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Abstract: In this study, a classification model for lumbar muscle fatigue evaluation was constructed using surface electromyographic 

(sEMG) signals combined with subjective fatigue assessment scales. Twelve healthy volunteers were selected, and sEMG signals of their 

lumbar erector spinae muscles were collected; the signals were preprocessed through infinite impulse response (IIR) notch filtering, 

Butterworth high-pass filtering, and 4-level soft threshold denoising with db4 wavelets, then segmented using a sliding window with a 

window length of 1000 sampling points and a step size of 200 sampling points, followed by the extraction of 14 features in total (including 

those from the time domain, frequency domain, time-frequency domain, and nonlinear domain). Feature dimensionality reduction was 

conducted via recursive feature elimination (RFE) and principal component analysis (PCA); based on 3092 samples categorized into three 

classes, the performance of six model combinations was compared using 10-fold cross-validation. The results showed that the combination 

of PCA and random forest (RF) achieved the optimal performance, with an average accuracy of 90.42% and a Kappa coefficient of 0.8056, 

and both the RF and support vector machine (SVM) models exhibited a recognition rate of over 83% for all three fatigue states. This study 

demonstrates that the proposed model can realize non-invasive evaluation of lumbar muscle fatigue, thereby providing technical support 

for related fields. 
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1. Introduction 
 

The global annual incidence of low back pain ranges from 22% 

to 65%, which can lead to movement disorders and even loss 

of self-care ability. Chronic lumbar muscle strain is its main 

inducement, and it is closely related to lumbar muscle fatigue 

caused by the static and repetitive work of modern people. 

Therefore, the evaluation of lumbar muscle fatigue has 

become a key issue to be solved urgently in the fields of 

medicine and public health [1-3]. Muscle fatigue is divided 

into central and peripheral types: the former is caused by 

abnormal neural regulation, while the latter is associated with 

lactic acid accumulation. The mechanisms involve energy 

metabolism imbalance, nerve damage, etc. Due to differences 

in individuals and muscle groups, there is currently no 

universal evaluation standard [4-5]. 

 

Existing evaluations include two categories: subjective and 

objective. Subjective evaluation is represented by the RPE 

scale proposed by Swedish scientist Brog, which allows 

subjects to feedback their fatigue feelings through a score 

range of 1-20 (1 point corresponds to “very easy” and 20 

points corresponds to “extremely strenuous”), and the results 

are highly correlated with physiological and biochemical 

indicators. In objective evaluation, surface electromyographic 

signals (sEMG) are widely used due to their non-invasive and 

real-time advantages [6-10]. Currently, high-performance 

electromyographic devices such as Trigno™ and 

Sessantaquattro have promoted sEMG research [11-13]. Most 

existing studies focus on the changes in lumbar sEMG 

features, but there are relatively few lumbar fatigue models 

based on sEMG [14-16]. 

 

In the field of machine learning, algorithms such as KELM 

and SVM have achieved an accuracy of 64%-94.3% in muscle 

fatigue classification, providing a basis for model 

construction [17-20]. In summary, this paper intends to 

construct a lumbar muscle fatigue evaluation model by 

combining lumbar muscle sEMG signals with RPE, and carry 

out relevant research and exploration. 

 

2. Method 
 

2.1 Data Preprocessing 

 

2.1.1 Denoising preprocessing 

 

Data collected by the lumbar surface electromyographic 

(sEMG) acquisition system contains a large amount of noise, 

including baseline noise, power-line interference, and other 

types of noise. Baseline noise is induced by tiny movements 

caused by muscle contraction and friction between electrodes 

and skin; the frequency of such motion artifacts is less than 20 

Hz. If not filtered out, it will cause signal baseline drift.  

 

In this study, the data were first processed to remove 

power-line interference using a 50 Hz notch filter designed 

with an infinite impulse response (IIR) digital filter. 

Subsequently, a 20 Hz high-pass filter designed with a 

Butterworth filter was applied for denoising. Among them, 

the relational expressions between amplitude and frequency 

of the IIR digital filter and the Butterworth high-pass filter are 

shown in Equations (1) and (2), respectively: 

 𝐻(𝑠) =
𝑠2−𝜔0

2

𝑠2+𝑠𝑄𝜔0+𝜔0
2 (1) 

In the above formula, let the center frequency of the notch 

filter be the mass factor, which is a complex frequency 

domain variable. 

 𝐻(𝑠) =
1

√1+(
𝑠

𝜔𝑐
)2𝑛

  (2) 

In the above formula, is the complex frequency domain 

variable, is the cutoff frequency, and represents the order of 

the filter. 

