for
effective security operations.

5.1.3. Security Posture

The enhancements made in log management contributed to
better incident detection and response. The reduction in
missed critical alerts by 25% indicates that the solution
effectively improved the SOC team's ability to identify and
address potential security threats. Secure log transfer
practices - maintained data integrity and confidentiality.

5.1.4. Operational Impact

The streamlined log management process allowed the SOC
team to focus on high - priority incidents, improving
operational efficiency. Positive feedback from the SOC team
highlights the effectiveness of the filtered logs and the
automated processes in facilitating faster incident response.

5.2. Recommendations

Based on the findings from the implementation, the following
recommendations are provided:

5.2.1. Continuous Improvement

o Ongoing Monitoring: Regularly review and monitor the
log management processes to ensure they remain effective
and aligned with evolving security requirements. Adjust
configurations and filtering rules as necessary to address
new types of threats or changes in the log data.

o Performance Reviews: Conduct periodic performance
reviews to evaluate the impact of the solution on cost,
efficiency, and security. Use these reviews to make
informed adjustments and optimizations.

5.2.2. Scalability and Adaptability

« Scalability Planning: As the environment grows, ensure
that the log management solution can scale accordingly.
This includes accommodating additional AWS accounts,
increasing data volume, and integrating new security tools
or platforms.

e« Adapt to Emerging Threats: Stay informed about
emerging security threats and update threat modelling and
log filtering criteria to address new risks effectively.
Continuously adapt the solution to meet the evolving
threat landscape.

5.2.3. Enhancements

o Advanced Analytics: Consider incorporating advanced
analytics and machine learning techniques to further
enhance threat detection and response. These technologies
can provide deeper insights and improve the accuracy of
incident detection.

« Integration with Other Tools: Explore opportunities to
integrate the log management solution with other security
tools and platforms. This can provide a more
comprehensive and cohesive approach to incident
management and threat response.

5.2.4 Best Practices [11]
« Automation: Leverage automation wherever possible to
handle repetitive tasks and improve efficiency. Automated

81

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

log filtering and transfer processes are essential for
managing large volumes of data effectively.

« Security Measures: Implement robust security measures
for log data, including encryption, access controls, and
regular audits. Ensuring the security of log data is critical
for maintaining data integrity and protecting against
unauthorized access.

5.3. Future Work

Future efforts should focus on expanding the solution's
capabilities, exploring new technologies, and continuously
improving the incident management processes. Collaboration
with security experts and staying updated on industry best
practices will be crucial for maintaining an effective and
secure incident management system.

5.4 Conclusion

In this study, we addressed the significant challenges of
managing security alerts across a large - scale AWS
environment with over 400 accounts. The analysis focused on
optimizing the management of AWS GuardDuty alerts to
alleviate the overwhelming volume of logs, reduce
operational costs, and enhance security posture.

Key Findings:

e High Volume of Alerts: AWS GuardDuty generates a
substantial number of alerts, which can overwhelm
security operations teams and complicate log management
processes.

o Threat Modeling Assessment: By performing a threat
modeling assessment based on GuardDuty use cases, we
identified high - frequency alerts and associated accounts.
This targeted approach allowed us to focus on critical
alerts and reduce unnecessary log volume.

« Sandbox Environment: Implementing a sandbox
environment enabled the simulation and analysis of
security issues, allowing us to evaluate various log
configurations and their effectiveness. This approach
helped in fine - tuning the log management strategy and
validating the generation of necessary logs.

o Secure Log Management: We proposed a method for
filtering relevant logs from a central storage bucket and
transferring them to Microsoft Sentinel. This method
emphasizes secure log configurations to ensure data
integrity and confidentiality.

Implications:

Operational Efficiency: The proposed approach
streamlines incident management by focusing on high -
priority alerts and reducing the volume of logs. This
efficiency helps in better utilization of resources and
improves response times.

Cost Reduction: By optimizing log management and
reducing the volume of unnecessary logs, organizations
can lower their operational costs associated with log
ingestion and storage.

