
  
  

  

  
 

  

Hierarchical Cross-Modal Alignment for 

Controllable Human Motion Synthesis: A Geometric 

Deep Learning Framework 
  

Mingyou Zeng 
 

Department of Computer Sciences, Sichuan University, Chengdu, Sichuan, China 

2145324770@qq.com 

 

Abstract: The study addresses the problem of human motion synthesis in the absence of motion capture data. A new paradigm is 

introduced for motion generation based on cross-modal nested alignment. The method includes a multi-scale semantic alignment module, 

which models natural language prompts and skeletal motion sequences in a nested manner at both local and global levels. In addition, 

temporal-spatial structural priors are incorporated to improve motion continuity and semantic accuracy. On the HumanML3D and 

T2M-Gen datasets, the proposed method improves the motion coverage metric by 12.1%, reduces motion smoothness error by 17.3%, and 

decreases the average inter-frame drift error by 13.5%. Compared with current mainstream models, it shows higher robustness in 

handling complex semantic prompts and generating long motion sequences. This study offers a new approach to motion generation driven 

by cross-modal alignment. 
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1. Introduction 
 

In recent years, with the rapid development of emerging 

technologies such as virtual reality, digital humans, intelligent 

robots and the metaverse, natural language-driven human 

motion generation has gradually become a frontier topic in the 

field of multimodal understanding and generation [1-5]. This 

task aims to automatically generate 3D skeletal motion 

sequences with temporal consistency and semantic accuracy 

based on text descriptions [6]. It supports application 

scenarios such as virtual character animation, 

human-computer interaction, smart education and digital 

entertainment and shows strong potential for application and 

commercial value [7]. According to the 2023 market forecast 

report released by Statista, the global market size of industries 

related to digital humans is expected to exceed 5.2 billion 

USD by 2025. Among them, motion generation and control, 

as one of the core underlying technologies, have become key 

components in the artificial intelligence and content creation 

chain [8]. At the same time, in human-computer interaction 

systems, more than 78% of interaction interfaces have shifted 

from traditional button-based triggers to multimodal forms 

combining voice and motion [9]. This indicates that 

language-driven motion generation technologies, which are 

accurate and efficient, are facing unprecedented development 

opportunities [10-12]. However, because this task involves 

high-dimensional semantic mapping between two 

heterogeneous modalities—language and motion—and often 

faces challenges such as limited motion capture data and 

complex semantic expressions in real scenarios, existing 

methods still face obvious bottlenecks in semantic precision, 

motion continuity and generalization ability [13]. Current 

research can be roughly divided into three categories. The first 

category adopts encoder-decoder architectures, such as 

Transformer or bidirectional RNNs, to directly map text 

features to motion sequences, focusing on modeling 

long-range dependencies and capturing language 

representations [14]. The second category introduces 

diffusion models, treating motion generation as a step-by-step 

denoising process from Gaussian noise to the target 

distribution, which improves motion diversity and naturalness 

[15]. The third category uses large-scale pretrained models 

such as CLIP and BERT to build a shared representation space 

for language and motion, optimizing semantic alignment and 

cross-modal robustness through contrastive learning [16-18]. 

Although these methods have achieved strong performance on 

datasets such as HumanML3D and KIT-ML, their heavy 

dependence on large-scale paired corpora limits their 

adaptability in low-resource or new domains [19]. Moreover, 

most of them overlook the complex relationships between 

hierarchical language semantics and local motion structures 

[20-22]. Further analysis shows that most existing methods 

adopt flattened semantic modeling, which fails to capture 

multi-level semantic structures in language, such as the nested 

relations among action goals, paths and modifiers [23]. At the 

same time, motion sequences exhibit clear spatial topology 

and temporal smoothness constraints [24]. Without explicit 

structural priors, generated motions are prone to drifting, 

breaking, or frame skipping, which affects motion realism and 

user experience [25]. Taking the HumanML3D dataset as an 

example, it contains more than 14,600 language-motion pairs. 

