Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025
DOI: 10.53469/jrse.2025.07(08).04

Consistency Models in Distributed Microservices:
Comparative Evaluation of Event Sourcing
vs. Saga Pattern Implementation

Musaed Autairit, Jawaher Ali Alhowaish?
Department of Computer Science & Engineering, Nahar Group of Institutions, Faridabad

2Lead Software Engineer, Mastech Digital Technologies Inc, Pittsburgh PA, United States

Abstract: One major issue associated to microservices architectures is aspects related to data consistency and management of data
within such a context. To measure the effect on system integrity, this research paper compares different data consistency models which
are, eventual consistency, distributed transactions through Two-Phase Commit (2PC), the Saga pattern. Employing historical data
analysis, case studies, and examining the recent technological advancements, the study gives a comparative assessment of various
approaches in terms of their capabilities to achieve transaction latencies and throughput and possibility to guarantee consistent results.
Based on the results, it is evident that although eventual consistency models provide high scale-out and availability characteristics, the
models experience transitory data inconsistency. Consistency is high since data is accessed from, and committed to, multiple databases
in a distributed transaction but they have performance penalties. The Saga patterning gives a balanced view but at the same time brings
together additional design difficulty. New trends like Distributed Ledger Technology (DLT) as well as new consensus algorithms that
can be used to solve problematic approaches like the Raft algorithm give new possibilities for improving consistency of the data but
bring their own concerns. The study implies that one must choose the right consistency model depending on the need and performance
Degree and the future research can consider the use of the combination of several models along with the improvement of technological
solutions to have a better deal with data consistency in microservices.

Keywords: Microservices, data consistency, eventual consistency, distributed transactions, Two-Phase Commit (2PC), Saga pattern,
Distributed Ledger Technology (DLT), Raft consensus algorithm

1. Introduction The problem with data consistency increases with the need
of availability and tolerance to failures in microservices.
In the systems’ architecture constant and vast development, ~ Microservices, therefore, are designed to be self-sufficient, to
microservices are one of the most prevalent concepts €nable some part of the system to break, without affecting
allowing for assembling applications with flexibility and the functioning of the overall application. However, bringing
scalability. While in monolithic architecture a large, single ~ about such resilience is frequently at the cost of compromise
codebase or app“cation performs all the Operations and the ConSiStency. These trade-offs are well illustrated by the
functions, Microservices has divided an application into ~ CAP theorem, which states what is considered as a common-
loosely coupled services. Every service is normally a Sense idea:, namely, that in a distributed computing
manifestation of a certain business process, which are environment, it is possible to achieve completeness
integrated in a network. This architectural change has also ~ consistency, availability’’, and “’partition tolerance’” at the
made it possible to improve the flexibility of an organization ~ same time. This often makes it impossible to achieve a highe
to execute systems, making it easier for deployment as well ~ degree of consistency, thus making microservices designs
as maintenance while at the same time enjoying the ability to Prefer availability and partition tolerance more [3].
scale components individually. However, like every new
concept the adoption of microservices also brings with it a ~ Several strategies have been put forward and adopted in
number of pr0b|ems the major one among them is that of order to maintain data COﬂSlStency IN microservices
data synchronization and data control [1]. architecture. One of them is called ‘eventual consistency’ —
the system does not guarantee that all nodes will be
Data consistency is always a big concern in any Distributed ~ consistent at the moment but promises that they will be
environment and specifically in microservices environment, ~ consistent at some point in the future. This is a method that
it constitutes a significant challenge. In traditional monolithic ~ increases the availability and partition tolerance at the same
systems, the data is kept in a centralized data base for data time, but demands attention to briefly appearing conflicts.
consistency and data integrity, usually employing ACID Asynchronous communication of services based on events is
transactions. However, in a microservices architecture, many typically used to provide an event-based architecture that
times, each service has its database, which resulted in a follows eventual consistency. In such systems, changes to a
distributed data environment. This distribution of data across ~ humber of services are communicated through events that the
multiple services and databases raise its consistency in Sservice then updates by itself. That being said while this
situations where some transactions are executed across Strategy improves scalability and fault tolerance it creates
multiple services. To achieve this, it suggests the use of challenges where all of the services remain in harmony and
deployments, a different approach that is vital so that the all events are properly ordered [4].
services can be a consistent state across the dispersed
services [2].

