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Abstract: To enhance the global search and local optimization capabilities of swarm intelligence algorithms in robot path planning, this 

paper proposes an improved particle swarm optimization algorithm (HSB-PSO) that incorporates a dynamic strategy. This algorithm 

features three key innovations: First, a dynamic adaptive spiral strategy is introduced to adaptively guide particles toward the optimal 

solution by adjusting spiral parameters at different iteration stages, enhancing the particles’ global exploration capability and 

convergence accuracy. Second, a probability-decayed black kite behavior mechanism is designed to simulate the perturbation behavior of 

black kites during predation, and a probabilistic control factor is introduced to dynamically adjust its influence, effectively improving 

search diversity and avoiding local optima. Finally, an elite-guided on-demand reverse learning strategy is combined to selectively perform 

reverse learning on elite particles based on the current state of the swarm, further enhancing local search and convergence speed. 

Simulation experiments demonstrate that the HSB-PSO algorithm demonstrates superior optimization capability and path quality in 

multiple typical path planning test scenarios, validating the effectiveness and practical value of the proposed strategy.  
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1. Introduction 
 

In recent years, with the rapid development of artificial 

intelligence and automation technologies, robots have been 

increasingly applied in fields such as warehouse logistics, 

intelligent manufacturing, and service industries. Path 

planning, as a core component of autonomous navigation 

systems, directly affects the operational efficiency and task 

performance of robots. Traditional path planning methods, 

such as A* and Dijkstra algorithms, exhibit certain limitations 

when dealing with complex dynamic environments or 

high-dimensional search spaces. As a result, they are 

gradually being replaced by swarm intelligence algorithms, 

with Particle Swarm Optimization (PSO) being a 

representative example. 

 

PSO has been widely applied to 2D and 3D path planning 

problems due to its simple structure, strong parallelism, and 

excellent global search capability. However, standard PSO 

still suffers from issues such as premature convergence to 

local optima, slow convergence speed, and insufficient search 

accuracy in complex environments. To address these 

shortcomings, many researchers have proposed various 

improvements and enhancements to the PSO algorithm in 

recent years. 

 

For instance, Shankar, M et al. (2022), in their paper “A 

hybrid path planning approach combining artificial potential 

field and particle swarm optimization for mobile robot [1]”, 

introduced an adaptive mutation mechanism and local search 

operator, which significantly improved the smoothness and 

stability of the generated paths. Pengfei Yu et al. (2024), in “A 

Dynamic Path Planning Method for Mobile Robot Based on 

Virtual Potential Field and Virtual Impedance Model [2]”, 

incorporated a multi-strategy cooperation mechanism, 

including crowding guidance and dynamic learning factor 

adjustment, effectively enhancing the algorithm’s robustness 

and adaptability to complex environments. ChangSheng 

Huang et al. (2023), in “APSO: An A∗-PSO Hybrid Algorithm 

for Mobile Robot Path Planning [3]”, proposed the use of 

environment-aware dynamic factors, enabling the algorithm 

to maintain strong optimization capability and fast response in 

dynamic obstacle environments. In addition, Qijiang Su et al. 

(2024), in “Path planning for power inspection robot based 

on improved PSO algorithm and dynamic window approach 
[4]”, introduced a mechanism combining elite memory and 

opposition-based learning to strengthen local exploitation and 

preserve historical optima. 

 

These research outcomes demonstrate the strong potential of 

Particle Swarm Optimization in multi-strategy integration and 

dynamic optimization, providing valuable insights and solid 

support for future algorithm design. 

 

To address the limitations of PSO in path planning 

applications, this paper proposes an improved Particle Swarm 

Optimization algorithm [5], HSB-PSO, which integrates 

multiple strategies. The algorithm introduces three key 

innovations from the perspectives of global exploration, local 

exploitation, and convergence control: 

 

1) A dynamically adaptive spiral strategy guides particles to 

converge along the optimal trajectory; 

 

2) A probabilistic decay-based Black Kite behavior 

mechanism enhances population perturbation ability; 

 

3) An elite-guided on-demand opposition-based learning 

mechanism improves local search efficiency. 

