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Abstract: To enhance the global search and local optimization capabilities of swarm intelligence algorithms in robot path planning, this
paper proposes an improved particle swarm optimization algorithm (HSB-PSO) that incorporates a dynamic strategy. This algorithm
features three key innovations: First, a dynamic adaptive spiral strategy is introduced to adaptively guide particles toward the optimal
solution by adjusting spiral parameters at different iteration stages, enhancing the particles’ global exploration capability and
convergence accuracy. Second, a probability-decayed black kite behavior mechanism is designed to simulate the perturbation behavior of
black kites during predation, and a probabilistic control factor is introduced to dynamically adjust its influence, effectively improving
search diversity and avoiding local optima. Finally, an elite-guided on-demand reverse learning strategy is combined to selectively perform
reverse learning on elite particles based on the current state of the swarm, further enhancing local search and convergence speed.
Simulation experiments demonstrate that the HSB-PSO algorithm demonstrates superior optimization capability and path quality in
multiple typical path planning test scenarios, validating the effectiveness and practical value of the proposed strategy.
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1. Introduction Huang et al. (2023), in “APSO: An A*PSO Hybrid Algorithm
for Mobile Robot Path Planning /", proposed the use of
In recent years, with the rapid development of artificial environment-aware dynamic factors, enabling the algorithm
intelligence and automation technologies, robots have been  to maintain strong optimization capability and fast response in
increasingly applied in fields such as warehouse logistics, dynamic obstacle environments. In addition, Qijiang Su et al.
intelligent manufacturing, and service industries. Path  (2024), in “Path planning for power inspection robot based
planning, as a core component of autonomous navigation on improved PSO algorithm and dynamic window approach
systems, directly affects the operational efficiency and task  /#”, introduced a mechanism combining elite memory and
performance of robots. Traditional path planning methods,  opposition-based learning to strengthen local exploitation and
such as A* and Dijkstra algorithms, exhibit certain limitations ~ preserve historical optima.
when dealing with complex dynamic environments or
high-dimensional search spaces. As a result, they are These research outcomes demonstrate the strong potential of
gradually being replaced by swarm intelligence algorithms,  Particle Swarm Optimization in multi-strategy integration and
with  Particle Swarm Optimization (PSO) being a dynamic optimization, providing valuable insights and solid
representative example. support for future algorithm design.

PSO has been widely applied to 2D and 3D path planning To address the limitations of PSO in path planning
problems due to its simple structure, strong parallelism, and  applications, this paper proposes an improved Particle Swarm
excellent global search capability. However, standard PSO  Optimization algorithm ), HSB-PSO, which integrates
still suffers from issues such as premature convergence to  multiple strategies. The algorithm introduces three key
local optima, slow convergence speed, and insufficient search  innovations from the perspectives of global exploration, local
accuracy in complex environments. To address these exploitation, and convergence control:

shortcomings, many researchers have proposed various

improvements and enhancements to the PSO algorithm in 1) A dynamically adaptive spiral strategy guides particles to
recent years. converge along the optimal trajectory;

For instance, Shankar, M et al. (2022), in their paper “4 2) A probabilistic decay-based Black Kite behavior
hybrid path planning approach combining artificial potential ~ mechanism enhances population perturbation ability;

field and particle swarm optimization for mobile robot [,

introduced an adaptive mutation mechanism and local search  3) An elite-guided on-demand opposition-based learning
operator, which significantly improved the smoothness and ~ mechanism improves local search efficiency.

stability of the generated paths. Pengfei Yu et al. (2024), in “4

Dynamic Path Planning Method for Mobile Robot Based on ~ These strategies complement each other, significantly
Virtual Potential Field and Virtual Impedance Model /¥,  enhancing the algorithm’s optimization capability and path
incorporated a multi-strategy cooperation mechanism, feasibility in complex environments, and providing effective
including crowding guidance and dynamic learning factor  support for efficient path planning of robots in real-world
adjustment, effectively enhancing the algorithm’s robustness  scenarios °.

and adaptability to complex environments. ChangSheng
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2. Environment and Problem

Description

Modeling

In mobile robot path planning, the entire planning process is
typically divided into two stages. The first stage is the
environment modeling stage, where the robot’s motion space
model is constructed using sensor data or predefined
information to represent obstacles, free space, and boundary
information in the environment [l. The second stage is the
path search stage, in which intelligent algorithms or classical
pathfinding methods are applied based on the established
environment model to generate a feasible path from the start
point to the target point while avoiding obstacles.

