
Consistency Models in Distributed Microservices:
Comparative Evaluation of Event Sourcing

vs. Saga Pattern Implementation

Musaed Autairi1, Jawaher Ali Alhowaish2

1Department of Computer Science & Engineering, Nahar Group of Institutions, Faridabad

2Lead Software Engineer, Mastech Digital Technologies Inc, Pittsburgh PA, United States

Abstract: One major issue associated to microservices architectures is aspects related to data consistency and management of data

within such a context. To measure the effect on system integrity, this research paper compares different data consistency models which

are, eventual consistency, distributed transactions through Two-Phase Commit (2PC), the Saga pattern. Employing historical data

analysis, case studies, and examining the recent technological advancements, the study gives a comparative assessment of various

approaches in terms of their capabilities to achieve transaction latencies and throughput and possibility to guarantee consistent results.

Based on the results, it is evident that although eventual consistency models provide high scale-out and availability characteristics, the

models experience transitory data inconsistency. Consistency is high since data is accessed from, and committed to, multiple databases

in a distributed transaction but they have performance penalties. The Saga patterning gives a balanced view but at the same time brings

together additional design difficulty. New trends like Distributed Ledger Technology (DLT) as well as new consensus algorithms that

can be used to solve problematic approaches like the Raft algorithm give new possibilities for improving consistency of the data but

bring their own concerns. The study implies that one must choose the right consistency model depending on the need and performance

Degree and the future research can consider the use of the combination of several models along with the improvement of technological

solutions to have a better deal with data consistency in microservices.

Keywords: Microservices, data consistency, eventual consistency, distributed transactions, Two-Phase Commit (2PC), Saga pattern,

Distributed Ledger Technology (DLT), Raft consensus algorithm

1. Introduction

In the systems’ architecture constant and vast development,

microservices are one of the most prevalent concepts

allowing for assembling applications with flexibility and

scalability. While in monolithic architecture a large, single

codebase or application performs all the operations and

functions, Microservices has divided an application into

loosely coupled services. Every service is normally a

manifestation of a certain business process, which are

integrated in a network. This architectural change has also

made it possible to improve the flexibility of an organization

to execute systems, making it easier for deployment as well

as maintenance while at the same time enjoying the ability to

scale components individually. However, like every new

concept the adoption of microservices also brings with it a

number of problems the major one among them is that of

data synchronization and data control [1].

 Data consistency is always a big concern in any Distributed

environment and specifically in microservices environment,

it constitutes a significant challenge. In traditional monolithic

systems, the data is kept in a centralized data base for data

consistency and data integrity, usually employing ACID

transactions. However, in a microservices architecture, many

times, each service has its database, which resulted in a

distributed data environment. This distribution of data across

multiple services and databases raise its consistency in

situations where some transactions are executed across

multiple services. To achieve this, it suggests the use of

deployments, a different approach that is vital so that the

services can be a consistent state across the dispersed

services [2].

The problem with data consistency increases with the need

of availability and tolerance to failures in microservices.

Microservices, therefore, are designed to be self-sufficient, to

enable some part of the system to break, without affecting

the functioning of the overall application. However, bringing

about such resilience is frequently at the cost of compromise

the consistency. These trade-offs are well illustrated by the

CAP theorem, which states what is considered as a common-

sense idea:, namely, that in a distributed computing

environment, it is possible to achieve completeness

’’consistency, availability’’, and ‘’partition tolerance’’ at the

same time. This often makes it impossible to achieve a highe

degree of consistency, thus making microservices designs

prefer availability and partition tolerance more [3].

 Several strategies have been put forward and adopted in

order to maintain data consistency in microservices

architecture. One of them is called ‘eventual consistency’ –

the system does not guarantee that all nodes will be

consistent at the moment but promises that they will be

consistent at some point in the future. This is a method that

increases the availability and partition tolerance at the same

time, but demands attention to briefly appearing conflicts.

Asynchronous communication of services based on events is

typically used to provide an event-based architecture that

follows eventual consistency. In such systems, changes to a

number of services are communicated through events that the

service then updates by itself. That being said while this

strategy improves scalability and fault tolerance it creates

challenges where all of the services remain in harmony and

all events are properly ordered [4].