 

These strategies complement each other, significantly 

enhancing the algorithm’s optimization capability and path 

feasibility in complex environments, and providing effective 

support for efficient path planning of robots in real-world 

scenarios [6]. 
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2. Environment Modeling and Problem 

Description 
 

In mobile robot path planning, the entire planning process is 

typically divided into two stages. The first stage is the 

environment modeling stage, where the robot’s motion space 

model is constructed using sensor data or predefined 

information to represent obstacles, free space, and boundary 

information in the environment [7]. The second stage is the 

path search stage, in which intelligent algorithms or classical 

pathfinding methods are applied based on the established 

environment model to generate a feasible path from the start 

point to the target point while avoiding obstacles. 

 

This paper adopts the Grid Method for environment modeling, 

based on the following considerations: 

 

1) The grid method can intuitively represent obstacle regions 

of arbitrary shapes, offering strong adaptability to various 

environments; 

 

2) Its unified data structure facilitates position representation 

and path feasibility evaluation within the Particle Swarm 

Optimization (PSO) algorithm; 

 

3) The grid model supports dynamic updates of obstacle 

information, making it suitable for extensions in dynamic 

environments. 

 

By using grid-based modeling, the continuous motion space is 

discretized, enabling the improved PSO algorithm to 

efficiently search and generate optimal paths that satisfy 

practical feasibility constraints. Specifically, the continuous 

2D plane is discretized into a number of equally sized 

rectangular grid cells, forming a two-dimensional grid matrix 

𝐺 ∈ 𝑅𝑀×𝑁, where 𝑀 and 𝑁 represent the number of rows and 

columns [8], respectively. Each grid cell 𝐺𝑖,𝑗  has a unique 

coordinate index indicating its position in the overall space. 

During the modeling process, all obstacle information in the 

environment is mapped onto the corresponding grid cells. 

The following rules are defined: 

 

⚫ Free cell (traversable): Set to 0, indicating that the robot 

can move freely; 

 

⚫ Obstacle cell (non-traversable): Set to 1, indicating the 

presence of an obstacle in the cell, which the robot 

cannot pass through. 

 

In the constructed 2D grid environment, to achieve optimal 

path planning from the start point to the destination, it is first 

necessary to establish the conversion relationship between 

grid indices and their spatial coordinates. Assuming the 

environment has a size of 𝑁 × 𝑁 , each grid cell can be 

uniquely represented through a mapping between its index 

mm and its position coordinates (𝑥, 𝑦) . The mapping 

relationship is as follows: 

 𝑚 = (𝑥 − 1) × 𝑁 + 𝑦 (1) 

 𝑦 = mod(𝑚, 𝑁) (2) 

 𝑥 = int (
𝑚

𝑁
) + 1 (3) 

Here, 𝑚 denotes the index of the current grid cell, while 𝑥 and 

𝑦 represent the row and column coordinates of the robot in the 

2D space. This mapping approach facilitates the linear 

representation of the grid environment and simplifies path 

encoding. 

 

During the path planning process, the objective is to search for 

a path sequence 𝑃 from the starting grid cell 𝑃1 to the target 

grid cell 𝑃𝑛 , such that the total path length is minimized while 

avoiding all obstacle cells. The corresponding optimization 

objective function can be expressed as: 

 𝑚𝑖𝑛𝑓(𝑃) = ∑  
|𝑃|
𝑖=2 𝑑(𝑝𝑖 , 𝑝𝑖−1)𝑃 ⊂ 𝑊, 𝑃 ∩ 𝑂 = ∅ (4) 

Here, 𝑃 denotes the set of path points, 𝑊 represents the set of 

all traversable grid cells, and 𝑂 is the set of obstacle points. 

The term 𝑑(𝑝𝑖 , 𝑝𝑖−1)  represents the Euclidean distance 

between two consecutive points in the path. The path planning 

must ensure that 𝑃 and 𝑂 are disjoint, thereby guaranteeing a 

collision-free and feasible path. 