This paper adopts the Grid Method for environment modeling,
based on the following considerations:

1) The grid method can intuitively represent obstacle regions
of arbitrary shapes, offering strong adaptability to various
environments;

2) Its unified data structure facilitates position representation
and path feasibility evaluation within the Particle Swarm
Optimization (PSO) algorithm;

3) The grid model supports dynamic updates of obstacle
information, making it suitable for extensions in dynamic
environments.

By using grid-based modeling, the continuous motion space is
discretized, enabling the improved PSO algorithm to
efficiently search and generate optimal paths that satisfy
practical feasibility constraints. Specifically, the continuous
2D plane is discretized into a number of equally sized
rectangular grid cells, forming a two-dimensional grid matrix
G € RM*N where M and N represent the number of rows and
columns [, respectively. Each grid cell G;; has a unique
coordinate index indicating its position in the overall space.
During the modeling process, all obstacle information in the
environment is mapped onto the corresponding grid cells.
The following rules are defined:

®  Free cell (traversable): Set to 0, indicating that the robot
can move freely;

®  Obstacle cell (non-traversable): Set to 1, indicating the
presence of an obstacle in the cell, which the robot
cannot pass through.

In the constructed 2D grid environment, to achieve optimal
path planning from the start point to the destination, it is first
necessary to establish the conversion relationship between
grid indices and their spatial coordinates. Assuming the
environment has a size of N X N, each grid cell can be
uniquely represented through a mapping between its index
mm and its position coordinates (x,y) . The mapping
relationship is as follows:

m=x—-1)xXN+y (D
y = mod(m, N) )
x = int (%) +1 3)
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Here, m denotes the index of the current grid cell, while x and
y represent the row and column coordinates of the robot in the
2D space. This mapping approach facilitates the linear
representation of the grid environment and simplifies path
encoding.

During the path planning process, the objective is to search for
a path sequence P from the starting grid cell P; to the target
grid cell B, , such that the total path length is minimized while
avoiding all obstacle cells. The corresponding optimization
objective function can be expressed as:

minf(P) = YL dupio)PcW,Pn0O =0 4

Here, P denotes the set of path points, W represents the set of
all traversable grid cells, and O is the set of obstacle points.
The term d(p;,p;—,) represents the Euclidean distance
between two consecutive points in the path. The path planning
must ensure that P and O are disjoint, thereby guaranteeing a
collision-free and feasible path.

In this paper, the path planning problem is transformed into
the process of optimizing the sequence of path points P. With
the help of the grid index mapping, the Particle Swarm
Optimization algorithm can directly encode and optimize the
path within a one-dimensional search space. By defining an
appropriate fitness function and constraint conditions, the
algorithm ensures both path feasibility and the global
objective of minimizing path length.

Ultimately, the proposed improved PSO algorithm can
effectively compute the optimal path point set Pyes, Which
satisfies obstacle avoidance constraints. A schematic diagram
of the 2D grid map environment and the path planning
problem is shown in Figure 1 below:

Figure 1: 2D raster map environment

3. Methodology
3.1 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a population-based
stochastic optimization algorithm inspired by swarm
intelligence, originally proposed by Kennedy and Eberhart.
The algorithm simulates the foraging behavior of bird flocks
to search for the optimal solution. In PSO, each particle
represents a potential solution in the search space, and all
particles form a swarm. During the search process, each
particle updates its position based on both its individual
experience and the collective experience of the swarm,
gradually approaching the global optimum.