Enhanced Security: The use of a sandbox environment and
secure log configurations strengthens the overall security
posture by ensuring that critical security events are
captured and analyzed effectively.

https://www.ijsr.net/

In conclusion, the proposed solution offers a structured
approach to addressing the challenges of managing security
alerts in a large - scale AWS environment. By focusing on
threat modeling, sandbox testing, and secure log
management, organizations can improve operational
efficiency, reduce costs, and enhance their security posture.
Future research could explore further optimization techniques
and the integration of additional security tools to build on the
findings of this study.

References and Appendices

References

[1] AWS. (2024). Amazon S3 Documentation. Retrieved
from https: //docs. aws. amazon. com/s3/index. html

[2] AWS. (2024). AWS Lambda Documentation.

Retrieved from https: //docs. aws. amazon.
com/lambda/latest/dg/welcome. html
AWS. (2024). Amazon SQS Documentation. Retrieved
from https: //docs. aws. amazon. com/sgs/index. html
Microsoft. (2024). Microsoft Sentinel Documentation.
Retrieved from https: //docs. microsoft. com/en -
us/azure/sentinel/

AWS. (2024). Amazon GuardDuty Documentation.

Retrieved from https: //docs. aws. amazon.
com/guardduty/latest/ug/what - is - guardduty. html
AWS. (2024). AWS ldentity and Access Management
Documentation. Retrieved from https: //docs. aws.
amazon. com/IAM/latest/UserGuide/
AWS. (2024). AWS CloudTrail
Retrieved from https: //docs.
com/cloudtrail/index. html
AWS. (2024). AWS Key Management Service
Documentation. Retrieved from https: //docs. aws.
amazon. com/kms/latest/developerguide/

AWS. (2024). Threat Modeling in AWS GuardDuty.
Retrieved from https: //aws. amazon. com/guardduty/
AWS. (2023). Amazon GuardDuty: Threat detection
service. Retrieved from AWS GuardDuty.

McGowan, J. (2021). AWS Security Best Practices.
Amazon Web Services. Retrieved from AWS Security
Best Practices.

Shostack, A. (2014). Threat Modeling: Designing for
Security. Wiley.

OWASP Foundation. (2021). OWASP Threat
Modeling. Retrieved from OWASP Threat Modeling.
Kouns, R., & Minoli, D. (2011). Information Security:
Principles and Practice. Wiley.

Ross, R., & Fiske, K. (2017). NIST Special Publication
800 - 92: Guide to Computer Security Log
Management. National Institute of Standards and
Technology. Retrieved from NIST SP 800 - 92.
Kaspersky. (2021). Sandbox Technology: Best
Practices and Considerations. Retrieved from
Kaspersky Sandbox.

Babcock, C. (2019). Using a Security Sandbox to Test
and Validate Threats. InfoSecurity Magazine.
Retrieved from InfoSecurity Magazine.

Baran, T. (2022). Integrating AWS Logs with Microsoft
Sentinel. Microsoft Tech Community. Retrieved from
Microsoft Tech Community.

[3]
[4]

[5]

[6]

Documentation.
aws. amazon.

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

82

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

[19] Awuerbach, D., & Wurm, L. (2019). Securing Log Data:
A Practical Approach. SANS Institute. Retrieved from
SANS Institute.

Krombholz, K., & Hengartner, U. (2018). Security
Considerations for Log Management. ACM Digital
Library. Retrieved from ACM Digital Library.
Bibliography

[20]

Books:
[1] Shostack, A. (2014). Threat modeling: Designing for
security. Wiley.