 

In this paper, the path planning problem is transformed into 

the process of optimizing the sequence of path points 𝑃. With 

the help of the grid index mapping, the Particle Swarm 

Optimization algorithm can directly encode and optimize the 

path within a one-dimensional search space. By defining an 

appropriate fitness function and constraint conditions, the 

algorithm ensures both path feasibility and the global 

objective of minimizing path length. 

 

Ultimately, the proposed improved PSO algorithm can 

effectively compute the optimal path point set 𝑃best, which 

satisfies obstacle avoidance constraints. A schematic diagram 

of the 2D grid map environment and the path planning 

problem is shown in Figure 1 below: 

 
Figure 1: 2D raster map environment 

3. Methodology 
 

3.1 Particle Swarm Optimization Algorithm 

 

Particle Swarm Optimization (PSO) is a population-based 

stochastic optimization algorithm inspired by swarm 

intelligence, originally proposed by Kennedy and Eberhart. 

The algorithm simulates the foraging behavior of bird flocks 

to search for the optimal solution. In PSO, each particle 

represents a potential solution in the search space, and all 

particles form a swarm. During the search process, each 

particle updates its position based on both its individual 

experience and the collective experience of the swarm, 

gradually approaching the global optimum. 
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In this study, the path planning problem is abstracted as an 

optimization problem that seeks the optimal path solution 

within a search space. It is assumed that there are 𝑁 massless 

and dimensionless particles moving in a 𝐷  dimensional 

search space, where each particle represents a candidate 

solution to the path planning problem. Through the simulation 

of social cognition and individual learning, each particle 

updates its position and velocity during the search process, 

thereby adjusting its search direction and step size to 

approximate the optimal path [11]. 

 

Let the position of the i − 𝑡ℎ  particle be denoted as 𝑥𝑖 =
[𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷], where i=1,2, … ,N, and each component 𝑥𝑖1 

corresponds to a key waypoint in the path, represented by its 

coordinate or index in the map [9]. 

 

In standard PSO, each particle has both a position vector and a 

velocity vector, and its update rules in the search space are as 

follows: 

𝑣𝑖
𝑘+1 = 𝑤 ⋅ 𝑣𝑖

𝑘 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑘 − 𝑥𝑖
𝑘) (5) 

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (6) 

In each generation, particles update their states based on 

guidance from their personal best position 𝑃𝑖  and the global 

best position 𝑔𝑘 , continuously approaching better solutions 

[15]. Let the fitness function of the algorithm be denoted as 

Fitness, then the expressions for the personal best position and 

the global best position are as follows [10]: 

 𝑝𝑖
𝑘+1 = {

𝑝𝑖
𝑘 , 𝑖𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖

𝑘+1) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖
𝑘)

𝑥𝑖
𝑘+1, 𝑖𝑓𝐹𝑖𝑡𝑛𝑛𝑒𝑠𝑠(𝑥𝑖

𝑘+1) < 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖
𝑘)

 (7) 

𝑔𝑖
𝑘 = 𝑚𝑖𝑛{𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝1

𝑘), 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝2
𝑘), ⋯ , 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑁

𝑘 )} (8) 

3.2 Proposed Algorithm 

 

3.2.1 Dynamic Adaptive Spiral Strategy 

 

In standard particle swarm optimization algorithms, particle 

search behavior is typically controlled by fixed parameters, 

making it difficult to adapt to the search requirements of 

different optimization stages. This is particularly prone to 

problems in path planning, such as insufficient initial search 

and premature convergence in the later stages. To enhance the 

particle swarm’s global exploration and local exploitation 

capabilities, this paper proposes a dynamic adaptive spiral 

strategy that improves both the perturbation factor and the 

guidance direction. 

