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Abstract: Beneath the ocean’s depths, Underwater Wireless Sensor Networks (UWSNs) silently monitor critical environmental 

changes, yet they battle relentless adversaries corrosion, biofouling, and energy depletion. High salinity accelerates wear, fluctuating 

temperatures weaken components, and immense pressure threatens structural integrity. Acoustic communication, the backbone of 

underwater data transfer, struggles with high latency and signal disruptions, making real-time monitoring a challenge. As batteries 

deplete and sensors drift, the network’s reliability hangs in the balance. To combat these challenges, this study introduces a failure 

classification framework based on three key indicators like corrosion level, battery status, and packet loss rate. A node fails when 

corrosion exceeds critical limits, energy reserves drop below operational thresholds, or communication losses become unsustainable. 

Machine learning models trained on simulated and real-world data predict failures before they occur, allowing proactive intervention. 

Advanced data preprocessing techniques enhance predictive accuracy, ensuring robust network longevity. By integrating intelligent 

monitoring and predictive maintenance, this research paves the way for resilient UWSNs, safeguarding long-term underwater sensing in 

the face of nature’s relentless forces. 
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1. Introduction 
 

Underwater Wireless Sensor Networks (UWSNs) have 

gained significant attention due to their ability to monitor 

and collect data from aquatic environments for applications 

such as oceanographic studies, environmental monitoring, 

underwater surveillance, and disaster prevention. These 

networks consist of sensor nodes deployed underwater to 

collect and transmit data to surface stations or satellites. 

However, the harsh underwater environment poses 

substantial challenges that impact the performance, 

longevity, and reliability of these networks. Unlike terrestrial 

networks, UWSNs must operate in extreme conditions, 

including high salinity, fluctuating temperatures, intense 

water pressure, and biofouling, all of which contribute to 

sensor degradation and system failures. One of the primary 

constraints in UWSNs is energy management. Since sensor 

nodes are often deployed in remote underwater locations, 

battery replacement or recharging is highly impractical. This 

makes energy efficiency a critical factor in network design. 

Additionally, underwater communication primarily relies on 

acoustic waves due to the high attenuation of radio frequency 

(RF) signals in water. While acoustic communication enables 

long-distance data transmission, it suffers from limitations 

such as low data rates, high latency, multipath interference, 

and signal fading, which complicate real-time data 

transmission and network synchronization. Environmental 

conditions further impact sensor performance over time. 

Corrosion, accelerated by high salinity and extreme pH 

levels, weakens sensor components and can lead to 

mechanical failures[1]. Biofouling, the accumulation of 

marine organisms on sensor surfaces, obstructs sensor 

readings and reduces data accuracy. Furthermore, 

temperature fluctuations influence sensor response times and 

overall lifespan, while extreme water pressure at greater 

depths can physically distort sensors or damage their internal 

components. Sensor drift, another major concern, causes 

gradual deviations in readings, leading to inaccurate 

measurements and potential data inconsistencies. Given 

these challenges [2], ensuring the reliability and longevity of 

UWSNs requires robust monitoring and predictive 

maintenance strategies. Traditional reactive maintenance 

approaches, where nodes are only replaced after failure, are 

not viable due to the logistical difficulties of underwater 

deployment. Instead, predictive maintenance using machine 

learning models offers a promising solution. By analyzing 

historical data and real-time sensor readings, predictive 

models can identify early signs of failure, allowing for 

proactive interventions before a node becomes non-

functional. This research aims to develop a comprehensive 

failure detection and classification framework for UWSNs, 

focusing on three key parameters i.e. corrosion level, battery 

depletion, and packet loss rate. A node is considered failed if 

it meets one or more of the following conditions:  

 