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

14

DOI: 10.53469/jrse.2025.07(08).04

https://www.ijsr.net/

Another technique used to address the issue of data

consistency in microservices is the usage of distributed

transactions that only refurbish the ACID properties but to

multiple services. Such protocols as Two-Phase Commit

(2PC) attempt to guarantee that a transaction is either fully

committed within all the services or fully backed out.

However, such an approach can produce strong consistency

guarantees in most cases, which can be considered its major

advantage; nevertheless, it also implies higher

implementation and performance overheads. However, when

individuals work with very fine-grained services, as in the

microservices architecture, which prefers to have

components that are independent and independently

deployable, distributed transactions can be problematic [5].

There is also the Saga pattern that addresses the issue of data

consistency in microservices. You should understand that a

Saga is not a single transaction, while a traditional

transaction is an update of information within a specific

service and Publication of a new update that begins a new

transaction. When a step in the Saga fails, another

transaction is done to reverse the effects of the previous steps

in the Saga. This approach is closer to being more flexible

and scalable for maintaining the consistency when needed

across the services but the drawback is the extra quality

assurance in designing the compensating actions that is

required to make sure that the system that has failed does not

corrupt the data integrity.

Besides, such relevant approaches as CQRS and database

sharding have also been used to address data challenges in

microservices. CQRS divides the read and write operations

of a service, while enabling each side to be fine-tuned

according to the needs of the business. This can aid with

scaling the system and performance, however, it again it

creates the problems that the read-model and the write-model

must remain in sync, otherwise invalid data may be sent.

Database partitioning in contrast is termed as sharding and

entails the division of a database into several portions

whereby each portion is hosted by a server. Although

sharding can enhance performance or scalability, which is a

downside: shard data are kept across multiple shards, and

synchronising the shards can be challenging.

That brings us to the question of how these approaches affect

the system’s integrity and it is an essential factor to consider

especially when implementing microservices within an

organization. According to Salzberg, system integrity means

the ability of a system to work properly or a property of a

system that does not fail of or deceive in its purpose or

promised capacity. To protect the integrity of a system in

microservices architecture, it is advisable to have a system

that is well-coordinated services and having adequate

measures in place for necessary error handling and a reliable

monitoring system. There are implications of the choice of

the consistency approach on the degree of system

consistency and organizational integrity. For example, one

can encounter an outcome where several services develop

different views of the data, creating inconsistencies that are

acceptable temporarily due to eventuality. While strict

consistency models can hurt the system dependability, they

also make services coupled and could thus be more

susceptible to failure [6-7].

In practice, it proves to be relatively difficult to reach a good

compromise between consistency, availability and system

integrity and usually, it may be necessary to use several

methods as well as to know the particular demands and non-

allowable characteristics of the application. Organizations

have to understand the con for each of these and pros, among

them being the sensitivity of data, expected load, and

acceptable system inconsistency. Further, the adoptation of

these techniques requires sound test and evaluation to

guarantee correct and orderly behavior of the systems across

various circumstance.

This paper mapped microservices and examined how data

consistency and data management will persist as an issue

with the increasing adoption of microservices in the industry.

The new possibilities created by emerging technologies and

methodologies including distributed ledgers and advanced

messaging systems are discussed below. But, basic pillars

like – consistency, availability and partition tolerance will

always dictate the ideas of microservices architecture. As for

the organisations, the ability to manage these trade-offs

effectively will be one of the key successes factors in the

case of microservices-based application to provide as

reliable, scalable and resilient system in the context of the

complex and distributed environment of the contemporary

computing space.

2. Literature Review

Scholars have paid increasing attention to data consistency

and management in microservices in recent years because the

microservice architecture has continues to be adopted widely

in the software industry. A body of work has been published

between 2022 to 2024 that deals with different approaches,

issues, and opportunities related to data consistency within

dispersed services together with analyzing the conflict

between consistency, availability, and data integrity.