 

1) Adaptive spiral perturbation factor 

 

During the particle spiral movement process, the disturbance 

amplitude is a key factor in controlling search accuracy. To 

this end, this paper designs a spiral disturbance parameter 𝐿 

and a contraction factor 𝑧  that adjust dynamically with 

iterations, Here, 𝐿  controls the direction and range of the 

disturbance, with the disturbance decreasing as iterations 

progress; 𝑧 governs the nonlinear variation of the disturbance 

intensity, enabling the particle’s movement to have better 

stability and adaptability. as detailed below: 

 𝐿 = (2 ⋅ 𝑟𝑎𝑛𝑑() − 1) ⋅ (1 −
𝑡

𝑖𝑡𝑒𝑟
) (9) 

 𝑧 = exp (𝑘 ⋅ cos (𝜋 ⋅ (1 − (
𝑡

𝑖𝑡𝑒𝑟
)

0.5

))) (10) 

Figure 1: Testing data- load current (amperes) 

2) Hybrid directional guidance mechanism 

 

To overcome the limitation of standard PSO relying solely on 

the global best 𝑔𝐵𝑒𝑠𝑡  for guidance, this paper proposes a 

hybrid directional guidance strategy that integrates local elite 

information from the Black Kite Algorithm (BKA). This 

strategy constructs a hybrid search direction ℎ𝑦𝑏𝑟𝑖𝑑𝑑𝑖𝑟 , 

enabling each particle to update its position by referring to 

both the global best position and a locally guiding individual 

𝐵𝐾𝐴𝑏𝑒𝑠𝑡 . The update formula is as follows: 

 𝛼 = 0.3 ⋅ (
𝑡

𝑖𝑡𝑒𝑟
) (11) 

ℎ𝑦𝑏𝑟𝑖𝑑𝑑𝑖𝑟 = (1 − 𝛼) ⋅ (𝑔𝐵𝑒𝑠𝑡 − 𝑝𝑜𝑠𝑖) + 𝛼 ⋅ (𝐵𝐾𝐴𝑏𝑒𝑠𝑡 −
𝑝𝑜𝑠𝑖) (12) 

 𝑝𝑜𝑠𝑖
𝑛𝑒𝑤 = 𝑔𝐵𝑒𝑠𝑡 + 𝑧 ⋅ 𝐿 ⋅ ℎ𝑦𝑏𝑟𝑖𝑑𝑑𝑖𝑟  (13) 

3.2.2 Black kite behavior mechanism with probability decay 

 

Standard particle swarm optimization algorithms are prone to 

falling into local optima in the later stages. They lack the 

ability to mutate and adapt to perturbations, making it difficult 

to effectively escape from low-quality solutions. To enhance 

the algorithm’s search perturbation and adaptability, this 

paper introduces the Black Kite Algorithm (BKA) and 

proposes an adaptive behavioral perturbation strategy with 

probability decay control to simulate the dynamic behavioral 

transitions of a predator during observation and attack. 

 

1) Dynamic behavior selection probability 

 

In traditional BKA behavior, the behavior selection 

probability is fixed, which makes it difficult to match the 

different stages of the optimization process. Therefore, this 

paper adopts a linearly decreasing behavior probability to 

simulate the biological behavior pattern of “early exploration, 

late development”. The specific expression is as follows: 

 𝑝 = 0.9 ⋅ (1 −
𝑡

𝑖𝑡𝑒𝑟
) (14) 

2) Elite-guided Cauchy mutation 

 

To further enhance the diversity of the search space and its 

ability to jump out of local search paths, this paper introduces 

a Cauchy distribution mutation mechanism into the Black 

Kite Algorithm (BKA) that incorporates the historical best 

information (pBest) of individual particle swarms. The key 

idea behind this mechanism is to leverage the search 

experience of individual particle swarms to guide Black Kite 

individuals toward more promising areas. Furthermore, the 

Cauchy distribution is introduced for asymmetric perturbation, 

thereby achieving stronger local jump capabilities. 