(1) Corrosion exceeds a critical threshold, indicating severe 

material degradation (2) Battery levels drop below 

operational limits, restricting communication and sensing 

capabilities; or (3) Packet loss surpasses acceptable limits, 

leading to unreliable data transmission. Using this 

classification, failure types can be attributed to corrosion, 

energy depletion, or communication failures, allowing for 

targeted mitigation strategies. Furthermore, machine learning 

techniques are employed to enhance failure prediction and 

optimize maintenance efforts. Data preprocessing, including 

data cleaning, feature engineering, and normalization, 

ensures high-quality inputs for model training. Feature 

selection techniques, such as Random Forest-based 

importance ranking, are applied to identify the most 

significant predictors of failure. Imbalance handling 

methods, such as adjusting class weights, improve failure 

detection accuracy in highly imbalanced datasets. By 
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integrating real-world and simulated data, this study provides 

a reliable framework for enhancing UWSNs performance 

and longevity. The proposed research contributes to the 

advancement of UWSNs reliability by offering a predictive 

maintenance framework that enables early failure detection, 

minimizes network downtime, and extends sensor lifespan. 

With an improved understanding of failure mechanisms and 

the integration of intelligent monitoring techniques, this 

study aims to enhance the sustainability and efficiency of 

underwater sensor networks in complex marine 

environments.  

 

2. Recent Studies 
 

UWSNs and their applications in environmental monitoring, 

disaster management, and resource exploration and 

challenges in UWSNs, such as energy efficiency, corrosion, 

biofouling, and communication latency. In contrast to review 

the use of predictive maintenance in IoT devices and 

wireless networks existing researches uses common machine 

learning models like Decision Trees, Random Forests, 

Support Vector Machines, and Neural Networks. In this type 

of researches Data types used are Sensor readings, device 

usage logs, environmental data and studies on predictive 

maintenance in extreme conditions like industrial plants, 

offshore rigs, or disaster zones. In this paper [3] a various 

machine learning models are applied for predictive 

maintenance. This paper discuss environmental challenges in 

disaster-prone areas which is impacted by harsh conditions 

on Sensors i.e. studies on sensor failures due to water 

corrosion, sediment accumulation, and heat damage and 

effects of environmental stresses on communication 

reliability and power consumption[4]. This paper author 

discuss about machine learning for low-power and edge 

devices i.e. approaches to designing lightweight and energy-

efficient algorithms for edge computing and Trade-offs 

between model complexity and device constraints[5]. 

Limited studies explicitly focusing on predictive 

maintenance(pdM) for UWSNs.It is to be challenges in 

adapting IoT maintenance models to underwater and harsh 

environments. The key gap is to be no comprehensive 

framework exists that tailors predictive maintenance to the 

unique challenges of UWSNs in disaster-prone 

environments, emphasizing real-time prediction on low-

power devices[6]. This review underscores the need for a 

predictive maintenance framework specifically designed for 

UWSNs in extreme conditions. The proposed research 

addresses these gaps by developing a lightweight, disaster-

aware PdM system that enhances the reliability and 

operational efficiency of UWSNs in harsh environments. 

This study presents an AI-driven fault detection system 

integrated into a predictive maintenance framework using 

Named Data Networking (NDN). A feed-forward neural 

network was implemented on the “Underwater Sensor 

Dataset” to classify sensor data as healthy or faulty. The 

model achieved impressive results with 99.9% accuracy, 

100% precision, 99.1% recall, and 99.6% F1-score, 

demonstrating its reliability. This approach highlights the 

potential of AI-based systems in enhancing UWSN 

maintenance by reducing downtime and operational costs, 

ultimately extending the networks' lifespan.[7] This paper 

proposes a novel framework for predictive maintenance in 

Underwater Wireless Sensor Networks (UWSNs), combining 

Named Data Networking (NDN) for data management with 

machine learning for sensor fault prediction. By enhancing 

network reliability and reducing maintenance costs, the 

framework aims to improve the lifespan of UWSNs, with 

potential applications illustrated through case studies and a 

discussion of its benefits and challenges [8]. 