 

2.1.2 Wavelet soft threshold denoising 
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Compared with traditional filters, wavelet threshold denoising 

has stronger time-frequency locality and adaptability: it can 

retain the features of surface electromyographic (sEMG) 

signals without additional phase delay, and can adjust 

adaptively according to frequency components, thus being 

applied to sEMG denoising [21-22]. Its principle is as follows: 

perform wavelet transform (WT) on the noisy signal, regard 

wavelet coefficients with large magnitudes as signal 

components and those with small magnitudes as noise 

components, select a threshold to set the noise coefficients to 

zero, and then reconstruct the signal. 

 

After the signal is transformed by wavelet basis functions, 

frequency domain information under different frequency and 

time scales can be obtained, and this transform can highlight 

the local features of the signal. Different wavelet basis 

functions correspond to different time-frequency resolutions, 

which have a significant impact on signal decomposition 

results. Therefore, in practical applications, selection should 

be based on signal characteristics and requirements. Common 

wavelet bases include Daubechies, Haar, Symlets, and 

Coiflets wavelets. Through denoising experiments on sEMG 

signals, this study finally selected the db4 wavelet basis from 

the Daubechies wavelet family, and used this wavelet basis to 

perform 4-level decomposition on sEMG signals with 10,000 

sampling points, as shown in Figure 1. 

 
Figures 1: Schematic diagram of 4-layer wavelet decomposition 

2.1.3 Data cutting 

 

When this study uses surface electromyographic (sEMG) 

signals to characterize muscle fatigue, it is necessary to 

perform data segmentation on the collected signals. Since 

sEMG signals are acquired as time series, and the signal 

features and information vary across different time periods, 

the signals need to be divided into segments according to time 

windows to extract features and analyze muscle conditions at 

different stages. Considering that muscle fatigue is a 

progressive process, the sliding window method in 

fixed-length segmentation is adopted for signal cutting to 

avoid signal loss and distortion [23]. The specific sliding 

window segmentation scheme is shown in Figure 2. 

 

The window length is 1000 sampling points, the step size is 

200 sampling points, and there are 800 overlapping sampling 

points between two adjacent Windows. If there are X data 

points, the calculation formula for the number of samples N 

obtained through segmentation is shown in (3): 

 𝑁 = (𝑋 − 800)/200 + 1 (3) 

 
Figures 2: Schematic diagram of sliding window cutting 

2.2 Multi-feature Extraction of Surface 

Electromyographic Signals 

 

2.2.1 Time-domain characteristics 

 

The time-domain features of surface electromyographic 

(sEMG) signals can directly characterize the changes in 

muscle status during the fatigue process. In this study, 6 
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time-domain statistical features were extracted for analysis 

[24]. The first is integrated electromyography (iEMG), which 

can reflect the number of motor units involved and their 

discharge status, and its value is positively correlated with 

muscle contraction. The second is root mean square (RMS), 

which can describe the average variation characteristics of 

sEMG signals over a period of time. The third is average cubic 

magnitude (ACM), which is commonly used as an indicator to 

evaluate the degree of muscle fatigue and contraction 

intensity. The fourth is mean absolute value (MAV), obtained 

by taking the absolute value of the amplitude of each sampling 

point in the sEMG signal and then calculating the average. 

The fifth is variance (VAR), which reflects the degree of 

dispersion of sEMG signal amplitudes. The sixth is 

zero-crossing rate (ZCR), referring to the number of times the 

signal alternates between positive and negative and passes 

through the zero point. The calculation of all the above 

features is based on the time series of sEMG signals and their 

lengths. 

 

2.2.2 Frequency domain characteristics 

 

During muscle fatigue, the function of the neuromuscular 

junction weakens, leading to a decrease in muscle contraction 

speed. Consequently, the frequency of surface 

electromyographic (sEMG) signals gradually decreases, 

accompanied by spectral leftward shift. In this study, 3 

commonly used frequency-domain features were extracted for 

analysis [25]. The first is median frequency (MF), which 

refers to the frequency median of muscle electrical activity 

within a certain period. It represents the middle frequency 

value of a sorted sEMG signal segment and is used to evaluate 

the degree of muscle fatigue and muscle function. The second 

is mean power frequency (MPF), defined as the weighted 

average of the frequency distribution of sEMG signals over a 

specific time period. The third is spectral moment (SM); in 

this study, the second-order spectral moment was adopted to 

analyze the spectral characteristics of sEMG signals. The 

calculation of all the above features is based on the frequency, 

spectrum, or power spectral density function of sEMG signals, 

as well as the frequency range. 