For long text inputs (more than 15 words), the average 

semantic alignment accuracy is only 72.3%, while the 

inter-frame jump rate reaches 9.7%. These statistics suggest 

that current mainstream methods still have significant room 

for improvement in handling long sequences and complex 

semantics [26-29]. Therefore, there is an urgent need for a 

generation mechanism that can model hierarchical relations 

and structural information from both language and motion 

dimensions, in order to improve the model’s generalization 

ability and generation quality [30]. To address the above 

challenges, this paper proposes a new paradigm for human 

motion generation based on cross-modal nested alignment. 

From the perspective of “semantic–structural dual nesting,” 

the method designs a multi-scale semantic alignment module 

that builds hierarchical mappings between language and 

motion at both the phrase and sentence levels [31]. Meanwhile, 
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spatial structure graphs and temporal smoothing functions are 

introduced to construct motion priors, guiding the generation 

process to maintain physically plausible structures and 

consistent temporal logic [32]. This method not only performs 

reliably under low-sample conditions but also significantly 

improves the model ’ s ability to understand complex 

semantic prompts and to control consistency during 

long-sequence generation. 

 

2. Materials and Methods 
 

2.1 Materials and Experimental Site 

 

This study is conducted based on two publicly available 

datasets for human motion generation: HumanML3D and 

T2M-Gen. HumanML3D contains 14,616 text-motion pairs, 

covering a wide range of daily human behaviors and 

descriptive language. T2M-Gen focuses more on complex 

motion combinations and detailed descriptions of 

scene-related texts. All experiments were carried out on 

servers equipped with NVIDIA A100 GPUs. The software 

environment includes PyTorch 2.0, the Transformers library 

and a self-developed framework for multimodal alignment 

[33]. 

 

2.2 Experimental Design and Data Analysis Methods 

 

To evaluate the effectiveness of the proposed method, four 

experimental groups were designed, including a baseline 

Transformer model, a diffusion model, a CLIP-aligned model 

and the nested alignment model proposed in this work [34]. 

Experiments were conducted on the HumanML3D and 

T2M-Gen datasets, using the same parameter settings across 

all models [35]. Each experiment was repeated three times to 

ensure the stability of the results. Evaluation metrics include 

motion coverage, which measures the semantic alignment 

between the generated motion and the reference motion; 

inter-frame smoothness error, which reflects the continuity of 

the motion sequence; and average frame drift error, which 

assesses temporal consistency [36-39]. In addition, samples 

were grouped by language complexity, and manual 

evaluations were conducted to further verify the quality of the 

generated results. 

 

2.3 Model Construction or Numerical Simulation 

Procedures 

 

The model consists of three main components: a semantic 

encoder, a motion generator, and a structural constraint 

module [40]. The semantic encoder uses a pretrained BERT 

model to extract multi-scale representations from the input 

text, generating both sentence-level and phrase-level vectors 

[41]. The motion generator adopts a dual-branch Transformer 

with attention mechanisms to handle nested alignment 

between global and local semantic information. The structural 

constraint module introduces a skeletal connection graph and 

velocity regularization to preserve joint topology and 

maintain smooth motion trajectories [42]. The model is 

trained using the AdamW optimizer with an initial learning 

rate of 1e-4. Training is carried out for 100 epochs with a 

batch size of 64. 

 

2.4 Quality Control and Data Reliability Assessment 

 

To ensure the reliability of experimental data and the 

consistency of model results, the following measures were 

adopted. First, multiple independent training runs were 

conducted, and the average values and variances were 

recorded to ensure experimental stability. Second, five-fold 

cross-validation was used to reduce the risk of overfitting. 

Third, the quality of generated outputs was evaluated through 

a combination of expert scoring and user preference 

assessment. Fourth, all data preprocessing steps were 

documented in detail, and both the model and code have been 

made publicly available on an open-source platform to 

support reproducibility. The design and implementation of 

these procedures were based on recent research in the field 

and adapted to the specific characteristics of the task, ensuring 

both technical relevance and practical feasibility [43]. 