 

3. Methodology 

 
Underwater Wireless Sensor Networks (UWSNs) face 

significant challenges due to harsh environmental conditions 

such as high salinity, water pressure, temperature 

fluctuations, and biofouling, leading to sensor degradation 

and system failures. Energy management is critical, as 

batteries are difficult to replace or recharge once deployed in 

remote environments. Acoustic communication suffers from 

low data transfer rates, high latencies, and signal disruptions, 

complicating real-time monitoring. Biofouling obstructs 

sensors, while sensor drift over time results in inaccurate 

readings. Environmental stresses like flooding, heatwaves, 

and corrosion further accelerate wear and increase failure 

risks. Addressing these challenges requires innovative 

solutions to enhance energy management, communication 

protocols, and sensor durability, improving the reliability and 

efficiency of UWSNs. To assess the reliability and 

performance of UWSNs, two primary categories of 

parameters are considered: environmental and device-

specific factors. Environmental parameters like water pH, 

temperature, pressure, and salinity impact sensor 

performance, influencing corrosion, biofouling, and sensor 

degradation. Extreme pH levels can corrode components or 

encourage biofouling, while temperature fluctuations affect 

sensor lifespan and response times. Increased pressure at 

depth can distort sensor readings or cause mechanical failure. 

High salinity accelerates corrosion and exacerbates 

biofouling, leading to inaccurate data. Device-specific 

parameters, including battery voltage, sensor readings, and 

communication latency, are critical for monitoring system 

health. Low battery voltage signals potential failure, 

especially under heavy load. Sensor drift over time may 

undermine data accuracy, while communication latency, 

especially with acoustic signals, hinders real-time 

monitoring. Analyzing historical failure data helps identify 

common failure modes, enabling predictive maintenance 

strategies and more resilient network management. 

Monitoring these parameters through simulation or real-

world data collection aids in understanding operational 

stresses and improving UWSN performance. To model the 

behavior of UWSNs under varying environmental 

conditions, data will be collected through simulation and 

real-world acquisition. In simulations, factors like water pH, 

temperature, salinity, and pressure will be controlled to 

assess their impact on UWSNs. This approach allows testing 

extreme conditions such as high pressure or temperature 

shifts without actual deployment. The simulation data will 

include both environmental factors and device-specific 

metrics, such as battery voltage and communication latency, 

enabling an in-depth analysis of network performance and 

potential failure modes[9]. Data preprocessing is essential for 

preparing the dataset for machine learning models used in 

predictive maintenance for UWSNs. Following are the steps 

of Data preprocessing. In Data Cleaning missing values are 

imputed with the mean/median (continuous variables) or 
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mode (categorical variables), and outliers are removed using 

Z-scores. After that Feature Engineering include 

environmental factors like temperature, pressure, and 

salinity, as well as temporal features such as moving 

averages of battery consumption, are added to improve 

model accuracy. Features are normalized using Z-score 

standardization to ensure consistency across variables, which 

is critical for models like Support Vector Machines (SVM) 

then highly correlated features are eliminated, and feature 

importance is assessed using Random Forest to retain the 

most significant predictors. Techniques  are employed to 

address class imbalance, with class weights adjusted in 

models to focus on failure prediction. In UWSNs, 

maintaining the reliability of sensor nodes is crucial for 

sustained operation. A node's failure status is determined by 

monitoring three key parameters i.e. corrosion level, battery 

level, and packet loss rate. These parameters serve as 

indicators of environmental degradation, energy depletion, 

and communication reliability . To assess node health, a 

decision criterion is established: a node is classified as failed 

if any of the following conditions are met.When Corrosion 

Level exceeds 8, it suggests severe material degradation, 

potentially leading to structural failure and if Battery Level 

falls below 20%. A low energy reserve can significantly 

impact sensing and communication capabilities. If Packet 

Loss Rate surpasses 15%: Persistent communication failures 

indicate network instability or environmental interference. If 

a node meets at least one of these conditions, it is marked as 

failed. Further classification determines the failure type, If 

the corrosion level exceeds 8, the failure is attributed to 

corrosion-induced degradation and If corrosion is within the 

safe limit but the battery level is below 20%, the failure is 

classified as an energy depletion issue. If neither corrosion 

nor battery issues are present, yet the packet loss rate 

exceeds 15%, the failure is identified as a communication 

failure. Conversely, if none of these conditions are met, the 

node remains operational, with its failure status set to zero 

and no failure type assigned. This classification framework 

enables proactive maintenance, optimizing network 

longevity and ensuring robust data collection in underwater 

environments. 