 

2.2.3 Time-frequency domain characteristics 

 

Compared with traditional time-domain and 

frequency-domain analysis methods, wavelet analysis can 

provide more refined frequency-domain analysis results. It 

can extract more features in different frequency bands, 

thereby enabling a more comprehensive understanding of the 

characteristics of muscle activity. The sampling rate of the 

acquisition system used in this study is 1 kHz; according to 

the Nyquist sampling theorem, the frequency band range 

available for wavelet decomposition is 0–500 Hz. In this study, 

the Daubechies4 (db4) wavelet basis was used to decompose 

the sEMG signals of lumbar muscles during the fatigue 

process, with a decomposition level of 4. After discrete 

wavelet transform (DWT) decomposition, statistical energy 

feature values were extracted from each subband. by 

calculating the energy of each subband, this study found that 

the energy of surface electromyographic signals in each 

frequency band of cD4, cD3, cD2, and cD1 showed a 

relatively obvious increasing trend with the deepening of the 

fatigue process. Therefore, the energy values of these 4 

subbands were selected as feature values. 

 

2.2.4 Nonlinear characteristics 

 

Approximate entropy (ApEn) is a nonlinear dynamic 

parameter used to measure the regularity and unpredictability 

of time series. Expressed as a non-negative number, it 

characterizes the complexity of the sequence: a larger value 

indicates a more complex sequence and a higher probability 

of new information appearing, which can reflect the 

irregularity of the sequence. During analysis, parameters such 

as time delay and similarity criterion must first be selected; 

then, the similarity of samples is calculated to estimate the 

approximate entropy, thereby evaluating the irregularity and 

complexity of the signal. In muscle fatigue analysis, the state 

of muscles can be evaluated by comparing the approximate 

entropy values of different time periods. 

 

The calculation of approximate entropy requires the following 

steps: first, determine parameters such as the signal sequence 

and pattern dimension; second, construct multi-dimensional 

vectors; third, calculate the ratio of the number of 

approximate vectors to the total number of vectors; fourth, 

increase the dimension and repeat the above steps; finally, 

obtain the approximate entropy. In this study, the pattern 

dimension is usually set to 2, and the similarity measurement 

value is related to the standard deviation of the sequence. 

 

2.3 Feature Dimensionality Reduction 

 

2.3.1 Recursive feature elimination 

 

Feature selection is a crucial task in machine learning. It 

selects representative and predictive features from a large 

number of features, thereby improving the learning and 

generalization capabilities of the model. Feature selection 

methods are categorized into three types: filter methods, 

embedded methods, and wrapper methods. The wrapper 

method selects the optimal feature subset by constructing 

feature subsets, training models, and evaluating model 

performance [26]. 

 

In this study, the recursive feature elimination (RFE) 

algorithm—belonging to the wrapper methods—was adopted. 

This algorithm gradually removes features that have little 

impact on the model’s classification performance to improve 

accuracy and generalization ability. In each iteration, the 

features with the least impact are eliminated based on the 

model’s performance, and this cycle is repeated until the 

required number of features remains. 

 

2.3.2 Principal Component Analysis 

 

In this study, Principal Component Analysis (PCA) was 

additionally selected as a feature dimensionality reduction 

method. It significantly reduces the consumption of model 

training time and storage space without decreasing the 

classification accuracy. 

 

The main idea of the PCA dimensionality reduction method is 

to identify n comprehensive variables to replace the original 

m variables. These comprehensive variables are intended to 

represent the information of the original variables as much as 
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possible, while being mutually uncorrelated with each other. 

 

The implementation of PCA involves the following steps: first, 

decentralize the data to obtain a zero-mean data matrix; 

second, calculate the covariance matrix of this data matrix; 

third, perform eigenvalue decomposition on the covariance 

matrix to obtain new eigenvalues and their corresponding 

eigenvectors. The new eigenvalues are sorted in descending 

order according to their contribution rates to form a projection 

matrix. Assuming there are m principal components, the 

calculation formula for the contribution rate of the i-th 

principal component is shown in Equation (4). 

 𝜂𝑖 =
𝜆𝑖

∑ 𝜆ℎ
𝑚
ℎ=1

 (4) 

3. Result 
 

3.1 DATA 

 

The experimental subjects consisted of 12 volunteers (6 males 

and 6 females). Meanwhile, the subjects were required to 

meet the following criteria: no low back pain caused by any 

reason or limited limb movement within the past six months, 

no history of neuromusculoskeletal diseases, and all of them 

were right-handed. 

 

Before the official start of the experiment, all subjects were 

informed of and familiarized with the experimental process, 

content, and objectives. Meanwhile, they were required to 

sign the informed consent form in advance. The subjects were 

also requested not to engage in strenuous exercise, consume 

alcohol, stay up late, or participate in similar activities within 

48 hours before the experiment. 

 

3.2 Experimental Results 

 

3.2.1 Feature analysis 

 

Since there is instability in the collected signals at the 

beginning and end of the formal lumbar muscle fatigue 

induction experiment, the data of the first 10 seconds before 

the experiment and the last 5 seconds after the experiment 

were removed in this study. Figure 3 below shows the 

complete surface electromyographic (sEMG) data of the left 

and right lumbar erector spinae muscles of a typical subject 

during the entire fatigue process. 