14

https://www.ijsr.net/

Another technique used to address the issue of data
consistency in microservices is the usage of distributed
transactions that only refurbish the ACID properties but to
multiple services. Such protocols as Two-Phase Commit
(2PC) attempt to guarantee that a transaction is either fully
committed within all the services or fully backed out.
However, such an approach can produce strong consistency
guarantees in most cases, which can be considered its major
advantage; nevertheless, it also implies higher
implementation and performance overheads. However, when
individuals work with very fine-grained services, as in the
microservices architecture, which prefers to have
components that are independent and independently
deployable, distributed transactions can be problematic [5].

There is also the Saga pattern that addresses the issue of data
consistency in microservices. You should understand that a
Saga is not a single transaction, while a traditional
transaction is an update of information within a specific
service and Publication of a new update that begins a new
transaction. When a step in the Saga fails, another
transaction is done to reverse the effects of the previous steps
in the Saga. This approach is closer to being more flexible
and scalable for maintaining the consistency when needed
across the services but the drawback is the extra quality
assurance in designing the compensating actions that is
required to make sure that the system that has failed does not
corrupt the data integrity.

Besides, such relevant approaches as CQRS and database
sharding have also been used to address data challenges in
microservices. CQRS divides the read and write operations
of a service, while enabling each side to be fine-tuned
according to the needs of the business. This can aid with
scaling the system and performance, however, it again it
creates the problems that the read-model and the write-model
must remain in sync, otherwise invalid data may be sent.
Database partitioning in contrast is termed as sharding and
entails the division of a database into several portions
whereby each portion is hosted by a server. Although
sharding can enhance performance or scalability, which is a
downside: shard data are kept across multiple shards, and
synchronising the shards can be challenging.

That brings us to the question of how these approaches affect
the system’s integrity and it is an essential factor to consider
especially when implementing microservices within an
organization. According to Salzberg, system integrity means
the ability of a system to work properly or a property of a
system that does not fail of or deceive in its purpose or
promised capacity. To protect the integrity of a system in
microservices architecture, it is advisable to have a system
that is well-coordinated services and having adequate
measures in place for necessary error handling and a reliable
monitoring system. There are implications of the choice of
the consistency approach on the degree of system
consistency and organizational integrity. For example, one
can encounter an outcome where several services develop
different views of the data, creating inconsistencies that are
acceptable temporarily due to eventuality. While strict
consistency models can hurt the system dependability, they
also make services coupled and could thus be more
susceptible to failure [6-7].

15

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

In practice, it proves to be relatively difficult to reach a good
compromise between consistency, availability and system
integrity and usually, it may be necessary to use several
methods as well as to know the particular demands and non-
allowable characteristics of the application. Organizations
have to understand the con for each of these and pros, among
them being the sensitivity of data, expected load, and
acceptable system inconsistency. Further, the adoptation of
these techniques requires sound test and evaluation to
guarantee correct and orderly behavior of the systems across
various circumstance.

This paper mapped microservices and examined how data
consistency and data management will persist as an issue
with the increasing adoption of microservices in the industry.
The new possibilities created by emerging technologies and
methodologies including distributed ledgers and advanced
messaging systems are discussed below. But, basic pillars
like — consistency, availability and partition tolerance will
always dictate the ideas of microservices architecture. As for
the organisations, the ability to manage these trade-offs
effectively will be one of the key successes factors in the
case of microservices-based application to provide as
reliable, scalable and resilient system in the context of the
complex and distributed environment of the contemporary
computing space.

2. Literature Review

Scholars have paid increasing attention to data consistency
and management in microservices in recent years because the
microservice architecture has continues to be adopted widely
in the software industry. A body of work has been published
between 2022 to 2024 that deals with different approaches,
issues, and opportunities related to data consistency within
dispersed services together with analyzing the conflict
between consistency, availability, and data integrity.

Another point which has been under discussion in recent
papers is struck between obtaining a high degree of
consistency and preserving system availability and response
time. Several studies have revisited the implications of the
CAP theorem, which posits that a distributed system can
only provide two of the three guarantees: or, in other words
HA (High Availability), CA (Consistency) and PT (Partition
tolerance) [8]. That often leads to the AS in the
microservices environment where availability and partition
tolerance are favored over strict consistency. For instance, a
survey by Zhang et al. in 2022 focused on the loss-gain
analysis of the microservices-based systems and pointed out
that while the same-sourced availability is obtained by
adopting the eventual consistency model, extra difficulties
appear in handling temporary inconsistencies. The authors
considered different examples where the concept of an
eventually consistent system may result in data anomalies
indicating possible mechanisms to detect and correct them
with the consideration of consistency vs performances.