 

A variant of the original Black Kite that approaches the leader 

based on random perturbations 

 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + cauchy ⋅ (𝑋𝑖 − 𝑋𝑙𝑒𝑎𝑑𝑒𝑟) (15) 

This strategy can easily lead to variations that deviate from the 

true optimization direction. To this end, this paper designs the 
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following improved model: 

 𝑋𝑖
𝑛𝑒𝑤 = 𝑝𝑏𝑒𝑠𝑡 + cauchy ⋅ (𝑋𝑙𝑒𝑎𝑑𝑒𝑟 − 𝑚 ⋅ 𝑋𝑖) (16) 

3.2.3 Elite-oriented on-demand reverse learning 

 

In standard reverse learning strategies, reverse computation is 

typically performed on all particles. While this can enhance 

local search capabilities, it introduces a large amount of 

redundant computation in high-dimensional or large 

population environments, reducing convergence efficiency. 

Therefore, this paper proposes an on-demand reverse learning 

strategy based on elite screening and triggering mechanisms 

to reduce computational complexity while improving search 

effectiveness. 

 

In traditional reverse learning, reverse calculations are 

performed on all particles in each generation, resulting in 

severe computational redundancy. This paper introduces a 

periodic trigger mechanism and an individual screening 

strategy to enable reverse learning to be performed only on a 

subset of individuals in key generations. The specific trigger 

conditions are: 

 if mod(𝑡, 5) = 0 (17) 

That is, a reverse learning operation is performed every 5 

iterations; at the same time, only the 30% individuals with the 

lowest fitness ranking in the population are selected to 

perform the reverse operation: 

 𝑖 ∈ idx[end − round(0.7 ⋅ 𝑛): end] (18) 

Where idx is the individual index sorted in ascending order of 

fitness. The reverse position is calculated as follows: 

 𝑋𝑖
𝑛𝑒𝑤 =

𝐿𝐵+𝑈𝐵

2
+

𝑈𝐵−𝐿𝐵

2𝑘
−

𝑋𝑖

𝑘
 (19) 

4. Numerical Experiments 
 

To comprehensively evaluate the performance of the 

proposed HSB-PSO algorithm in path planning tasks, this 

paper conducted simulation experiments to assess its 

optimization capabilities and verify its feasibility in actual 

path planning. The experimental platform was MATLAB 

R2024a, the hardware environment was Windows 10, an 

Intel(R) Core (TM) i5-9300H 2.40GHz processor, and 8GB of 

RAM. The parameter settings are as follows: 

 

Parameter name Explanation Value 

N Population size 60 

PSO 

subpopulation ratio 
Global Boot 60%(36 individuals) 

BKA 

subpopulation ratio 
Local disturbance 40%(24 individuals) 

iter_{max} Maximum number of iterations 100 

w Inertia Weight 0.7 

c1, c2 Learning Factor c1=c2=2.0 

c3 Speed update factor 2.0 

p Initial probability of disturbance 0.9(Linear Decrease) 

k 
Dynamic perturbation step 

coefficient 
1+(t/iter)2 

 

4.1 Benchmark Function Testing 

 

To evaluate the convergence and robustness of HSB-PSO in 

complex, high-dimensional search spaces, this paper selected 

12 classic mathematical benchmark functions (F1–F12), 

covering a variety of characteristics such as unimodal, 

multimodal, noisy, and penalized. These functions are widely 

used to evaluate the global optimization ability and search 

stability of swarm intelligence optimization algorithms. See 

Table 1 for details: 

Table 1: Benchmarking Functions 
Number Name Search Scope feature 

F1 Sphere [-100, 100] SinglePeak 

F2 Schwefel 2.22 [-10,10] SinglePeak 

F3 Schwefel 1.2 [-100, 100] SinglePeak 

F4 Maximum [-100,100] SinglePeak 

F5 Rosenbrock [-30, 30] Multi-peak 

F6 Shifted Sphere [-100, 100] SinglePeak 

F7 Quartic [-1.28, 1.28] SinglePeak 

F8 Schwefel [-500,500] Multi-peak 

F9 Rastrigin [-5.12, 5.12] Multi-peak 

F10 Ackley [-32, 32] Multi-peak 

F11 Griewank [-600, 600] Multi-peak 

F12 Penalized 1 [-𝜋, 𝜋] Multi-peak 

 

The experimental results are shown in Figure 2. 