 
Figures 3: The original data graph of a certain subject 

It can be seen from Figure 3 that the amplitude of the surface 

electromyographic (sEMG) signal of the left erector spinae 

muscle of this subject is slightly larger than that of the right 

erector spinae muscle. During the fatigue process, the sEMG 

signal amplitudes of the left and right lumbar erector spinae 

muscles of the subject both showed an increasing trend with 

the passage of time. Although there are differences in the 

changes of their sEMG amplitudes, the change trends are 

consistent, which also indirectly proves the feasibility of the 

fatigue induction experiment. 

 

3.2.2 Feature dimension reduction analysis 

 

In this study, the Recursive Feature Elimination (RFE) 

algorithm was used for feature selection, and five-fold 

cross-validation was applied to verify the prediction accuracy 

of feature subsets, which served as the basis for feature subset 

selection. The recursive feature elimination plots based on 

three classifiers—Linear Discriminant Analysis (LDA), 

Support Vector Machine (SVM), and Random Forest 

(RF)—are shown in Figure 4 below. 

 

During RFE based on Random Forest (RF), it was observed 

that as the feature subset dimension increased to 5, the 

prediction accuracy of the RF classification model continued 

to rise. Subsequently, as the feature subset dimension further 

increased, the accuracy fluctuated. It was not until the feature 

subset was selected as a 17-dimensional one that the five-fold 

cross-validation prediction accuracy of RF reached the 

highest. At this point, this study selected the 17-dimensional 

feature subset as the feature set for the RF classifier. 

 

Similarly, during RFE based on Support Vector Machine 

(SVM), when the feature subset dimension was 12, the 

average prediction accuracy was the highest; accordingly, this 

study selected the 12-dimensional feature subset as the feature 

set for the SVM classifier. For RFE based on Linear 

Discriminant Analysis (LDA), a 7-dimensional feature subset 

was selected as the feature set for the LDA classifier. 

 
Figures 4: Feature recursive elimination graphs of three 

classifiers 

3.2.3 Analysis of Classification Results 

 

After 3,092 valid samples belonging to three categories in this 

study were randomly shuffled, ten-fold cross-validation 

(which makes full use of data and improves the reliability of 

model evaluation) was used to evaluate six models 
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(combining 3 classifiers and 2 dimensionality reduction 

methods). The results showed that: the six models exhibited 

different accuracy rates for the three fatigue states (see Figure 

5), and the recognition rate of the fatigue transition state was 

generally low (possibly due to subjects’ difficulty in 

accurately reporting their fatigue status); the accuracy rates 

for all three states exceeded 80%, with Random Forest (RF) 

and Support Vector Machine (SVM) (both exceeding 83%) 

outperforming Linear Discriminant Analysis (LDA). For the 

same classifier, the impact of Recursive Feature Elimination 

(RFE) and PCA dimensionality reduction showed little 

difference, but RFE had higher computational cost, making 

PCA more optimal. Among the six models, LDA performed 

poorly while RF performed the best; among them, the 

PCA+RF combination achieved an average accuracy rate of 

90.42% and a Kappa value of 0.8056. Therefore, this study 

selected the combination of PCA and Random Forest for 

identifying lumbar muscle fatigue states. 

 
Figures 5: Accuracy result graphs of different fatigue states 

Conclude 

To address the issue of lumbar muscle fatigue evaluation, this 

study used surface electromyographic (sEMG) signals of the 

lumbar erector spinae muscles from 12 healthy volunteers as 

data and incorporated the Rating of Perceived Exertion (RPE) 

scale to construct a model; after denoising 

procedures—including Infinite Impulse Response (IIR) notch 

filtering, Butterworth high-pass filtering, and 4-level soft 

threshold denoising with db4 wavelet—data segmentation 

was performed using a sliding window with a window length 

of 1000 sampling points and a step size of 200 sampling 

points, and subsequently 14 multi-dimensional features were 

extracted. Through dimensionality reduction via Recursive 

Feature Elimination (RFE) and Principal Component 

Analysis (PCA), a total of 3,092 samples categorized into 

three classes were used to compare 6 model combinations via 

ten-fold cross-validation, with the PCA+Random Forest (RF) 

combination exhibiting the optimal performance (achieving 

an average accuracy of 90.42% and a Kappa value of 0.8056) 

and the recognition rates of RF and Support Vector Machine 

(SVM) exceeding 83%. The experiment showed that the 

sEMG amplitudes of the left and right erector spinae muscles 

increased with the progression of fatigue, while the 

recognition rate of the fatigue transition state was relatively 

low, and this model can provide non-invasive evaluation 

support for related fields, though further optimization is 

required in subsequent studies.  
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