One of the main strategies now applied to maintain data
consistency is the event-driven architectures, which makes
microservices communicate asynchronously. Recent
developments have been directed towards enhancing
coherence in such frameworks especially in event ordering

https://www.ijsr.net/

and failure management. Several aspects for event
processing were discussed in a guilding study conducted by
Gupta and colleagues in 2023 where event-driven
microservices were analyzed and idempotent operations and
deduplication were established as promoting reliability in the
event processing mechanism. Another weakness discovered
in event driven system is that although these systems are
naturally elastic and robust, there is a need to employ
complex structures to ensure that all events are processed
only once and in a sequential fashion. This research has
shown that to avoid data inconsistency, event-handling logic
must also be well designed and methods including the
outhox pattern and transactional messaging must be
implemented [9].

Other core aspects discussed in recent work are related to
distributed transactions as applied to microservices.
Distributed transactions like the two phase commit2pc offer
the prospect of strong consistent results but are usually
accused of being burdensome and costly. A research study
conducted by Liu et al in 2023 deploying empirical analysis
in the management of distributed transactions in
microservices did a comparison of 2PC with other
consistency models examples being Saga pattern. The
outcomes revealed the degree of consistency provided by
2PC: it was the highest, but the latency that operated making
it less appropriate to solve the problem in conditions of a
high throughput of transactions. On the same note, the Saga
pattern which decomposes a transaction into a chain of sub
transactions, each covered by a compensating transaction
was determined to be compatible with the microservices
architecture, exhibiting good transaction consistency with
greater system responsiveness. The authors have suggested
that in the selection of the consistency model, one has to
consider the general requirements of the application at hand
and take into account the costs involved [10].

Microservice orchestration and choreography approach for
ensuring consistency of data has was has also been covered
in details. Orchestration, where there is a central conductor
managing the interactions between different services can
help in simplification of managing distributed transactions
and global consistency. But it can result to increased
interaction between services in that it creates a tightly
coupled system which is not very flexible. Choreography on
the other hand enables services to be more independent,
though it reduces tight coupling but on the other hand makes
it harder to ensure data consistency between independent
services. In their 2022 paper, Smith and Jones did a
comparison between these approaches to understand the
effect that they have on system integrity; they concluded that
orchestration is better suited for use in situations where
achieving strong consistency is necessary while
choreography is more suitable in situations where high
scalability and fault tolerance have to be achieved. The
authors added that more elaborate models are needed and
they proposed that the key element to the effectiveness of a
given microservices system is best found in the synthesis of
orchestration and choreography [11].

The literature has also looked at how with the use of new and
emerging technologies, data consistency in microservices
can be managed. For instance, a 2024 study by Patel et al.

16

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

titled; Distributed Microservices Architecture ~ With
Enhanced Data Consistency by Distributed Ledger
Technology (DLT) explored how DLT could be used to
eliminate data incoherencies in microservices. The given
work introduced a concept of a new architecture that uses
blockchain ledger for microservices interaction to guarantee
all updates to the system are consensually known to all
microservices. Despite the fact that such an approach implies
extra loads in terms of processing and storing, it provides
rather high levels of confidence in the data’s integrity and
consistency. At the end of the study, the authors noted that it
is likely that the most useful application of DLT is in a
context where the Data that is being shared needs to be
extremely secure, for example in the financial sector or in
supply chain [12].

Kim et al undertook another study in 2024 that looked at the
ability to use message queuing protocols and the distributed
consensus algorithms to improve on consistency of data in
microservices. The work done was mainly about how the
Raft algorithm, when adopted into the microservices
architecture, enabled thecoordination of multiple concurrent
processes and keep the distributed state always consistent
and highly available. The paper discussed the effort of
implementing Raft in microservice-based systems and
identified the integration problem with existing popular
microservices frameworks and discussed possible
optimizations and performance overheads of consensus-
based approach. According to the results, consensus
algorithms which were initially used in distributed database
systems can be successfully utilized in the microservices
architecture, yielding a high level of consistency and
requiring little additional time for the most of the
applications [13].

