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Abstract: In this study, a classification model for lumbar muscle fatigue evaluation was constructed using surface electromyographic
(sEMG) signals combined with subjective fatigue assessment scales. Twelve healthy volunteers were selected, and sSEMG signals of their
lumbar erector spinae muscles were collected; the signals were preprocessed through infinite impulse response (IIR) notch filtering,
Butterworth high-pass filtering, and 4-level soft threshold denoising with db4 wavelets, then segmented using a sliding window with a
window length of 1000 sampling points and a step size of 200 sampling points, followed by the extraction of 14 features in total (including
those from the time domain, frequency domain, time-frequency domain, and nonlinear domain). Feature dimensionality reduction was
conducted via recursive feature elimination (RFE) and principal component analysis (PCA); based on 3092 samples categorized into three
classes, the performance of six model combinations was compared using 10-fold cross-validation. The results showed that the combination
of PCA and random forest (RF) achieved the optimal performance, with an average accuracy of 90.42% and a Kappa coefficient of 0.8056,
and both the RF and support vector machine (SVM) models exhibited a recognition rate of over 83% for all three fatigue states. This study
demonstrates that the proposed model can realize non-invasive evaluation of lumbar muscle fatigue, thereby providing technical support
for related fields.
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1. Introduction out relevant research and exploration.

The global annual incidence of low back pain ranges from 22% 2. Method
to 65%, which can lead to movement disorders and even loss
of self-care ability. Chronic lumbar muscle strain is its main 2.1 Data Preprocessing
inducement, and it is closely related to lumbar muscle fatigue
caused by the static and repetitive work of modern people.  2.1.1 Denoising preprocessing
Therefore, the evaluation of lumbar muscle fatigue has
become a key issue to be solved urgently in the fields of Data collected by the lumbar surface electromyographic
medicine and public health [1-3]. Muscle fatigue is divided (sEMG) acquisition system contains a large amount of noise,
into central and peripheral types: the former is caused by including baseline noise, power-line interference, and other
abnormal neural regulation, while the latter is associated with  types of noise. Baseline noise is induced by tiny movements
lactic acid accumulation. The mechanisms involve energy  caused by muscle contraction and friction between electrodes
metabolism imbalance, nerve damage, etc. Due to differences  and skin; the frequency of such motion artifacts is less than 20
in individuals and muscle groups, there is currently no  Hz. If not filtered out, it will cause signal baseline drift.
universal evaluation standard [4-5].

In this study, the data were first processed to remove
Existing evaluations include two categories: subjective and  power-line interference using a 50 Hz notch filter designed
objective. Subjective evaluation is represented by the RPE ~ with an infinite impulse response (IIR) digital filter.
scale proposed by Swedish scientist Brog, which allows Subsequently, a 20 Hz high-pass filter designed with a
subjects to feedback their fatigue feelings through a score  Butterworth filter was applied for denoising. Among them,
range of 1-20 (1 point corresponds to “very easy” and 20 the relational expressions between amplitude and frequency
points corresponds to “extremely strenuous™), and the results  of the IIR digital filter and the Butterworth high-pass filter are
are highly correlated with physiological and biochemical shown in Equations (1) and (2), respectively:
indicators. In objective evaluation, surface electromyographic
signals (SEMG) are widely used due to their non-invasive and H(s) =
real-time advantages [6-10]. Currently, high-performance
electromyographic  devices such as Trigno™ and In the above formula, let the center frequency of the notch
Sessantaquattro have promoted SEMG research [11-13]. Most ~ filter be the mass factor, which is a complex frequency
existing studies focus on the changes in lumbar sEMG  domain variable.
features, but there are relatively few lumbar fatigue models 1

based on SEMG [14-16]. H(s) = o )

In the field of machine learning, algorithms such as KELM  [n the above formula, is the complex frequency domain
and SVM have achieved an accuracy of 64%-94.3% in muscle  variable, is the cutoff frequency, and represents the order of
fatigue classification, providing a basis for model the filter.

construction [17-20]. In summary, this paper intends to

construct a lumbar muscle fatigue evaluation model by  2.1.2 Wavelet soft threshold denoising

combining lumbar muscle sSEMG signals with RPE, and carry

s?-w?
s2+sQuwotw?