Another point which has been under discussion in recent

papers is struck between obtaining a high degree of

consistency and preserving system availability and response

time. Several studies have revisited the implications of the

CAP theorem, which posits that a distributed system can

only provide two of the three guarantees: or, in other words

HA (High Availability), CA (Consistency) and PT (Partition

tolerance) [8]. That often leads to the AS in the

microservices environment where availability and partition

tolerance are favored over strict consistency. For instance, a

survey by Zhang et al. in 2022 focused on the loss-gain

analysis of the microservices-based systems and pointed out

that while the same-sourced availability is obtained by

adopting the eventual consistency model, extra difficulties

appear in handling temporary inconsistencies. The authors

considered different examples where the concept of an

eventually consistent system may result in data anomalies

indicating possible mechanisms to detect and correct them

with the consideration of consistency vs performances.

One of the main strategies now applied to maintain data

consistency is the event-driven architectures, which makes

microservices communicate asynchronously. Recent

developments have been directed towards enhancing

coherence in such frameworks especially in event ordering

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

15

https://www.ijsr.net/

and failure management. Several aspects for event

processing were discussed in a guilding study conducted by

Gupta and colleagues in 2023 where event-driven

microservices were analyzed and idempotent operations and

deduplication were established as promoting reliability in the

event processing mechanism. Another weakness discovered

in event driven system is that although these systems are

naturally elastic and robust, there is a need to employ

complex structures to ensure that all events are processed

only once and in a sequential fashion. This research has

shown that to avoid data inconsistency, event-handling logic

must also be well designed and methods including the

outbox pattern and transactional messaging must be

implemented [9].

Other core aspects discussed in recent work are related to

distributed transactions as applied to microservices.

Distributed transactions like the two phase commit2pc offer

the prospect of strong consistent results but are usually

accused of being burdensome and costly. A research study

conducted by Liu et al in 2023 deploying empirical analysis

in the management of distributed transactions in

microservices did a comparison of 2PC with other

consistency models examples being Saga pattern. The

outcomes revealed the degree of consistency provided by

2PC: it was the highest, but the latency that operated making

it less appropriate to solve the problem in conditions of a

high throughput of transactions. On the same note, the Saga

pattern which decomposes a transaction into a chain of sub

transactions, each covered by a compensating transaction

was determined to be compatible with the microservices

architecture, exhibiting good transaction consistency with

greater system responsiveness. The authors have suggested

that in the selection of the consistency model, one has to

consider the general requirements of the application at hand

and take into account the costs involved [10].

Microservice orchestration and choreography approach for

ensuring consistency of data has was has also been covered

in details. Orchestration, where there is a central conductor

managing the interactions between different services can

help in simplification of managing distributed transactions

and global consistency. But it can result to increased

interaction between services in that it creates a tightly

coupled system which is not very flexible. Choreography on

the other hand enables services to be more independent,

though it reduces tight coupling but on the other hand makes

it harder to ensure data consistency between independent

services. In their 2022 paper, Smith and Jones did a

comparison between these approaches to understand the

effect that they have on system integrity; they concluded that

orchestration is better suited for use in situations where

achieving strong consistency is necessary while

choreography is more suitable in situations where high

scalability and fault tolerance have to be achieved. The

authors added that more elaborate models are needed and

they proposed that the key element to the effectiveness of a

given microservices system is best found in the synthesis of

orchestration and choreography [11].

The literature has also looked at how with the use of new and

emerging technologies, data consistency in microservices

can be managed. For instance, a 2024 study by Patel et al.

titled; Distributed Microservices Architecture With

Enhanced Data Consistency by Distributed Ledger

Technology (DLT) explored how DLT could be used to

eliminate data incoherencies in microservices. The given

work introduced a concept of a new architecture that uses

blockchain ledger for microservices interaction to guarantee

all updates to the system are consensually known to all

microservices. Despite the fact that such an approach implies

extra loads in terms of processing and storing, it provides

rather high levels of confidence in the data’s integrity and

consistency. At the end of the study, the authors noted that it

is likely that the most useful application of DLT is in a

context where the Data that is being shared needs to be

extremely secure, for example in the financial sector or in

supply chain [12].

Kim et al undertook another study in 2024 that looked at the

ability to use message queuing protocols and the distributed

consensus algorithms to improve on consistency of data in

microservices. The work done was mainly about how the

Raft algorithm, when adopted into the microservices

architecture, enabled thecoordination of multiple concurrent

processes and keep the distributed state always consistent

and highly available. The paper discussed the effort of

implementing Raft in microservice-based systems and

identified the integration problem with existing popular

microservices frameworks and discussed possible

optimizations and performance overheads of consensus-

based approach. According to the results, consensus

algorithms which were initially used in distributed database

systems can be successfully utilized in the microservices

architecture, yielding a high level of consistency and

requiring little additional time for the most of the

applications [13].