There have also been studies done also focusing on how
observability and monitoring plays a great role in handling
the data consistency issues in microservices recently. With a
large number of microservices in the architecture and with
services interacting in a rather unpredictable manner,
monitoring and tracing data flows becomes a critical task. A
2023 paper by Brown et al. explained how they used
distributed tracing and logging which include observability
tools to identify and triage consistency micro-service issues
in real time. It was discovered that observability does not
solve consistency problems per se but offers the lens through
which to identify and tackle these problems. The authors
explained the need for observability strategy as a strong
support for preserving the integrity of a microservices system
to successfully manage and address inconsistencies, which
otherwise, could manifest themselves in the area available to
the user in the shortest time possible [14-15].

Altogether, the papers from 2022 to 2024 have offered
certain understanding of the issues and their possible
mitigations linked to data consistency and management in
microservices. Therefore, it can be stated that there is no
universal solution to the problem, but further studies give
valuable insight into the trade-offs between consistency,
availability and performance. Regardless of which type of
consistency model is used, whether eventual consistency
models, distributed transactions, DLT or emerging consensus
algorithms, the choice must depend with the systems

https://www.ijsr.net/

requirements and characteristics. With microservices still an
advancing concept, future research shall be significant for
enhancing the approach with suitable strategies for making
these system precise, elastic, and coherent.

3. Proposed Mythology

The approach to be used for this research paper on data
consistency and management in the microservices is
presented to ensure that various types of consistency models
along with their implications on system dependability are
systematically discussed and evaluated. The use of this
methodology is therefore a fusion of reviewing literature and
empirical work as well as considering case analysis and
future technologies.

The first activity of the methodological map involves doing
a review of the literature in a bid to establish a premise in
mapping the current research on data consistency in
microservices. By focusing the research in articles published
on 2022, 2023 and 2024 this review will be able to shed light
on various data consistency models including eventual
consistencies, standard distributed transactions, Sagas
approach. In this regard, the literature review will aim at
identifying missing links in the literature, theories as well as
practice regarding the aforementioned models. It will help in
the formulation of research questions, the further
development of the measures to be used in the quantitative
research and the identification of basic measures for analysis
[16-17].

Following after the literature they are the empirical study to
assess the performance of the system and the measure of
consistency provided by the various data consistency models
under a Stringently controlled manner. The primary focus of
this empirical analysis is to develop several test
microservices applications representing diverse consistency
models. Software shall be created in an effort to emulate
various scenarios as it will help in benchmarking against the
models developed [18].

The empirical analysis will include the following steps:In the
empirical analysis, the following steps will be followed:

1) System Setup: Develop some number of microservices
applications of varying degrees of sophistication as well
as a variety of forms of data exchange. Every application
will be designed to run utilizing one of the mentioned
data consistency models: To achieve consistency, there
are eventual consistency, distributed transactions using
the Two-Phase Commit (2PC) protocol, and the Saga
pattern. These applications will be further evolved out of
existing microservices frameworks and instruments.
Performance Metrics:Define what is meant by transaction
latency and throughput ; what magnitude of consistency
is generally achievable. For acquiring large amount of
information over these proclivities, monitoring and
tracing tools shall be employed. Latency shall be defined
as the time taken to perform a specific transaction while
the throughput shall be defined as the number of transacts
that can perform in one second. The degree of
consistency of promises will be assessed by looking at
factors which may affect data inconsistency.

2)

17

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

3) Experimentation: Experiment makes the consistency
models under various load conditions and various failure
situations. Performance scenarios will include such as
general loads, maximum loads and emulated network
split or services malfunction. The goal is to find out how
each of the models works and how effectively it
maintains the volume’s data security in case of stress
conditions.

The research will also use case studies to achieve an
application-based view of the different data consistency
models. These case studies will be conducted during
coursework across different industry sectors like e-
commerce, finance and health care in order to gather
different uses and practices during implementation [19-20].

The case study methodology involves: The case study
approach consists in the following:

1) Selection of Case Studies: The examples of organisations
that deploy the wvarious consistency models in
microservices architectures to reality. For this purpose,
the selection will be the proposal of the paper to be done
based on both the type and variety mentioned above.