In this study, the path planning problem is abstracted as an
optimization problem that seeks the optimal path solution
within a search space. It is assumed that there are N massless
and dimensionless particles moving in a D dimensional
search space, where each particle represents a candidate
solution to the path planning problem. Through the simulation
of social cognition and individual learning, each particle
updates its position and velocity during the search process,
thereby adjusting its search direction and step size to
approximate the optimal path [,

Let the position of the i — th particle be denoted as x;
[xiy, xiy, ..., xip], where i=1,2, ... N, and each component xi,
corresponds to a key waypoint in the path, represented by its
coordinate or index in the map .

In standard PSO, each particle has both a position vector and a
velocity vector, and its update rules in the search space are as
follows:

vt =wevf e (pf —xf) + oy (g8 =) 5

Q)

In each generation, particles update their states based on
guidance from their personal best position P; and the global
best position g, continuously approaching better solutions
[15]. Let the fitness function of the algorithm be denoted as
Fitness, then the expressions for the personal best position and
the global best position are as follows %

k+1

k+1 _ .k

X

k1 _ { p¥,  ifFitness(x¥*') > Fitness(pl) o
Po = x¥*1, ifFitnness(xf*!) < Fitness(p¥)

gk = min{Fitness(p¥), Fitness(pX), -+, Fitness(pX)} (8)
3.2 Proposed Algorithm

3.2.1 Dynamic Adaptive Spiral Strategy

In standard particle swarm optimization algorithms, particle
search behavior is typically controlled by fixed parameters,
making it difficult to adapt to the search requirements of
different optimization stages. This is particularly prone to
problems in path planning, such as insufficient initial search
and premature convergence in the later stages. To enhance the
particle swarm’s global exploration and local exploitation
capabilities, this paper proposes a dynamic adaptive spiral
strategy that improves both the perturbation factor and the
guidance direction.

1) Adaptive spiral perturbation factor

During the particle spiral movement process, the disturbance
amplitude is a key factor in controlling search accuracy. To
this end, this paper designs a spiral disturbance parameter L
and a contraction factor z that adjust dynamically with
iterations, Here, L controls the direction and range of the
disturbance, with the disturbance decreasing as iterations
progress; z governs the nonlinear variation of the disturbance
intensity, enabling the particle’s movement to have better
stability and adaptability. as detailed below:
t
)

L=(2-rand)-1)-(1 )
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e =oo(s-eos(x-(1- ("))

Figure 1: Testing data- load current (amperes)

(10)

2) Hybrid directional guidance mechanism

To overcome the limitation of standard PSO relying solely on
the global best gBest for guidance, this paper proposes a
hybrid directional guidance strategy that integrates local elite
information from the Black Kite Algorithm (BKA). This
strategy constructs a hybrid search direction hybridy;, ,
enabling each particle to update its position by referring to
both the global best position and a locally guiding individual
BK Ap,s:- The update formula is as follows:

t
a=03-(>) (11)
hybridg;, = (1 —a) - (gBest — pos;) + a - (BKApes: —
pPos;) 12)
pos(*®™ = gBest + z - L - hybridy;, (13)

3.2.2 Black kite behavior mechanism with probability decay

Standard particle swarm optimization algorithms are prone to
falling into local optima in the later stages. They lack the
ability to mutate and adapt to perturbations, making it difficult
to effectively escape from low-quality solutions. To enhance
the algorithm’s search perturbation and adaptability, this
paper introduces the Black Kite Algorithm (BKA) and
proposes an adaptive behavioral perturbation strategy with
probability decay control to simulate the dynamic behavioral
transitions of a predator during observation and attack.