There have also been studies done also focusing on how

observability and monitoring plays a great role in handling

the data consistency issues in microservices recently. With a

large number of microservices in the architecture and with

services interacting in a rather unpredictable manner,

monitoring and tracing data flows becomes a critical task. A

2023 paper by Brown et al. explained how they used

distributed tracing and logging which include observability

tools to identify and triage consistency micro-service issues

in real time. It was discovered that observability does not

solve consistency problems per se but offers the lens through

which to identify and tackle these problems. The authors

explained the need for observability strategy as a strong

support for preserving the integrity of a microservices system

to successfully manage and address inconsistencies, which

otherwise, could manifest themselves in the area available to

the user in the shortest time possible [14-15].

Altogether, the papers from 2022 to 2024 have offered

certain understanding of the issues and their possible

mitigations linked to data consistency and management in

microservices. Therefore, it can be stated that there is no

universal solution to the problem, but further studies give

valuable insight into the trade-offs between consistency,

availability and performance. Regardless of which type of

consistency model is used, whether eventual consistency

models, distributed transactions, DLT or emerging consensus

algorithms, the choice must depend with the systems

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

16

https://www.ijsr.net/

requirements and characteristics. With microservices still an

advancing concept, future research shall be significant for

enhancing the approach with suitable strategies for making

these system precise, elastic, and coherent.

3. Proposed Mythology

The approach to be used for this research paper on data

consistency and management in the microservices is

presented to ensure that various types of consistency models

along with their implications on system dependability are

systematically discussed and evaluated. The use of this

methodology is therefore a fusion of reviewing literature and

empirical work as well as considering case analysis and

future technologies.

 The first activity of the methodological map involves doing

a review of the literature in a bid to establish a premise in

mapping the current research on data consistency in

microservices. By focusing the research in articles published

on 2022, 2023 and 2024 this review will be able to shed light

on various data consistency models including eventual

consistencies, standard distributed transactions, Sagas

approach. In this regard, the literature review will aim at

identifying missing links in the literature, theories as well as

practice regarding the aforementioned models. It will help in

the formulation of research questions, the further

development of the measures to be used in the quantitative

research and the identification of basic measures for analysis

[16-17].

 Following after the literature they are the empirical study to

assess the performance of the system and the measure of

consistency provided by the various data consistency models

under a Stringently controlled manner. The primary focus of

this empirical analysis is to develop several test

microservices applications representing diverse consistency

models. Software shall be created in an effort to emulate

various scenarios as it will help in benchmarking against the

models developed [18].

The empirical analysis will include the following steps:In the

empirical analysis, the following steps will be followed:

1) System Setup: Develop some number of microservices

applications of varying degrees of sophistication as well

as a variety of forms of data exchange. Every application

will be designed to run utilizing one of the mentioned

data consistency models: To achieve consistency, there

are eventual consistency, distributed transactions using

the Two-Phase Commit (2PC) protocol, and the Saga

pattern. These applications will be further evolved out of

existing microservices frameworks and instruments.

2) Performance Metrics:Define what is meant by transaction

latency and throughput ; what magnitude of consistency

is generally achievable. For acquiring large amount of

information over these proclivities, monitoring and

tracing tools shall be employed. Latency shall be defined

as the time taken to perform a specific transaction while

the throughput shall be defined as the number of transacts

that can perform in one second. The degree of

consistency of promises will be assessed by looking at

factors which may affect data inconsistency.

3) Experimentation: Experiment makes the consistency

models under various load conditions and various failure

situations. Performance scenarios will include such as

general loads, maximum loads and emulated network

split or services malfunction. The goal is to find out how

each of the models works and how effectively it

maintains the volume’s data security in case of stress

conditions.

The research will also use case studies to achieve an

application-based view of the different data consistency

models. These case studies will be conducted during

coursework across different industry sectors like e-

commerce, finance and health care in order to gather

different uses and practices during implementation [19-20].