 

 

 

 
Figure 2: Test function experiment diagram 

For each function tested, 30 independent experiments were 

run, and the average optimal value and standard deviation 

were calculated. The experimental results show that 

HSB-PSO can obtain better solutions on most test functions, 
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demonstrating good global search capabilities and result 

stability. It has a clear advantage in complex multimodal 

functions such as Ackley and Griewank. 

 

4.2 Path Planning Performance Test 

 

To verify the feasibility and effectiveness of the HSB-PSO 

algorithm in practical path planning, two typical simulation 

scenarios are designed: 

 

⚫ Terrain I (Simple Environment): Sparse obstacles and 

a wide path selection space. 

 

⚫ Terrain II (Complex Environment): Dense obstacles 

with multiple feasible paths, posing a higher 

optimization challenge. 

 

The comparative algorithms include the classical Genetic 

Algorithm (GA)[13], Grey Wolf Optimizer (GWO) [14], 

standard Particle Swarm Optimization (PSO) [16], and Black 

Kite Algorithm (BKA) [12]. All algorithms are run under 

identical conditions, each executed independently 30 times, 

and the average shortest path length is recorded as the 

performance metric. 

 

The path planning results for Terrain I are shown in Table 2, 

and the corresponding planned paths are illustrated in Figure 

3. 

Table 2: Comparison of Terrain I results 

algorithm Shortest Path Average Path 

GA 29.2335 30.2554 

GWO 28.3623 29.2364 

PSO 29.4117 29.9658 

BKA 28.5317 28.8598 

HSB-PSO 25.0192 25.3832 

 

The path planning diagram in a simple environment is as 

follows: 

 
Figure 3: Terrain I Experiment Results 

The path planning results for Terrain II are shown in Table 3, 

and the corresponding planned paths are illustrated in Figure 

4. 

 

Table 3: Comparison of Terrain II results 

algorithm Shortest Path Average Path 

GA 65.0071 66.2235 

GWO 68.5753 68.9324 

PSO 60.1931 61.3695 

BKA 61.7016 62.5571 

HSB-PSO 54.1246 55.0326 

 

The path planning diagram in a complex environment is as 

follows: 

 
Figure 4: Terrain II Experiment Results 

Experiments show that the proposed HSB-PSO algorithm 

achieves the shortest path length in both path planning 

scenarios, significantly outperforming other compared 

algorithms. This result validates the comprehensive 

optimization effect of HSB-PSO in global path search and 

local obstacle avoidance. 

 

5. Conclusion 
 

To address the challenges of traditional single-agent 

optimization algorithms in path planning, such as falling into 

local optimality and insufficient convergence accuracy, this 

paper proposes an improved particle swarm optimization 

algorithm, HSB-PSO, that integrates multiple strategies. By 

introducing an environment selection mechanism, this 

algorithm effectively leverages the complementary strengths 

of the particle swarm optimization algorithm and the Black 

Kite algorithm, achieving a parallel fusion of multi-agent 

algorithms and striking a good balance between global search 

and local exploitation. 

 

By introducing a dynamic spiral guidance strategy, an 

adaptive probabilistic perturbation mechanism, and an 

elite-guided on-demand reverse learning method, the 

proposed HSB-PSO algorithm possesses strong search 

capabilities and the ability to escape local extremum traps. 

Experiments have demonstrated that HSB-PSO not only 

improves the convergence speed and optimization accuracy of 

path planning, but also exhibits good stability and robustness 

in complex environments. When applied to the path planning 

problem of mobile robots, the HSB-PSO algorithm can  
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efficiently complete the path search from the starting point to 

the target point, avoid obstacles, and generate a smooth, 

feasible, and near-shortest path. Therefore, the proposed 

HSB-PSO algorithm provides a practical optimization 

solution for solving the mobile robot path planning problem 

and has promising application prospects in intelligent 

navigation, automated logistics, service robotics, and other 

fields. 
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