1) Dynamic behavior selection probability

In traditional BKA behavior, the behavior selection
probability is fixed, which makes it difficult to match the
different stages of the optimization process. Therefore, this
paper adopts a linearly decreasing behavior probability to
simulate the biological behavior pattern of “early exploration,
late development”. The specific expression is as follows:

p=09-(1--1)

2) Elite-guided Cauchy mutation

(14)

To further enhance the diversity of the search space and its
ability to jump out of local search paths, this paper introduces
a Cauchy distribution mutation mechanism into the Black
Kite Algorithm (BKA) that incorporates the historical best
information (pBest) of individual particle swarms. The key
idea behind this mechanism is to leverage the search
experience of individual particle swarms to guide Black Kite
individuals toward more promising areas. Furthermore, the
Cauchy distribution is introduced for asymmetric perturbation,
thereby achieving stronger local jump capabilities.

A variant of the original Black Kite that approaches the leader
based on random perturbations

X = X; 4 cauchy - (X; — Xieader) (15)

This strategy can easily lead to variations that deviate from the
true optimization direction. To this end, this paper designs the



following improved model:

X[ = pbest + cauchy - (Xjoqqer —m - X;)  (16)

3.2.3 Elite-oriented on-demand reverse learning

In standard reverse learning strategies, reverse computation is
typically performed on all particles. While this can enhance
local search capabilities, it introduces a large amount of
redundant computation in high-dimensional or large
population environments, reducing convergence efficiency.
Therefore, this paper proposes an on-demand reverse learning
strategy based on elite screening and triggering mechanisms
to reduce computational complexity while improving search
effectiveness.

In traditional reverse learning, reverse calculations are
performed on all particles in each generation, resulting in
severe computational redundancy. This paper introduces a
periodic trigger mechanism and an individual screening
strategy to enable reverse learning to be performed only on a
subset of individuals in key generations. The specific trigger
conditions are:

if mod(t,5) = 0 (17

That is, a reverse learning operation is performed every 5
iterations; at the same time, only the 30% individuals with the
lowest fitness ranking in the population are selected to
perform the reverse operation:

i € idx[end — round(0.7 - n): end] (18)

Where idx is the individual index sorted in ascending order of
fitness. The reverse position is calculated as follows:

LB+UB
2

UB-LB  X;
2k k

new _
XI: -

19)
4. Numerical Experiments

To comprehensively evaluate the performance of the
proposed HSB-PSO algorithm in path planning tasks, this
paper conducted simulation experiments to assess its
optimization capabilities and verify its feasibility in actual
path planning. The experimental platform was MATLAB
R2024a, the hardware environment was Windows 10, an
Intel(R) Core (TM) i5-9300H 2.40GHz processor, and 8GB of
RAM. The parameter settings are as follows:
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complex, high-dimensional search spaces, this paper selected
12 classic mathematical benchmark functions (F1-F12),
covering a variety of characteristics such as unimodal,
multimodal, noisy, and penalized. These functions are widely
used to evaluate the global optimization ability and search
stability of swarm intelligence optimization algorithms. See
Table 1 for details:

Table 1: Benchmarking Functions

Number Name Search Scope feature
F1 Sphere [-100, 100] SinglePeak
F2 Schwefel 2.22 [-10,10] SinglePeak
F3 Schwefel 1.2 [-100, 100] SinglePeak
F4 Maximum [-100,100] SinglePeak
F5 Rosenbrock [-30, 30] Multi-peak
F6 Shifted Sphere [-100, 100] SinglePeak
F7 Quartic [-1.28, 1.28] SinglePeak
F8 Schwefel [-500,500] Multi-peak
F9 Rastrigin [-5.12,5.12] Multi-peak
F10 Ackley [-32,32] Multi-peak
F11 Griewank [-600, 600] Multi-peak
F12 Penalized 1 [-1t, 7] Multi-peak