The case study methodology involves: The case study

approach consists in the following:

1) Selection of Case Studies: The examples of organisations

that deploy the various consistency models in

microservices architectures to reality. For this purpose,

the selection will be the proposal of the paper to be done

based on both the type and variety mentioned above.

2) Data Collection: Conduct interview with system architect,

system developers and operation teams and gather

qualitative data. Moreover, compile the quantitative data

from log files, system performances and incidents that

took place and supplement the qualitative analysis. This

information will enable me gather information on real life

problems, real life solutions as well as the real life

performance of different consistency models.

3) Analysis: Use case study data in the interest of forming

patterns and conclusions that may exist about the subject

under consideration, that is, how the hypothesised affect

of consistency models impact on system performance,

system reliability, system integrity. This study will also

help in establishing the factuality of the results and also

provide the structural details of each model to help in

understanding more of the practical implication.

These new trends are also considered in the above stated

methodology in order to overcome the data consistency

issues of microservices architectures. This type of evaluation

is going to be focused on current trends including;

distributed ledger technology (DLT), consensus algorithms

and advanced message queuing protocols. Specifically, it is

required to assess new technologies in concerning with the

potential for increasing data reliability and the general

system.

The evaluation process involves:

1) Technology Review: Determine the changes of the fields

connected to data consistency in microservices in the

last years. This also includes the assessment of several

benefits and liabilities of the DLT use, consensus

algorithms, and different queuing systems.

2) Prototype Development: Develop/Design solutions

based on innovative technological approaches backed by

microservices architecture. To do so, use Blockchain

and achieve an unalterable ledger or use a consensus

similar to Raft while interacting with the Shared State.

3) Assessment: Evaluate the achievement of all the defined

prototypes’ performance standard and gauging the

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

17

https://www.ijsr.net/

organizational commitment in realizing steady output.

Make a checkpoint of certain performance parameters of

a certain transaction or a number of transactions and

compare it with conventional data consistency models.

Determine how the following characteristics of the

field’s emerging technologies are affected: , which

comprise system scalability, the existence of fault

tolerant measures and data integrity.

Last, the research will give an analysis of the empirical

studies on the factors that influence the use of ICT, and find

and discuss on case-studies and technology reviews. in the

synthesis phase, the evaluation of the models and

technologies’ performance and consistency guarantee in

relation to strength, weakness and the trade off will be done.

For propositions that practitioners could consider, these

guidelines will, with the outcomes of the case studies, be

enlightened by empirical findings.

The consequence will involve comparison of the

effectiveness of various data consistency techniques, the

approach to selecting between different consistency

techniques and the prospect of data consistency in the

context of emerging technologies. There are useful facts,

which can help to implement microservices architectures,

and maintain data consistency and integrity presented in this

work.

This is a proposed methodology worked out based on

theoretical analysis, empirical and case study tests, and

evaluation of new methods to provide a systematic and

applied framework of the data consistency and management

in microservices.

Figure 1: Proposed Research Methodology

4. Results and Discussion

The empirical analysis results also shed the light on the

performance and or better put the consistency models that

are commonly used in microservices. The study evaluated

three primary models: Non-terminating consistency models

comprise of eventual consistency, distributed transactions

using the Two-Phase Commit (2PC) technique and the Saga

pattern. Both models were evaluated with a diverse set of

load conditions and failure modes to compare transaction

latency, throughput and data consistency.

The graph in figures 2, 3 and 4 presents results of some

performance indicators that we considered in our study

regarding the different data consistency models and

technologies. Figure 2 shows a comparison of average

transaction latency of different consistency models and

emerging technologies where eventually consistency models

represent the least amount of latency for a block after it has

been written followed by the Saga pattern and Raft

consensus, and finally DLT with the highest latency among

the blocks. Average throughputs are depicted in Figure 3

where it illustrates that eventually, consistency supports the

most significant transaction count per hour all through the

test; however, 2PC exhibits the lowest throughput with Saga

pattern and Raft algorithm sitting in the middle. Lastly, the

number of times data anomalies were detected for the

various models and technologies is presented in Figure 4,

and while distributed transactions and DTL surfaced no

anomalies, many of the EC models including the Saga

pattern yielded moderate to high anomalies. Each of these

figures gives a graphical representation of the above

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

18

https://www.ijsr.net/

parameters … 𝜏 vs. 𝑆 𝑐 , 𝜏 vs. 𝑆 𝑖 , and 𝑆 𝑐 vs. 𝑆 𝑖 , compare

latency and throughput and other qualities of different

approaches to data consistency.