 

3. Results and Discussion 
 

3.1 Comprehensive Evaluation of the Nested Alignment 

Model 

 

On the HumanML3D test set, the proposed method 

outperforms the baseline models in three key metrics: motion 

coverage, semantic consistency and inter-frame smoothness 

[44]. Motion coverage increases by 12.1%, and the median 

value of average frame drift error decreases by approximately 

13.5% (see Figure 1). The box plot shows that the variance of 

generation errors is significantly reduced, indicating stronger 

consistency and stability of the model. These results 

demonstrate that the nested alignment mechanism enhances 

the granularity of semantic representation, and that structural 

priors contribute directly to reducing motion instability. This 

observation is consistent with the findings of Tevet et al. in the 

MotionCLIP framework presented at ECCV 2022, where 

semantic modeling was shown to play a key role in improving 

motion generation performance [46]. Further comparative 

analysis shows that, compared with previous approaches, the 

proposed method exhibits systematic advantages across 

multiple performance dimensions. Its strengths lie in the 

enhanced granularity modeling enabled by nested semantic 

alignment and in the improved physical plausibility of 

generated motions achieved through structural priors. These 

improvements contribute to better motion stability and 

naturalness. The result aligns with the conclusion drawn in 

MotionCLIP, confirming that semantic modeling is essential 

for improving generation quality. 

 
Figure 1a: Model performance across multiple evaluation 

metrics. 
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Figure 1b: Frame drift error distribution for each model. 

3.2 Robustness Analysis under Language Complexity 

 

When the length of the language input exceeds 20 words, 

most baseline models experience a sharp drop in semantic 

matching accuracy. In contrast, the proposed model maintains 

accuracy within a fluctuation range above 72%, indicating 

good resistance to complexity (see Figure 2). In addition, 

based on the average performance across different sentence 

length groups, the proposed method achieves an average 

improvement of 9.2% over the baselines under long-sentence 

conditions. This result demonstrates the effectiveness of 

nested semantic modeling in addressing semantic redundancy 

and nested ambiguity. From the perspective of generation 

stability, the proposed method shows greater robustness when 

handling complex semantic instructions, suggesting stronger 

generalization ability in practical applications [47-49]. This 

result further supports the transferability of hierarchical 

semantic modeling strategies in real-world generation tasks. 

 
Figure 2a: Text length versus semantic matching accuracy. 

 
Figure 2b: Comparison of semantic matching accuracy 

across different sentence structures. 

3.3 Motion Structure Modeling and Temporal 

Consistency Analysis 

 

In the analysis of inter-frame acceleration distribution, the 

results generated by the nested model closely match the 

high-density regions of the real samples. The structural 

response of the model is particularly accurate in the middle 

segments of motion (frames 20–40), showing high temporal 

consistency (see Figure 3a). Further analysis shows that when 

the number of semantic nesting layers exceeds three, all 

evaluation metrics reach optimal levels, and the performance 

gain gradually saturates (see Figure 3b). These results indicate 

that the nested structure plays a key role in supporting the 

joint modeling of semantic hierarchy and physical 

characteristics. 

 
Figure 3a: Comparison between generated motions and real 

acceleration sequences. 

 
Figure 3b: Surface plot showing the effect of semantic 

hierarchy and input complexity on motion generation quality. 

4. Conclusions 
 

This study presents a cross-modal nested alignment method 

for natural language-driven human motion generation. To 

address the problems of coarse semantic modeling, 

insufficient motion continuity, and poor robustness to 

complex texts in existing models, a multi-scale semantic 

alignment structure was constructed. In addition, 

spatial-temporal structural priors were integrated to improve 

the quality and stability of generated motions. On the 

HumanML3D and T2M-Gen datasets, the proposed model 

achieved a 12.1% improvement in motion coverage, a 17.3% 

reduction in inter-frame smoothness error, and a 13.5% 
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decrease in frame drift error, indicating good performance 

advantages. This method introduces methodological 

innovations in two aspects: semantic granularity modeling 

and the integration of structural constraints. It effectively 

improves motion consistency under long-text conditions and 

helps to overcome the limitations of current approaches, such 

as reliance on large-scale data and low controllability. The 

proposed nested alignment paradigm enhances the model’s 

ability to capture fine-grained semantic information from 

natural language, while also improving its capacity for 

structural modeling of skeletal motion sequences. This study 

also has limitations. The current model does not include 

higher-level semantic information such as emotion, intonation, 

or contextual interaction in language, and it has not yet been 

tested in physical environments or multimodal perception 

systems. Future research may consider combining large 

language models with physical simulation engines to further 

improve scalability and general applicability. This would help 

extend the method’s potential for deployment in scenarios 

such as virtual human interaction and intelligent training 

systems. 
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