Data Collection: Conduct interview with system architect,
system developers and operation teams and gather
qualitative data. Moreover, compile the quantitative data
from log files, system performances and incidents that
took place and supplement the qualitative analysis. This
information will enable me gather information on real life
problems, real life solutions as well as the real life
performance of different consistency models.

Analysis: Use case study data in the interest of forming
patterns and conclusions that may exist about the subject
under consideration, that is, how the hypothesised affect
of consistency models impact on system performance,
system reliability, system integrity. This study will also
help in establishing the factuality of the results and also
provide the structural details of each model to help in
understanding more of the practical implication.

2)

3)

These new trends are also considered in the above stated
methodology in order to overcome the data consistency
issues of microservices architectures. This type of evaluation
is going to be focused on current trends including;
distributed ledger technology (DLT), consensus algorithms
and advanced message queuing protocols. Specifically, it is
required to assess new technologies in concerning with the
potential for increasing data reliability and the general
system.

The evaluation process involves:

1) Technology Review: Determine the changes of the fields
connected to data consistency in microservices in the
last years. This also includes the assessment of several
benefits and liabilities of the DLT use, consensus
algorithms, and different queuing systems.

Prototype Development: Develop/Design solutions
based on innovative technological approaches backed by
microservices architecture. To do so, use Blockchain
and achieve an unalterable ledger or use a consensus
similar to Raft while interacting with the Shared State.
Assessment: Evaluate the achievement of all the defined
prototypes’ performance standard and gauging the

2)

3)

https://www.ijsr.net/

organizational commitment in realizing steady output.
Make a checkpoint of certain performance parameters of
a certain transaction or a number of transactions and
compare it with conventional data consistency models.
Determine how the following characteristics of the
field’s emerging technologies are affected: , which
comprise system scalability, the existence of fault
tolerant measures and data integrity.

Last, the research will give an analysis of the empirical
studies on the factors that influence the use of ICT, and find
and discuss on case-studies and technology reviews. in the
synthesis phase, the evaluation of the models and
technologies’ performance and consistency guarantee in
relation to strength, weakness and the trade off will be done.
For propositions that practitioners could consider, these

Research Methodology\

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

guidelines will, with the outcomes of the case studies, be
enlightened by empirical findings.

The consequence will involve comparison of the
effectiveness of various data consistency techniques, the
approach to selecting between different consistency
techniques and the prospect of data consistency in the
context of emerging technologies. There are useful facts,
which can help to implement microservices architectures,
and maintain data consistency and integrity presented in this
work.

This is a proposed methodology worked out based on
theoretical analysis, empirical and case study tests, and
evaluation of new methods to provide a systematic and
applied framework of the data consistency and management
in microservices.

‘ Literature Review

Establish Foundations

‘ Empirical Analysis

Measure Metrics

4

Provide Insights

Evaluate Technologies

Performance Metrics Evaluation ‘

‘ Real-world Case Studies

‘ Emerging Technologies Assessment

Synthesize Results

Contribute Insights

Assess Potential

‘ Synthesis of Findings ‘

Offer Recommendations

‘ Recommendations

Figure 1: Proposed Research Methodology

4. Results and Discussion

The empirical analysis results also shed the light on the
performance and or better put the consistency models that
are commonly used in microservices. The study evaluated
three primary models: Non-terminating consistency models
comprise of eventual consistency, distributed transactions
using the Two-Phase Commit (2PC) technique and the Saga
pattern. Both models were evaluated with a diverse set of
load conditions and failure modes to compare transaction
latency, throughput and data consistency.

The graph in figures 2, 3 and 4 presents results of some
performance indicators that we considered in our study
regarding the different data consistency models and
technologies. Figure 2 shows a comparison of average

18

transaction latency of different consistency models and
emerging technologies where eventually consistency models
represent the least amount of latency for a block after it has
been written followed by the Saga pattern and Raft
consensus, and finally DLT with the highest latency among
the blocks. Average throughputs are depicted in Figure 3
where it illustrates that eventually, consistency supports the
most significant transaction count per hour all through the
test; however, 2PC exhibits the lowest throughput with Saga
pattern and Raft algorithm sitting in the middle. Lastly, the
number of times data anomalies were detected for the
various models and technologies is presented in Figure 4,
and while distributed transactions and DTL surfaced no
anomalies, many of the EC models including the Saga
pattern yielded moderate to high anomalies. Each of these
figures gives a graphical representation of the above

https://www.ijsr.net/

parameters ... TVS. Sc,TVs. Si,and S cvs. S i,compare
latency and throughput and other qualities of different
approaches to data consistency.