Reports and Guides:

[1] AWS. (2023). Amazon GuardDuty: Threat detection
service. Retrieved from https: //aws. amazon.
com/guardduty/

McGowan, J. (2021). AWS security best practices.
Amazon Web Services. Retrieved from https: //aws.
amazon. com/whitepapers/aws - security - best -
practices/

Ross, R., & Fiske, K. (2017). NIST special publication
800 - 92: Guide to computer security log management.
National Institute of Standards and Technology.
Retrieved from https: /Invipubs. nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800 -
92. pdf

Auerbach, D., & Wurm, L. (2019). Securing log data:
A practical approach. SANS Institute. Retrieved from
https: //lwww.sans. org/white - papers/39905/

(2]

(3]

[4]

Websites and Articles:

[5] OWASP Foundation. (2021). OWASP threat
modeling. Retrieved from https: //owasp. org/www -
community/Threat_Modeling

Kaspersky. (2021). Sandbox technology: Best
practices and considerations. Retrieved from https:
Ilwww.kaspersky. com/blog/sandboxing - tech/
Babcock, C. (2019). Using a security sandbox to test
and validate threats. InfoSecurity Magazine.
Retrieved from https: //www.infosecurity - magazine.
com/news/using - security - sandbox - test - validate/
Microsoft. (2023). Microsoft Sentinel documentation.
Retrieved from https: //docs. microsoft. com/en -
us/azure/sentinel/

Baran, T. (2022). Integrating AWS logs with Microsoft
Sentinel. Microsoft Tech Community. Retrieved from
https: //techcommunity. microsoft. com/t5/security -
compliance - and - identity/integrating - aws - logs -
with - microsoft - sentinel/

Krombholz, K., & Hengartner, U. (2018). Security
considerations for log management. ACM Digital
Library. Retrieved from https: //dl. acm.
0rg/doi/10.1145/3172547.3172565

6]

[7]

(8]

[9]

[10]

6.2. Appendices
Appendix A: Configuration Scripts

Sentinel query to analyse top 10 accounts for a particular use
case:

AWSGuardDuty

| where Description contains "API"

| summarize Count=count () by Accountld

https://www.ijsr.net/
https://docs.aws.amazon.com/s3/index.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/sqs/index.html
https://docs.microsoft.com/en-us/azure/sentinel/
https://docs.microsoft.com/en-us/azure/sentinel/
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cloudtrail/index.html
https://docs.aws.amazon.com/cloudtrail/index.html
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/integrating-aws-logs-with-microsoft-sentinel/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://docs.microsoft.com/en-us/azure/sentinel/
https://docs.microsoft.com/en-us/azure/sentinel/
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/integrating-aws-logs-with-microsoft-sentinel/
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/integrating-aws-logs-with-microsoft-sentinel/
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/integrating-aws-logs-with-microsoft-sentinel/

| top 10 by Count desc

s3_client = boto3.client(’

CENTRAL_BUCKET = °
CLEANSED_BUCKET =

cleanse_logs(data):

filtered lines = [line for line ir

R
lambda_handler(event, context):
event["Records’]

']["bucket][*nane"]
10" object"I['key']

r record
bucket_name = record[’

object_key = record|

3

data.decode("’
\n'.join(filtered_lines).encode('utf-8'

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

Lambda function to trigger filtering script on getting data
input as log in central bucket

response = s3_client.get object(Bucket=bucket_name, Key=object key)

compressed_file = response|].read()

f object_key.endswith('.gz"):

h gzip.GzipFile(fileobj=io.BytesIO(compressed file))

file_content gzip_file.read()

file content = compressed file

cleansed data cleanse_logs(file content)

new_key = object_key.replace(

buffer = io.BytesIO()
th gz pFile(fileobj=buffer, mode=
gz_file.write(cleansed_data)
buffer.seek(0)

s3_client.put_object(Bucket=CLEANSED BUCKET, Ke

print(f"Pr

n {
1

200,

: json.dumps

gzip_file:

).replace(’.gz

ew_key, Body=buffer.read

CLEANSED_BUCKET

, ContentType="3j

new_key}")

Filtering shell script to search for necessary keywords from each services and extracting only that and storing in another bucket

83

https://www.ijsr.net/

Keywords for specific services to filter from the central
bucket:

AWS Logs Keywords:

e AssumeRole|CreateUser|DeleteUser|PutBucketPolicy|Get
Object|PutObject|Describelnstances|DescribeSecurityGro
ups|DescribeNetworklInterfaces|ModifyVpcAttribute|Ass
ociateVpcCidrBlock|ReplaceNetworkAclEntry|DeleteBu
cketPolicy|PutBucketPublicAccessBlock|AuthorizeSecur
ityGrouplngress|ModifyInstanceAttribute|StartInstances