(1)
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Compared with traditional filters, wavelet threshold denoising
has stronger time-frequency locality and adaptability: it can
retain the features of surface electromyographic (SEMQG)
signals without additional phase delay, and can adjust
adaptively according to frequency components, thus being
applied to SEMG denoising [21-22]. Its principle is as follows:
perform wavelet transform (WT) on the noisy signal, regard
wavelet coefficients with large magnitudes as signal
components and those with small magnitudes as noise
components, select a threshold to set the noise coefficients to
zero, and then reconstruct the signal.

After the signal is transformed by wavelet basis functions,
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frequency domain information under different frequency and
time scales can be obtained, and this transform can highlight
the local features of the signal. Different wavelet basis
functions correspond to different time-frequency resolutions,
which have a significant impact on signal decomposition
results. Therefore, in practical applications, selection should
be based on signal characteristics and requirements. Common
wavelet bases include Daubechies, Haar, Symlets, and
Coiflets wavelets. Through denoising experiments on SEMG
signals, this study finally selected the db4 wavelet basis from
the Daubechies wavelet family, and used this wavelet basis to
perform 4-level decomposition on sSEMG signals with 10,000
sampling points, as shown in Figure 1.
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Figures 1: Schematic diagram of 4-layer wavelet decomposition
2.1.3 Data cutting A
When this study uses surface electromyographic (sEMG) €
signals to characterize muscle fatigue, it is necessary to f| | ‘i ‘ '
perform data segmentation on the collected signals. Since y""’w‘m \MM‘ I‘P W i/ Wm, M“Wﬁ w N‘” ‘m“ |
SEMG signals are acquired as time series, and the signal SEMGE\ " | » i VI \‘ H
features and information vary across different time periods, [ — W=1000. 117 :
the signals need to be divided into segments according to time { -
windows to extract features and analyze muscle conditions at : R
different stages. Considering that muscle fatigue is a : ' w=1000_ + te !
. . . . : e AR D
progressive process, the sliding window method in :
fixed-length segmentation is adopted for signal cutting to T >
avp1d signal loss a nd dlstortlpn [23]. .The. specific sliding Figures 2: Schematic diagram of sliding window cutting
window segmentation scheme is shown in Figure 2.
2.2 Multi-feature Extraction of Surface

The window length is 1000 sampling points, the step size is
200 sampling points, and there are 800 overlapping sampling
points between two adjacent Windows. If there are X data
points, the calculation formula for the number of samples N
obtained through segmentation is shown in (3):

= (X — 800)/200 + 1 3)
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Electromyographic Signals
2.2.1 Time-domain characteristics
The time-domain features of surface electromyographic

(sEMQ) signals can directly characterize the changes in
muscle status during the fatigue process. In this study, 6



time-domain statistical features were extracted for analysis
[24]. The first is integrated electromyography (iEMG), which
can reflect the number of motor units involved and their
discharge status, and its value is positively correlated with
muscle contraction. The second is root mean square (RMS),
which can describe the average variation characteristics of
SEMG signals over a period of time. The third is average cubic
magnitude (ACM), which is commonly used as an indicator to
evaluate the degree of muscle fatigue and contraction
intensity. The fourth is mean absolute value (MAV), obtained
by taking the absolute value of the amplitude of each sampling
point in the sSEMG signal and then calculating the average.
The fifth is variance (VAR), which reflects the degree of
dispersion of sEMG signal amplitudes. The sixth is
zero-crossing rate (ZCR), referring to the number of times the
signal alternates between positive and negative and passes
through the zero point. The calculation of all the above
features is based on the time series of SEMG signals and their
lengths.

2.2.2 Frequency domain characteristics

During muscle fatigue, the function of the neuromuscular
junction weakens, leading to a decrease in muscle contraction
speed.  Consequently, the frequency of surface
electromyographic (SEMG) signals gradually decreases,
accompanied by spectral leftward shift. In this study, 3
commonly used frequency-domain features were extracted for
analysis [25]. The first is median frequency (MF), which
refers to the frequency median of muscle electrical activity
within a certain period. It represents the middle frequency
value of a sorted SEMG signal segment and is used to evaluate
the degree of muscle fatigue and muscle function. The second
is mean power frequency (MPF), defined as the weighted
average of the frequency distribution of SEMG signals over a
specific time period. The third is spectral moment (SM); in
this study, the second-order spectral moment was adopted to
analyze the spectral characteristics of SEMG signals. The
calculation of all the above features is based on the frequency,
spectrum, or power spectral density function of sSEMG signals,
as well as the frequency range.