In case of the eventual consistency model, which uses event
driven architecture, the average transaction latency was
found to be about 150 milliseconds including 10,000
transactions per second under normal load. This model
exhibited high availability and scalability and hence can be
useful for applications that deals with large numbers of
transactions and the load might vary from time to time. But
it was noted that in certain cases such as, assured
consistency models there is often transient data in
consistency. It was observed that during the periods of high
loads or when partitions are created, the rate of data
anomalies is around 5% in total number of transactions.
These inconsistencies were observed to be due to other
processes and event processing not generally being in sync
and how difficult it is to keep services synchronized.
Nevertheless, some of these difficulties are addressed
through such practices as event sourcing and CQRS
(Command Query Responsibility Segregation) as they offer
ways to handle data discrepancies and synchronise them.

However, the distributed transactions model, realised
through the Two-Phase Commit (2PC) protocol, offered
greater consistency at the cost of performance. The results
showed that the average transaction latency of 2PC was
found to be 300 milliseconds and the throughput achieved in
every second was only 6000 transactions. Whereas 2PC
effectively coordinated transactions to ensure that all the
services committed the transaction or none, the protocol
added significant overhead, particularly where the load was
high. Network divided time and service break time latency
was higher and throughputs were lower that were
acceptable, though network between partitions time and
service break time exist. The impact on performance
presented by the 2PC protocol confirmed the necessity to
use it in tasks which require strict consistency but also
revealed its inefficiency in high throughputs.

Next, the Saga pattern which divides the transaction into a
series of less-atomic transactions, each of which is
compensable provided a reasonable trade-off between
consistency and performance. The average transaction
latency, therefore, using the Saga pattern was approximately
200 ms while the throughput was 8000 TPS. The Saga
pattern proved proficient in maintaining the homogeneity of
distributed services with data irregularities reported only in
2% of the transactions. That this pattern was capable of
handling the complex work flow and offering compensating
transactions was useful in ensuring data consistency. Thus,
the introduction of compensating transactions also
complicated the design of the system and, when combining
the compensating transactions, required a high level of
scrutiny in order to effectively test how the compensating
transactions ought to be executed should there be failures in
its application.

19

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

These findings were supported by the case studies which
demonstrated in practice how each consistency model is
used. In the e-commerce service, the organizations that
implement the eventual consistency could notice the facts of
better scalability and elasticity, but the problem of data
consistency during increased loads. Event sourcing as well
as CQRS allowed to mitigate some problems related to data
synchronization; however, the handling of consistency was
still a challenging task. On the other hand, the financial
institutions that were using the distributed transactions with
the 2PC noted that the strong consistency constraints kept
the transactions very correct. However, the performance was
a trade off and organizations had to look at the concept of
using 2PC in conjunction with local transaction
management.

Overall, health care organizations who implemented the
Saga pattern provided a reasonable level of consistency
while maintain competitive performance. The capability of
the Saga pattern in managing complicated transactions and
giving compensations helped in preserving the data
consistency of distributed services. On the other hand,
implementation and testing of compensating transactions, as
Koh et al have indicated, were a source of added complexity.

These insights were gained during the evaluation of
emerging technologies that also gave more understanding on
improving data consistency in microservices. The
Distributed Ledger Technology (DLT), in particular, the
blockchains presented the possibilities of permanent and
synchronized recording. Nonetheless, the benchmark
average latency for transactions with DLT was 400
milliseconds with throughputs of around 4 thousand
transactions per second. However the degree of DLT offered
benefits for the applications needing high levels of trust and
auditability at a higher overhead. The consensus algorithm
for managing distributed state called Raft had the average
latency of 250 ms and a throughput of 7000 transaction per
second. Consistency upon distributed nodes was mainly seen
in achieving consensus using Raft which came with some
performance loss.