In case of the eventual consistency model, which uses event

driven architecture, the average transaction latency was

found to be about 150 milliseconds including 10,000

transactions per second under normal load. This model

exhibited high availability and scalability and hence can be

useful for applications that deals with large numbers of

transactions and the load might vary from time to time. But

it was noted that in certain cases such as, assured

consistency models there is often transient data in

consistency. It was observed that during the periods of high

loads or when partitions are created, the rate of data

anomalies is around 5% in total number of transactions.

These inconsistencies were observed to be due to other

processes and event processing not generally being in sync

and how difficult it is to keep services synchronized.

Nevertheless, some of these difficulties are addressed

through such practices as event sourcing and CQRS

(Command Query Responsibility Segregation) as they offer

ways to handle data discrepancies and synchronise them.

However, the distributed transactions model, realised

through the Two-Phase Commit (2PC) protocol, offered

greater consistency at the cost of performance. The results

showed that the average transaction latency of 2PC was

found to be 300 milliseconds and the throughput achieved in

every second was only 6000 transactions. Whereas 2PC

effectively coordinated transactions to ensure that all the

services committed the transaction or none, the protocol

added significant overhead, particularly where the load was

high. Network divided time and service break time latency

was higher and throughputs were lower that were

acceptable, though network between partitions time and

service break time exist. The impact on performance

presented by the 2PC protocol confirmed the necessity to

use it in tasks which require strict consistency but also

revealed its inefficiency in high throughputs.

Next, the Saga pattern which divides the transaction into a

series of less-atomic transactions, each of which is

compensable provided a reasonable trade-off between

consistency and performance. The average transaction

latency, therefore, using the Saga pattern was approximately

200 ms while the throughput was 8000 TPS. The Saga

pattern proved proficient in maintaining the homogeneity of

distributed services with data irregularities reported only in

2% of the transactions. That this pattern was capable of

handling the complex work flow and offering compensating

transactions was useful in ensuring data consistency. Thus,

the introduction of compensating transactions also

complicated the design of the system and, when combining

the compensating transactions, required a high level of

scrutiny in order to effectively test how the compensating

transactions ought to be executed should there be failures in

its application.

These findings were supported by the case studies which

demonstrated in practice how each consistency model is

used. In the e-commerce service, the organizations that

implement the eventual consistency could notice the facts of

better scalability and elasticity, but the problem of data

consistency during increased loads. Event sourcing as well

as CQRS allowed to mitigate some problems related to data

synchronization; however, the handling of consistency was

still a challenging task. On the other hand, the financial

institutions that were using the distributed transactions with

the 2PC noted that the strong consistency constraints kept

the transactions very correct. However, the performance was

a trade off and organizations had to look at the concept of

using 2PC in conjunction with local transaction

management.

Overall, health care organizations who implemented the

Saga pattern provided a reasonable level of consistency

while maintain competitive performance. The capability of

the Saga pattern in managing complicated transactions and

giving compensations helped in preserving the data

consistency of distributed services. On the other hand,

implementation and testing of compensating transactions, as

Koh et al have indicated, were a source of added complexity.

These insights were gained during the evaluation of

emerging technologies that also gave more understanding on

improving data consistency in microservices. The

Distributed Ledger Technology (DLT), in particular, the

blockchains presented the possibilities of permanent and

synchronized recording. Nonetheless, the benchmark

average latency for transactions with DLT was 400

milliseconds with throughputs of around 4 thousand

transactions per second. However the degree of DLT offered

benefits for the applications needing high levels of trust and

auditability at a higher overhead. The consensus algorithm

for managing distributed state called Raft had the average

latency of 250 ms and a throughput of 7000 transaction per

second. Consistency upon distributed nodes was mainly seen

in achieving consensus using Raft which came with some

performance loss.