VPC Flow Logs Keywords:

o Accept|Reject|Unauthorized AccessChanges|ResourceMo
difications|SecurityGroupChanges|NetworkInterfaceCha
nges|ConfigurationltemChangeNotification|Configuratio
nSnapshotDeliveryCompleted|
Port|Probe|Network|Ingress|Egress|SecurityGroup|Descri
beNetworkInterfaces|DescribeSecurityGroups|ModifyVp
cAttribute|AssociateVpcCidrBlock|ReplaceNetwork AclE
ntry|CreateNetworkAcl|CreateNetworkAclEntry|DeleteN
etworkAcl|DeleteNetworkAclEntry|DescribeNetworkAcl
s|GetWebACL|UpdateWebACL|AssociateWebACL |Disa
ssociateWebACL |ListNetworkAcls|ListWebACLs|GetBu
cketAcl|PutBucketAcl|ReplaceNetworkAclAssociation|Li
stDistributionsByWebACL Id|ListResourcesForwebACL
|[NetworkInterfaceChanges|SecurityGroupChanges|Netwo
rkAclChanges|VVPCFlowLogs|srcAddr|dstAddr|srcPort|ds
tPort|protocol|action|bytes|packets|interfaceld|edgeL ocati
on|queryName|query Type|resolverlp|responseCode|[at]ti
mestamp|[at]message

Configuration and Access Logs Keywords:

o AccessDenied|AccessGranted|PublicAccess|ConsoleLogi
n|CreateAccessKey|DeleteAccessKey|RootLogin|RootAc
countUsage|StopLogging|DeleteTrail|UpdateTrail|Loggin
gConfigurationChange|ServerAccessLogChanges|S3Buc
ketPolicyChange|S3BucketAclChange|GetObject|PutObj
ect|DeleteObject

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

> "$local_file

Application Logs Keywords:

o [at]timestamp|[at]ingestionTime|[at]logStream|[at]messa
ge|[at]loglaccountld|endTime|interfaceld|logStatus|startTi
me|version|action|bytes|dstAddr|dstPort|packets|protocol|s
rcAddr|srcPortjedgeLocation|ednsClientSubnet|hostZonel
d|queryName|queryTimestamp|queryType|resolverlp|resp
onseCode|[at]requestld|[at]duration|[at]billedDuration|[at
]type|[atlmaxMemoryUsed|[atjmemorySize|[at]xray Trac
eld|[at]xraySegmentld|bucket_owner|bucket|time|remote
_ip|requester|request_id|operation|key|request_urihttp_st
atuslerror_code|bytes_sent|object_size|total_time|turnarou
nd_time|referer|user_agent|version_id|host_id|signature_v
ersion|cipher_suite|authentication_type|host_header|tls_v
ersion|bucket_name|bucket_arnjevent_time

Resource based segregation of keywords to filter out:

IAM (Identity and Access Management)
- Roles and Policies:

- "AssumeRole’

- “CreatePolicy”

- "CreatePolicyVersion®

- "DeletePolicy”

- "DeletePolicyVersion

- "GetPolicy”

- "PutPolicy’

- “AttachPrincipalPolicy”

- "DetachPrincipalPolicy”

- "ListPolicyPrincipals’

- “SimulatePrincipalPolicy”

- “AttachThingPrincipal®

- "DetachThingPrincipal®

- “AssociatePrincipalWithPortfolio™

- "DisassociatePrincipalFromPortfolio®
- "ListPrincipal®

- "ListPrincipalPolicies

- “ListPrincipalsForPortfolio®

- "ListPrincipal Things

- "ListThingPrincipals

- "GetContextKeysForPrincipalPolicy

https://www.ijsr.net/

“CreateApiKey”
“UpdateApiKey”
“DeleteApiKey”
“CreateGraphqlApi’
“UpdateGraphqglApi®
“DeleteGraphqlApi’
“CreateRestApi”
“UpdateRestApi”
“DeleteRestApi’
"GetApiGateway”
“GetApiKey®
"GetApiKeys®
“GetGraphglApi
“GetRestApi”
“GetRestApis’
“ListApiKeys®
“ListGraphglApis’
“PutRestApi’
“ImportApiKeys®
“ImportRestApi’
"ListApiKeys