Therefore, this paper shows that each of the said data
consistency models and emerging technologies holds unique
benefits and drawback. Eventual consistency models are
highly available and highly scalable but come with the
necessity of dealing with temporary inconsistency. Strong
consistent distributed transactions are good but the problem
is that the performance is not up to the mark. The Saga
pattern maintains the strength of its patterned nearness while
adding a slight design cost in terms of efficiency.
Contemporary technologies such as distributed ledger
technologies and consensus algorithms, have the potential of
improving data synchronization but they also have their
performance and deployment characteristic. These studies
suggest that one has to choose the most suitable consistency
model depending on the concrete cases and the needs of the
system in use, as well as considering how some new
technologies may help combat microservices’ data
consistency issues.

https://www.ijsr.net/

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

Average Transaction Latency by Consistency Model / Technology

w B

U1 [=}

o o
L !

300 1

250 1

200 1

150 1

100 1

Average Transaction Latency (ms)

w
o
1

Consistency Model / Technology

Figure 2: Performance Comparison for Average Transaction Latency by Consistency Model / Technology
Average Throughput by Consistency Model / Technology

10000 A

8000 1

6000 -

4000 1

2000 1

Average Throughput (transactions/sec)

Consistency Model / Technology

Figure 3: Performance Comparison for Average Throughput by Consistency Model / Technology

https://www.ijsr.net/

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

Updated Data Anomalies by Consistency Model / Technology

Data Anomalies (%)

Consistency Model / Technology

Figure 4: Performance Comparison for Updated Data Anomalies by Consistency Model / Technology

5. Conclusion

This research paper aims at reviewing the current litterature
for data consistency and its management in the context of
microservices architecture and compare the various models
of consistency relative to the integrity of a system. The
findings that have emerged from the present empirical
analysis, case studies and evaluation of emergent ICTs
include:

The models that are called eventual consistency,
characterized by asynchronous processes and based on
event-driven system architecture, have evident advantages in
terms of scalability and request per second rate. However,
they also have a problem of temporary data incoherencies
and are susceptible to it mostly under conditions of high
consumption rates and network fragmentation. Despite this,
some of these problems can be solved with certain
architectures like event sourcing and CQRS, but dealing with
eventual consistency is still a challenging task that one
should take into account and have a proper error-handling

policy.

Distributed transactions also cut across services and are
mostly used in Two-Phase Commit (2PC) protocol helps to
offer strong consistence as all services will commit on a
given transaction or rollback it. Thus, 2PC is rather good for
the data integrity issues, at the same time, it provokes certain
performance issues, including time latency, and the
throughput rate declines even more at the high load or
networks failures. This makes it less suitable for real time
and highly Scalable applications.

The Saga pattern is a reasonable approach as it maintains
consistency and performance through further fragmenting of
the transaction into a series of smaller transactions which are
compensated. It does handle distributed work-flows and

21

preserves consistency of data, with less number of data
anomalies in certain situations as compared to eventual
consistency models. However, more complications are
involved when it comes to the procedure of implementing
and testing compensating transactions because they make the
system design more cumbersome.

The discussion of new concerns, such as DLT or consensus
algorithms like Raft or a similar one, reveals potential to
improve the synchronization of microservices’ data. DLT
offers the features of permanent, unchangeable data storage
and high credibility while at the same time reducing the
speed and processing capacity. Raft algorithms achieve both
high levels of consistency and decent performance in terms
of performance overhead, and are therefore well suitable for
dealing with the problem of distributed state.

In general, the study shows that consistency does not have a
simple answer in microservices. Based on these scenarios,
Borgida suggests that one should choose the consistency
model or the particular technology depending on the
requirements to the system’s performance and reliability.
Such decision makers require a proper analysis of likely
trade-offs between consistency, availability, and
performance in a given microservices architecture when
choosing between the mentioned approaches. Some areas for
future study may include examining the hybrid models and
progression in the development of the emerged technologies
to persisting issues related to data synchronization and data
control.

References
[1] Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan,
Z., .. & Babar, M. A. (2021). Understanding and

addressing quality attributes of microservices
architecture: A Systematic literature

https://www.ijsr.net/

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

review. Information and software technology, 131,
106449.

Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., &
Kalinowski, M. (2021). Data management in
microservices: State of the practice, challenges, and
research directions. arXiv preprint arXiv:2103.00170.
Ghani, ., Wan-Kadir, W. M., Mustafa, A., & Babir,
M. 1. (2019). Microservice testing approaches: A
systematic literature review. International Journal of
Integrated Engineering, 11(8), 65-80.