2.2.3 Time-frequency domain characteristics

Compared with traditional time-domain and
frequency-domain analysis methods, wavelet analysis can
provide more refined frequency-domain analysis results. It
can extract more features in different frequency bands,
thereby enabling a more comprehensive understanding of the
characteristics of muscle activity. The sampling rate of the
acquisition system used in this study is 1 kHz; according to
the Nyquist sampling theorem, the frequency band range
available for wavelet decomposition is 0—500 Hz. In this study,
the Daubechies4 (db4) wavelet basis was used to decompose
the SEMG signals of lumbar muscles during the fatigue
process, with a decomposition level of 4. After discrete
wavelet transform (DWT) decomposition, statistical energy
feature values were extracted from each subband. by
calculating the energy of each subband, this study found that
the energy of surface electromyographic signals in each
frequency band of cD4, cD3, c¢D2, and cD1 showed a
relatively obvious increasing trend with the deepening of the
fatigue process. Therefore, the energy values of these 4
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subbands were selected as feature values.
2.2.4 Nonlinear characteristics

Approximate entropy (ApEn) is a nonlinear dynamic
parameter used to measure the regularity and unpredictability
of time series. Expressed as a non-negative number, it
characterizes the complexity of the sequence: a larger value
indicates a more complex sequence and a higher probability
of new information appearing, which can reflect the
irregularity of the sequence. During analysis, parameters such
as time delay and similarity criterion must first be selected;
then, the similarity of samples is calculated to estimate the
approximate entropy, thereby evaluating the irregularity and
complexity of the signal. In muscle fatigue analysis, the state
of muscles can be evaluated by comparing the approximate
entropy values of different time periods.

The calculation of approximate entropy requires the following
steps: first, determine parameters such as the signal sequence
and pattern dimension; second, construct multi-dimensional
vectors; third, calculate the ratio of the number of
approximate vectors to the total number of vectors; fourth,
increase the dimension and repeat the above steps; finally,
obtain the approximate entropy. In this study, the pattern
dimension is usually set to 2, and the similarity measurement
value is related to the standard deviation of the sequence.

2.3 Feature Dimensionality Reduction
2.3.1 Recursive feature elimination

Feature selection is a crucial task in machine learning. It
selects representative and predictive features from a large
number of features, thereby improving the learning and
generalization capabilities of the model. Feature selection
methods are categorized into three types: filter methods,
embedded methods, and wrapper methods. The wrapper
method selects the optimal feature subset by constructing
feature subsets, training models, and evaluating model
performance [26].

In this study, the recursive feature elimination (RFE)
algorithm—belonging to the wrapper methods—was adopted.
This algorithm gradually removes features that have little
impact on the model’s classification performance to improve
accuracy and generalization ability. In each iteration, the
features with the least impact are eliminated based on the
model’s performance, and this cycle is repeated until the
required number of features remains.

2.3.2 Principal Component Analysis

In this study, Principal Component Analysis (PCA) was
additionally selected as a feature dimensionality reduction
method. It significantly reduces the consumption of model
training time and storage space without decreasing the
classification accuracy.

The main idea of the PCA dimensionality reduction method is
to identify n comprehensive variables to replace the original
m variables. These comprehensive variables are intended to
represent the information of the original variables as much as



possible, while being mutually uncorrelated with each other.

The implementation of PCA involves the following steps: first,
decentralize the data to obtain a zero-mean data matrix;
second, calculate the covariance matrix of this data matrix;
third, perform eigenvalue decomposition on the covariance
matrix to obtain new eigenvalues and their corresponding
eigenvectors. The new eigenvalues are sorted in descending
order according to their contribution rates to form a projection
matrix. Assuming there are m principal components, the
calculation formula for the contribution rate of the i-th
principal component is shown in Equation (4).
__ A

T A

M “

3. Result
3.1 DATA

The experimental subjects consisted of 12 volunteers (6 males
and 6 females). Meanwhile, the subjects were required to
meet the following criteria: no low back pain caused by any
reason or limited limb movement within the past six months,
no history of neuromusculoskeletal diseases, and all of them
were right-handed.

Before the official start of the experiment, all subjects were
informed of and familiarized with the experimental process,
content, and objectives. Meanwhile, they were required to
sign the informed consent form in advance. The subjects were
also requested not to engage in strenuous exercise, consume
alcohol, stay up late, or participate in similar activities within
48 hours before the experiment.