Parameter name Explanation Value
N Population size 60
PSO Global Boot 60%(36 individuals)
subpopulation ratio
BRA Local disturbance 40%(24 individuals)
subpopulation ratio
iter {max} Maximum number of iterations 100
w Inertia Weight 0.7
cl,c2 Learning Factor cl=c2=2.0
c3 Speed update factor 2.0
p Initial probability of disturbance 0.9(Linear Decrease)
K Dynamic perturbation step 1+ (iter)2

coefficient

4.1 Benchmark Function Testing

To evaluate the convergence and robustness of HSB-PSO in

36

The experimental results are shown in Figure 2.
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Figure 2: Test function experiment diagram

Fl11 F12

For each function tested, 30 independent experiments were
run, and the average optimal value and standard deviation
were calculated. The experimental results show that
HSB-PSO can obtain better solutions on most test functions,



demonstrating good global search capabilities and result
stability. It has a clear advantage in complex multimodal
functions such as Ackley and Griewank.

4.2 Path Planning Performance Test
To verify the feasibility and effectiveness of the HSB-PSO

algorithm in practical path planning, two typical simulation
scenarios are designed:

® Terrain I (Simple Environment): Sparse obstacles and
a wide path selection space.
® Terrain II (Complex Environment): Dense obstacles

with multiple feasible paths,
optimization challenge.

posing a higher

The comparative algorithms include the classical Genetic
Algorithm (GA)!'¥, Grey Wolf Optimizer (GWO) [,
standard Particle Swarm Optimization (PSO) ¢, and Black
Kite Algorithm (BKA) 2. All algorithms are run under
identical conditions, each executed independently 30 times,
and the average shortest path length is recorded as the
performance metric.

The path planning results for Terrain I are shown in Table 2,
and the corresponding planned paths are illustrated in Figure
3.

Table 2: Comparison of Terrain I results

algorithm Shortest Path Average Path
GA 29.2335 30.2554
GWO 28.3623 29.2364
PSO 29.4117 29.9658
BKA 28.5317 28.8598
HSB-PSO 25.0192 25.3832

The path planning diagram in a simple environment is as
follows:
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Figure 3: Terrain I Experiment Results
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The path planning results for Terrain II are shown in Table 3,
and the corresponding planned paths are illustrated in Figure
4.
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Table 3: Comparison of Terrain II results

algorithm Shortest Path Average Path
GA 65.0071 66.2235
GWO 68.5753 68.9324
PSO 60.1931 61.3695
BKA 61.7016 62.5571
HSB-PSO 54.1246 55.0326

The path planning diagram in a complex environment is as

follows:
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Figure 4: Terrain II Experiment Results

Experiments show that the proposed HSB-PSO algorithm
achieves the shortest path length in both path planning
scenarios, significantly outperforming other compared
algorithms. This result validates the comprehensive
optimization effect of HSB-PSO in global path search and
local obstacle avoidance.

5. Conclusion

To address the challenges of traditional single-agent
optimization algorithms in path planning, such as falling into
local optimality and insufficient convergence accuracy, this
paper proposes an improved particle swarm optimization
algorithm, HSB-PSO, that integrates multiple strategies. By
introducing an environment selection mechanism, this
algorithm effectively leverages the complementary strengths
of the particle swarm optimization algorithm and the Black
Kite algorithm, achieving a parallel fusion of multi-agent
algorithms and striking a good balance between global search
and local exploitation.

By introducing a dynamic spiral guidance strategy, an
adaptive probabilistic perturbation mechanism, and an
elite-guided on-demand reverse learning method, the
proposed HSB-PSO algorithm possesses strong search
capabilities and the ability to escape local extremum traps.
Experiments have demonstrated that HSB-PSO not only
improves the convergence speed and optimization accuracy of
path planning, but also exhibits good stability and robustness
in complex environments. When applied to the path planning
problem of mobile robots, the HSB-PSO algorithm can



efficiently complete the path search from the starting point to
the target point, avoid obstacles, and generate a smooth,
feasible, and near-shortest path. Therefore, the proposed
HSB-PSO algorithm provides a practical optimization
solution for solving the mobile robot path planning problem
and has promising application prospects in intelligent
navigation, automated logistics, service robotics, and other
fields.
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