Waseem, M., Liang, P., Shahin, M., Di Salle, A., &
Marquez, G. (2021). Design, monitoring, and testing
of microservices systems: The practitioners’
perspective. Journal of Systems and Software, 182,
111061.

Waseem, M., Liang, P., Shahin, M., Ahmad, A., &
Nassab, A. R. (2021, June). On the nature of issues in
five open source microservices systems: An empirical
study. InProceedings of the 25th International
Conference on Evaluation and Assessment in Software
Engineering (pp. 201-210).

Waseem, M., Liang, P., Shahin, M., Di Salle, A., &
Marquez, G. (2021). Design, monitoring, and testing
of microservices systems: The practitioners’
perspective. Journal of Systems and Software, 182,
111061.

Ntentos, E., Zdun, U., Plakidas, K., Schall, D., Li, F.,
& Meixner, S. (2019). Supporting architectural
decision making on data management in microservice
architectures. In Software Architecture: 13th
European Conference, ECSA 2019, Paris, France,
September 9-13, 2019, Proceedings 13 (pp. 20-36).
Springer International Publishing.

Munonye, K., & Martinek, P. (2020, June). Evaluation
of data storage patterns in microservices archicture.
In2020 IEEE 15th International Conference of
System of Systems Engineering (SoSE) (pp. 373-380).
IEEE.

Hannousse, A., & Yahiouche, S. (2021). Securing
microservices and microservice architectures: A
systematic mapping study. Computer Science
Review, 41, 100415.

Koschel, A., Hausotter, A., Lange, M., & Gottwald, S.
(2020). Keep it in Sync! Consistency Approaches for
Microservices-An Insurance Case Study. In SERVICE
COMPUTATION 2020, The Twelfth International
Conference on Advanced Service Computing (pp. 7-
14). IARIA.

Cerny, T., Svacina, J., Das, D., Bushong, V., Bures,
M., Tisnovsky, P., ... & Huang, J. (2020). On code
analysis opportunities and challenges for enterprise
systems and microservices. IEEE access, 8, 159449-
159470.

Niloy, S. I, Ishmum, M. N., & Islam, M. A.
(2022). Data Consistency in Large Scale
Applications (Doctoral dissertation, Department of
Computer Science and Engineering (CSE), Islamic
University of Technology (IUT), Board Bazar,
Gazipur, Bangladesh).

Bogner, J. (2020). On the evolvability assurance of
microservices: metrics, scenarios, and
patterns (Doctoral dissertation, Universitat Stuttgart).

22

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Journal of Research in Science and Engineering (JRSE)
ISSN: 1656-1996 Volume-7, Issue-8, August 2025

Daki¢, P. (2024). Software compliance in various
industries using CI/CD, dynamic microservices, and
containers. Open Computer Science, 14(1), 20240013.
Zarza, A. (2022). Inter-Organizational Data
Consistency through Blockchain-Supported
Microservices (Doctoral dissertation, University of
Applied Sciences).

Sharma, I., & Ramkumar, K. R. (2017). A survey on
ACO based multipath routing algorithms for ad hoc
networks. International ~ Journal of Pervasive
Computing and Communications, 13(4), 370-385.
Shamas, S., Panda, S. N., & Sharma, I|. (2022,
November). K-Means clustering using fuzzy C-Means
based image segmentation for Lung Cancer. In 2022
3rd International conference on computation,
automation and knowledge management
(ICCAKM) (pp. 1-5). IEEE.

Sharma, I., Saini, J., Chhabra, G., & Kaushik, K.
(2023, December). Cyber Threat Detection in
Software-Defined Networks: An Empirical Analysis
of Machine Learning Methods. 1In2023 3rd
International Conference on Innovative Mechanisms
for Industry Applications (ICIMIA) (pp. 1119-1124).
IEEE.

Bhakhri, K., Sethi, M., Sharma, |., & Kaushik, K.
(2023, November). Examining the Consequences of
Cyberattacks on Businesses and Organizations.
In International Conference on Innovations in Data
Analytics (pp. 227-239). Singapore: Springer Nature
Singapore.

Sharma, 1., Kaur, A., Kaushik, K., & Chhabra, G.
(2023, July). Machine Learning-Based Detection of
API Security Attacks. In International Conference on
Data Science and Applications (pp. 285-297).
Singapore: Springer Nature Singapore.

https://www.ijsr.net/