 

 
Figure 1: Flow Chart of Model Deployment 

 

4. Results and Discussion  
 

Evaluate the system on key metrics accuracy, precision, 

recall, F1-Score, latency and power usage and then compare 

predicted vs. actual failures over time. Fig2. shows confusion 

matrices for both models are shown as heatmaps. The 

Random Forest model had a relatively balanced distribution 

between false positives and false negatives. The SVM model 

had a perfect recall for class "1" (failure), but it struggled 

with predicting class "0" (no failure), as seen in the zero 

precision for class "0”. Fig.3  compares the accuracy of the 

Random Forest and SVM models. The Random Forest model 

achieved an accuracy of approximately 47%, while the SVM 

model performed slightly better with an accuracy of around 

51%. Fig4. graph visualizes the actual and predicted failure 

statuses for SVM each node. Fig.5 displays the predicted 

versus actual failures for the Random Forest model.  Fig.6 

display graphical output of the failure detection system 

represents each sensor node, with red bars indicating failed 

nodes. It shows a partial overlap between the actual and 

predicted failure points, indicating room for improvement in 

prediction accuracy. In Random Forest Precision, recall, and 

F1-score were low for both classes, but the model had a 

balanced prediction performance across the two classes 

(failures and non-failures) and SVM model performed better 

on predicting failures (class "1") with a perfect recall, but its 

precision for class "0" was zero, indicating it wasn't able to 

predict non-failures effectively. Fig7. representing the pie 

chart distribution of failure types among the underwater 

sensor nodes. 
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Figure 2: Confusion Matrix 

 

 
Figure 3: Accuracy Comparison 

 

 
Figure 4: Predicted vs Actual failures for SVM 

 

 
Figure 5: Predicted vs Actual failures for  Random Forest 

 

 
Figure 6: Failure status of UWSNs 

 

 
Figure 7:   Distribution of failure types in UWSNS 

 

Pseudocode Example for Failure Status 

Determination [11] 
IF (Corrosion_Level > 8 OR Battery_Level < 20 OR 

Packet_Loss_Rate > 15) THEN 

   Failure_Status = 1 

   IF Corrosion_Level > 8 THEN 

      Failure_Type = "Corrosion" 

   ELSE IF Battery_Level < 20 THEN 

      Failure_Type = "Battery" 

   ELSE 

      Failure_Type = "Communication" 

   END IF 

ELSE 

   Failure_Status = 0 

   Failure_Type = "None" 

END IF 

 

5. Conclusion 
 

The deployment of Underwater Wireless Sensor Networks 

(UWSNs) is essential for various marine applications, 

ranging from environmental monitoring to underwater 

surveillance. However, the extreme conditions of the 

underwater environment, including corrosion, biofouling, 

hydrostatic pressure, and temperature variations, pose 

significant challenges to their long-term reliability. 

Additionally, energy limitations and the constraints of 

acoustic communication further complicate the seamless 

operation of these networks. To address these issues, 

predictive maintenance strategies are crucial. By 

continuously monitoring environmental parameters such as 

pH, temperature, salinity, and pressure, as well as device-

specific indicators like battery voltage, sensor drift, and 

communication latency, early signs of failure can be 
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detected. Classifying failures based on corrosion 

degradation, battery depletion, and communication losses 

allows for targeted interventions, thereby improving the 

efficiency and durability of UWSNs. Integrating machine 

learning techniques into failure prediction enhances the 

ability to anticipate and mitigate potential sensor node 

failures. Data preprocessing, feature engineering, and 

classification models enable proactive decision-making, 

reducing downtime and optimizing network performance. 

Through these advancements, UWSNs can achieve greater 

operational longevity, ensuring uninterrupted data collection 

and reliable underwater sensing. By developing robust 

predictive frameworks, researchers can enhance the 

resilience of UWSNs, allowing them to function effectively 

in the face of environmental and technical challenges. This 

progress paves the way for more sustainable and autonomous 

underwater monitoring, supporting scientific exploration and 

industrial applications in the vast and dynamic marine 

ecosystem. 
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