Therefore, this paper shows that each of the said data

consistency models and emerging technologies holds unique

benefits and drawback. Eventual consistency models are

highly available and highly scalable but come with the

necessity of dealing with temporary inconsistency. Strong

consistent distributed transactions are good but the problem

is that the performance is not up to the mark. The Saga

pattern maintains the strength of its patterned nearness while

adding a slight design cost in terms of efficiency.

Contemporary technologies such as distributed ledger

technologies and consensus algorithms, have the potential of

improving data synchronization but they also have their

performance and deployment characteristic. These studies

suggest that one has to choose the most suitable consistency

model depending on the concrete cases and the needs of the

system in use, as well as considering how some new

technologies may help combat microservices’ data

consistency issues.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

19

https://www.ijsr.net/

Figure 2: Performance Comparison for Average Transaction Latency by Consistency Model / Technology

Figure 3: Performance Comparison for Average Throughput by Consistency Model / Technology

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

20

https://www.ijsr.net/

Figure 4: Performance Comparison for Updated Data Anomalies by Consistency Model / Technology

5. Conclusion

This research paper aims at reviewing the current litterature

for data consistency and its management in the context of

microservices architecture and compare the various models

of consistency relative to the integrity of a system. The

findings that have emerged from the present empirical

analysis, case studies and evaluation of emergent ICTs

include:

The models that are called eventual consistency,

characterized by asynchronous processes and based on

event-driven system architecture, have evident advantages in

terms of scalability and request per second rate. However,

they also have a problem of temporary data incoherencies

and are susceptible to it mostly under conditions of high

consumption rates and network fragmentation. Despite this,

some of these problems can be solved with certain

architectures like event sourcing and CQRS, but dealing with

eventual consistency is still a challenging task that one

should take into account and have a proper error-handling

policy.

Distributed transactions also cut across services and are

mostly used in Two-Phase Commit (2PC) protocol helps to

offer strong consistence as all services will commit on a

given transaction or rollback it. Thus, 2PC is rather good for

the data integrity issues, at the same time, it provokes certain

performance issues, including time latency, and the

throughput rate declines even more at the high load or

networks failures. This makes it less suitable for real time

and highly Scalable applications.

The Saga pattern is a reasonable approach as it maintains

consistency and performance through further fragmenting of

the transaction into a series of smaller transactions which are

compensated. It does handle distributed work-flows and

preserves consistency of data, with less number of data

anomalies in certain situations as compared to eventual

consistency models. However, more complications are

involved when it comes to the procedure of implementing

and testing compensating transactions because they make the

system design more cumbersome.

The discussion of new concerns, such as DLT or consensus

algorithms like Raft or a similar one, reveals potential to

improve the synchronization of microservices’ data. DLT

offers the features of permanent, unchangeable data storage

and high credibility while at the same time reducing the

speed and processing capacity. Raft algorithms achieve both

high levels of consistency and decent performance in terms

of performance overhead, and are therefore well suitable for

dealing with the problem of distributed state.

In general, the study shows that consistency does not have a

simple answer in microservices. Based on these scenarios,

Borgida suggests that one should choose the consistency

model or the particular technology depending on the

requirements to the system’s performance and reliability.

Such decision makers require a proper analysis of likely

trade-offs between consistency, availability, and

performance in a given microservices architecture when

choosing between the mentioned approaches. Some areas for

future study may include examining the hybrid models and

progression in the development of the emerged technologies

to persisting issues related to data synchronization and data

control.

References

[1] Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan,

Z., ... & Babar, M. A. (2021). Understanding and

addressing quality attributes of microservices

architecture: A Systematic literature

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

21

https://www.ijsr.net/

review. Information and software technology, 131,

106449.

[2] Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., &

Kalinowski, M. (2021). Data management in

microservices: State of the practice, challenges, and

research directions. arXiv preprint arXiv:2103.00170.

[3] Ghani, I., Wan-Kadir, W. M., Mustafa, A., & Babir,

M. I. (2019). Microservice testing approaches: A

systematic literature review. International Journal of

Integrated Engineering, 11(8), 65-80.

[4] Waseem, M., Liang, P., Shahin, M., Di Salle, A., &

Márquez, G. (2021). Design, monitoring, and testing

of microservices systems: The practitioners’

perspective. Journal of Systems and Software, 182,

111061.