- "ListGraphglApis’

Access Keys and Users:

- "ConsoleLogin’

- "RootLogin’

- "RootAccountUsage’

- "CreateAccessKey"

- "DeleteAccessKey”

- “UploadSSHPublicKey"
- “UpdateSSHPublicKey"
- "DeleteSSHPublicKey®
- "GetSSHPublicKey®

- "ListSSHPublicKeys®

EC2 (Elastic Compute Cloud)
Instances

- "Createlnstance”

- "Deletelnstance’

- “StartInstance’

- “Stoplnstance’

- "Terminatelnstance’
"ModifyInstanceAttribute’
"RebootlInstance’
“Describelnstances’
“DescribelnstanceAttribute”
“DescribelnstanceHealth®
“DescribelnstanceStatus’
“AddlInstanceGroups
“Assigninstance’
“AssociatelamInstanceProfile
“Attachlnstances’
“AttachInstancesToLoadBalancer
“DetachlInstances’
“DetachiInstancesFromLoadBalancer’
“DisassociatelamInstanceProfile”
“StartInstances’

“Stoplnstances

“Runinstances’

"Rebootlnstances’
“Updatelnstance’

- "UpdatelnstanceAlias

- "UpdatelnstanceCustomHealthStatus®

85

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

- "UpdateManagedInstanceRole

- "TerminatelnstancelnAutoScalingGroup
- “Unassigninstance”

- “"UnmonitorInstances’

- “GetlInstance’

- “GetlInstancePortStates

- “GetlnstanceSnapshot™

- "DescribeEC2InstanceLimits’

Instance Management:

- "CreatelnstanceExportTask”

- “CreatelnstanceProfile

- “Createlnstances’

- "CreatelnstancesFromSnapshot
- “CreatelnstanceSnapshot

- “DeletelnstanceProfile”

- "DeletelnstanceSnapshot

- "DescribelnstancesHealth™

- "ListInstanceProfiles

- "ListInstanceProfilesForRole’

- "ListInstances’

- "ListNotebookInstances®

- "ListOnPremiseslInstances’

- "ListApplicationInstanceCertificates
- "ListContainerInstances’

S3 (Simple Storage Service)
Buckets:

- "PutBucketPolicy”

- "GetBucketAcl®

- "PutBucketAcl’

- "DeleteBucketPolicy”

- "PutBucketPublicAccessBlock®
- "GetBucketPolicy

- "PutBucketAcl®

- "S3BucketPolicyChange

- "S3BucketAclChange’

- "GetObject’

- "PutObject’

- "DeleteObject’

Block Public Access:

- "Block Public Access’

- "PublicAccessBlock™

- "PutBucketPublicAccessBlock™
- "DeleteBucketPolicy”

VPC (Virtual Private Cloud)
Network ACLs and Security:
- "CreateNetworkAcl®

- “CreateNetworkAclEntry

- "DeleteNetworkAcl®

- "DeleteNetworkAclEntry”

- "ReplaceNetworkAclAssociation
- "ReplaceNetworkAclEntry
- "DescribeNetworkAcls

- "ListNetworkAcls®

- "ListWebACLs"

- "GetWebACL®

- "UpdateWebACL"

- "AssociateWebACL®

- "DisassociateWebACL®

- "GetBucketAcl®

https://www.ijsr.net/

- "PutBucketAcl’®
- "ReplaceNetworkAclEntry”
- "DescribeNetworklInterfaces

RDS (Relational Database Service)

- "CreateDBInstance’

- “CreateDBInstanceReadReplica’

- "DeleteDBInstance’

- "RebootDBInstance’

- "ModifyDBInstance’

- "RestoreDBInstanceFromDBSnapshot®

- "RestoreDbInstanceFromS3”

- "RestoreDBInstanceToPointInTime’

- "DescribeDBInstances’