3.2 Experimental Results
3.2.1 Feature analysis

Since there is instability in the collected signals at the
beginning and end of the formal lumbar muscle fatigue
induction experiment, the data of the first 10 seconds before
the experiment and the last 5 seconds after the experiment
were removed in this study. Figure 3 below shows the
complete surface electromyographic (SEMG) data of the left
and right lumbar erector spinae muscles of a typical subject
during the entire fatigue process.
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Figures 3: The original data graph of a certain subject
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It can be seen from Figure 3 that the amplitude of the surface
electromyographic (SEMG) signal of the left erector spinae
muscle of this subject is slightly larger than that of the right
erector spinae muscle. During the fatigue process, the SEMG
signal amplitudes of the left and right lumbar erector spinae
muscles of the subject both showed an increasing trend with
the passage of time. Although there are differences in the
changes of their sSEMG amplitudes, the change trends are
consistent, which also indirectly proves the feasibility of the
fatigue induction experiment.

3.2.2 Feature dimension reduction analysis

In this study, the Recursive Feature Elimination (RFE)
algorithm was used for feature selection, and five-fold
cross-validation was applied to verify the prediction accuracy
of feature subsets, which served as the basis for feature subset
selection. The recursive feature elimination plots based on
three classifiers—Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), and Random Forest
(RF)—are shown in Figure 4 below.

During RFE based on Random Forest (RF), it was observed
that as the feature subset dimension increased to 5, the
prediction accuracy of the RF classification model continued
to rise. Subsequently, as the feature subset dimension further
increased, the accuracy fluctuated. It was not until the feature
subset was selected as a 17-dimensional one that the five-fold
cross-validation prediction accuracy of RF reached the
highest. At this point, this study selected the 17-dimensional
feature subset as the feature set for the RF classifier.

Similarly, during RFE based on Support Vector Machine
(SVM), when the feature subset dimension was 12, the
average prediction accuracy was the highest; accordingly, this
study selected the 12-dimensional feature subset as the feature
set for the SVM classifier. For RFE based on Linear
Discriminant Analysis (LDA), a 7-dimensional feature subset
was selected as the feature set for the LDA classifier.
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Figures 4: Feature recursive elimination graphs of three
classifiers

3.2.3 Analysis of Classification Results

After 3,092 valid samples belonging to three categories in this
study were randomly shuffled, ten-fold cross-validation
(which makes full use of data and improves the reliability of
model evaluation) was used to evaluate six models



(combining 3 classifiers and 2 dimensionality reduction
methods). The results showed that: the six models exhibited
different accuracy rates for the three fatigue states (see Figure
5), and the recognition rate of the fatigue transition state was
generally low (possibly due to subjects’ difficulty in
accurately reporting their fatigue status); the accuracy rates
for all three states exceeded 80%, with Random Forest (RF)
and Support Vector Machine (SVM) (both exceeding 83%)
outperforming Linear Discriminant Analysis (LDA). For the
same classifier, the impact of Recursive Feature Elimination
(RFE) and PCA dimensionality reduction showed little
difference, but RFE had higher computational cost, making
PCA more optimal. Among the six models, LDA performed
poorly while RF performed the best; among them, the
PCA+RF combination achieved an average accuracy rate of
90.42% and a Kappa value of 0.8056. Therefore, this study
selected the combination of PCA and Random Forest for
identifying lumbar muscle fatigue states.
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Figures 5: Accuracy result graphs of different fatigue states
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Conclude

To address the issue of lumbar muscle fatigue evaluation, this
study used surface electromyographic (SEMG) signals of the
lumbar erector spinae muscles from 12 healthy volunteers as
data and incorporated the Rating of Perceived Exertion (RPE)
scale to construct a model; after denoising
procedures—including Infinite Impulse Response (IIR) notch
filtering, Butterworth high-pass filtering, and 4-level soft
threshold denoising with db4 wavelet—data segmentation
was performed using a sliding window with a window length
of 1000 sampling points and a step size of 200 sampling
points, and subsequently 14 multi-dimensional features were
extracted. Through dimensionality reduction via Recursive
Feature Elimination (RFE) and Principal Component
Analysis (PCA), a total of 3,092 samples categorized into
three classes were used to compare 6 model combinations via
ten-fold cross-validation, with the PCA+Random Forest (RF)
combination exhibiting the optimal performance (achieving
an average accuracy of 90.42% and a Kappa value of 0.8056)
and the recognition rates of RF and Support Vector Machine
(SVM) exceeding 83%. The experiment showed that the
SEMG amplitudes of the left and right erector spinae muscles
increased with the progression of fatigue, while the
recognition rate of the fatigue transition state was relatively
low, and this model can provide non-invasive evaluation
support for related fields, though further optimization is
required in subsequent studies.
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