[5] Waseem, M., Liang, P., Shahin, M., Ahmad, A., &

Nassab, A. R. (2021, June). On the nature of issues in

five open source microservices systems: An empirical

study. In Proceedings of the 25th International

Conference on Evaluation and Assessment in Software

Engineering (pp. 201-210).

[6] Waseem, M., Liang, P., Shahin, M., Di Salle, A., &

Márquez, G. (2021). Design, monitoring, and testing

of microservices systems: The practitioners’

perspective. Journal of Systems and Software, 182,

111061.

[7] Ntentos, E., Zdun, U., Plakidas, K., Schall, D., Li, F.,

& Meixner, S. (2019). Supporting architectural

decision making on data management in microservice

architectures. In Software Architecture: 13th

European Conference, ECSA 2019, Paris, France,

September 9–13, 2019, Proceedings 13 (pp. 20-36).

Springer International Publishing.

[8] Munonye, K., & Martinek, P. (2020, June). Evaluation

of data storage patterns in microservices archicture.

In 2020 IEEE 15th International Conference of

System of Systems Engineering (SoSE) (pp. 373-380).

IEEE.

[9] Hannousse, A., & Yahiouche, S. (2021). Securing

microservices and microservice architectures: A

systematic mapping study. Computer Science

Review, 41, 100415.

[10] Koschel, A., Hausotter, A., Lange, M., & Gottwald, S.

(2020). Keep it in Sync! Consistency Approaches for

Microservices-An Insurance Case Study. In SERVICE

COMPUTATION 2020, The Twelfth International

Conference on Advanced Service Computing (pp. 7-

14). IARIA.

[11] Cerny, T., Svacina, J., Das, D., Bushong, V., Bures,

M., Tisnovsky, P., ... & Huang, J. (2020). On code

analysis opportunities and challenges for enterprise

systems and microservices. IEEE access, 8, 159449-

159470.

[12] Niloy, S. I., Ishmum, M. N., & Islam, M. A.

(2022). Data Consistency in Large Scale

Applications (Doctoral dissertation, Department of

Computer Science and Engineering (CSE), Islamic

University of Technology (IUT), Board Bazar,

Gazipur, Bangladesh).

[13] Bogner, J. (2020). On the evolvability assurance of

microservices: metrics, scenarios, and

patterns (Doctoral dissertation, Universität Stuttgart).

[14] Dakić, P. (2024). Software compliance in various

industries using CI/CD, dynamic microservices, and

containers. Open Computer Science, 14(1), 20240013.

[15] Zarza, A. (2022). Inter-Organizational Data

Consistency through Blockchain-Supported

Microservices (Doctoral dissertation, University of

Applied Sciences).

[16] Sharma, I., & Ramkumar, K. R. (2017). A survey on

ACO based multipath routing algorithms for ad hoc

networks. International Journal of Pervasive

Computing and Communications, 13(4), 370-385.

[17] Shamas, S., Panda, S. N., & Sharma, I. (2022,

November). K-Means clustering using fuzzy C-Means

based image segmentation for Lung Cancer. In 2022

3rd International conference on computation,

automation and knowledge management

(ICCAKM) (pp. 1-5). IEEE.

[18] Sharma, I., Saini, J., Chhabra, G., & Kaushik, K.

(2023, December). Cyber Threat Detection in

Software-Defined Networks: An Empirical Analysis

of Machine Learning Methods. In 2023 3rd

International Conference on Innovative Mechanisms

for Industry Applications (ICIMIA) (pp. 1119-1124).

IEEE.

[19] Bhakhri, K., Sethi, M., Sharma, I., & Kaushik, K.

(2023, November). Examining the Consequences of

Cyberattacks on Businesses and Organizations.

In International Conference on Innovations in Data

Analytics (pp. 227-239). Singapore: Springer Nature

Singapore.

[20] Sharma, I., Kaur, A., Kaushik, K., & Chhabra, G.

(2023, July). Machine Learning-Based Detection of

API Security Attacks. In International Conference on

Data Science and Applications (pp. 285-297).

Singapore: Springer Nature Singapore.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-8, August 2025

22

https://www.ijsr.net/