- “DescribeOrderableDBInstanceOptions’
- "DescribeReservedDBInstances

- “DescribeReservedDBInstancesOfferings
- “PurchaseReservedDBInstancesOffering”
- “PurchaseScheduledInstances’

CloudTrail (Logging and Monitoring)
Logging:

- "StopLogging’

- "DeleteTrail

- "UpdateTrail

- "Logging’

- “ServerAccessLogChanges’

- "AccessDenied’

- "AccessGranted

- “UnauthorizedAccessChanges’

- "LoggingConfigurationChange’

- "ConfigurationltemChangeNotification

- “ConfigurationSnapshotDeliveryCompleted

Traffic Policy and Load Balancing
Traffic Policies

- "CreateTrafficPolicy

- “CreateTrafficPolicyInstance

- “CreateTrafficPolicyVersion®
“DeleteTrafficPolicy

- “DeleteTrafficPolicylnstance

- “DescribeTrafficPolicylnstances’

- "ListTrafficPolicylnstances’

- "UpdateTrafficPolicyInstance’

- “GetTrafficPolicylnstance

- “GetTrafficPolicylnstanceCount’

- "DescribeLoadBalancerPolicy Types

Application Services and Miscellaneous
Applications and Instances

- “CreateApplicationInstance’

- “CreateApplicationlInstanceCertificate’

- "DeleteApplicationInstance’

- "DeleteApplicationinstanceCertificate”

- "UpdateApplicationinstanceStatus’

- "CreateNotebooklInstance’

- “CreateNotebooklInstanceLifecycleConfig®
- "UpdateNotebooklInstance’

- "UpdateNotebooklInstanceLifecycleConfig®
- "GetNotebooklInstance”

- "ListNotebooklInstances

- "ListNotebooklInstanceLifecycleConfigs’

86

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

Log Volume Breakdown

Original Log Size:

o Total Bucket Size for One Account: 461 MB
¢ Average Daily Log Volume: 10.21 GB

Filtering Impact
Filtering is applied based on specific keywords from
CloudTrail and VPC logs. The filtering process aims to
reduce the volume of log data by focusing on relevant use
cases.
« Daily Log Size for One Use Case:

Unfiltered: 13 - 14 MB per use case
« Total Number of Use Cases: 56

Filtering Efficiency

Given that common keywords are distributed across 22.5 use
cases, we perform the following calculations to estimate the
impact of filtering:

Filtered Log Size Calculation:

« Filtered Size for One Day: 13.5 MB per use case
« Number of Use Cases (Common): 22.5

e Total Use Cases: 56

« Total Daily Size After Filtering:

Filtered Size=13.5 MBx22.5 use casesx340 (accounts) =6685
MB=~6.5 GB per day\text{Filtered Size} = 13.5 \text{ MB}
\times 22.5 \text{ use cases} \times 340 \text{ (accounts) } =
6685 \text{ MB} \approx 6.5 \text{ GB per day}Filtered
Size=13.5 MBx22.5 use casesx340 (accounts) =6685
MB~6.5 GB per day

Storage Reduction
« Before Filtering:
Original Daily Size: 10.21 GB

« After Filtering:
Filtered Daily Size: 6.5 GB

o Percentage Reduction:
Reduction:

Reduction Percentage= (10.21 GB-6.5 GB10.21 GB)
x100~35%\text{Reduction Percentage} = \left (\frac{10.21
\text{ GB} - 6.5 \text{ GB}}{10.21 \text{ GB}} \right) \times
100 \approx 35\%Reduction Percentage= (10.21 GB10.21
GB-6.5 GB) x100=35%

Filtering logs effectively reduces the volume of data by
approximately 35%, from 10.21 GB to 6.5 GB per day. This
reduction in log size is achieved by focusing on relevant
keywords and use cases, thus optimizing storage and
processing.

Table: Log size before and after filtering

Description Size (GB) | Reduction (%)
Original Daily Size | 10.21 GB -
Filtered Daily Size 6.5 GB 35%
Reduction Amount | 3.71 GB -

https://www.ijsr.net/

