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Abstract: To address the challenges of insufficient robustness in single-modal features and interference from cross-modal disparities in 

pedestrian re-identification under complex scenarios, we propose a novel network model that integrates joint attention mechanisms and 

multimodal features. Built upon a residual network backbone, the model introduces a cross-modal self-attention module to adaptively 

weight features from RGB, thermal infrared, and depth modalities. A multimodal feature fusion module is designed with three branches: 

intra-modal enhancement, cross-modal correlation, and modal discrepancy suppression, which together construct comprehensive 

pedestrian feature representations. During optimization, we introduce a combination of modal cosine cross-entropy loss, cross-modal 

triplet loss, center alignment loss, and modal consistency loss, updating the network using a min-max strategy. The proposed method 

achieves top-1 accuracy rates of 94.3% and 88.7% on the RegDB and SYSU-MM01 datasets, respectively, demonstrating its effectiveness 

in multimodal pedestrian re-identification scenarios. 
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1. Introduction 
 

As a core technology for cross-camera retrieval of specific 

pedestrians, Person Re-Identification (ReID) holds significant 

application value in intelligent security and video surveillance 

fields [1-2]. Although deep learning-based single-modal 

(especially visible RGB image) ReID methods have achieved 

remarkable progress in aspects such as feature alignment [3-4], 

pose guidance [5], and generative adversarial learning [6], 

single-modal data is vulnerable to environmental interference 

in practical complex scenarios such as low light at night, 

strong backlight, occlusion, or cross-spectral conditions, 

leading to a significant decline in recognition performance 

[7-8]. To address this challenge, Multi-Modal ReID enhances 

the robustness of models under complex conditions by fusing 

heterogeneous modal information such as visible light (RGB), 

infrared (IR), and depth (Depth). Despite certain 

achievements in existing studies, such as strengthening 

single-modal features using multi-scale attention mechanisms 

[9-11], introducing cross-modal feature mapping to alleviate 

modal differences [12-13], or designing dual-branch networks 

to process RGB-IR data [14], there are still obvious 

limitations: feature enhancement methods fail to fully 

consider cross-modal differences; modal alignment methods 

usually rely on paired data and have limited generalization; 

dual-modal fusion strategies (such as early concatenation or 

late averaging) lack dynamic adaptability, making it difficult 

to fully explore complementary information between 

modalities [15]; in addition, dynamic weighted fusion 

methods (such as gating mechanisms [16-17]) are mostly 

limited to dual-modal designs and do not explicitly suppress 

modal noise, while traditional loss functions struggle to 

effectively constrain the distribution consistency of 

multi-modal features in a unified space [18]. In summary, 

current research mainly faces three core challenges: 

interference from modal differences, rigid fusion strategies, 

and insufficient feature alignment. 

 

To solve the above problems, this paper proposes a pedestrian 

re-identification model that combines attention mechanisms 

and multi-modal features. Firstly, a cross-modal self-attention 

module is designed to dynamically learn the intra-channel and 

inter-modal weight allocation of RGB, IR, and Depth 

modalities, achieving scene-adaptive feature enhancement 

and overcoming the shortcomings of static fusion methods 

[[8][10]]. Furthermore, a multi-modal feature fusion module 

is constructed, which generates comprehensive and robust 

representations of pedestrians through the collaborative work 

of an intra-modal enhancement branch (preserving modal 

specificity), a cross-modal correlation branch (mining 

complementary information), and a modal difference 

suppression branch (counteracting noise interference). In 

addition, a joint optimization objective is proposed, which 

integrates modal cosine cross-entropy loss (enhancing 

discriminability), cross-modal triplet loss (reducing 

cross-modal distance), center alignment loss (constraining 

intra-class consistency), and modal consistency loss 

(counteracting modal differences), significantly improving 

the effect of feature alignment. Finally, extensive 

experimental validations are conducted on mainstream 

multi-modal datasets RegDB and SYSU-MM01, and the 

effectiveness and innovativeness of the model are fully 

demonstrated through ablation studies and visualization 

analyses. 

 

2. Network Model 
 

2.1 Overall Architecture 

 

The overall architecture of the proposed model, as illustrated 

in Figure 1, consists of a modal feature extraction layer, a 

cross-modal attention module, a multimodal fusion module, 

and a loss function layer. Details are as follows: 

 

(1) The modal feature extraction layer employs ResNet50 as 

the backbone network to perform feature encoding for RGB, 

infrared, and depth images respectively; 

 

(2) The cross-modal attention module includes channel 

attention and modal attention sub-modules, enabling 

intra-modal channel weight adjustment and inter-modal 

feature interaction; 

 

(3) The multimodal fusion module is composed of an 
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intra-modal enhancement branch, a cross-modal correlation 

branch, and a modal discrepancy suppression branch, which 

generates comprehensive features through feature 

concatenation and adaptive weighting; 

 

(4) The loss function layer adopts a joint loss strategy to 

optimize the fused features. 

 

In the testing phase, multimodal features are concatenated to 

calculate similarity, thereby completing pedestrian matching. 

 
Figure 1: Overall architecture of the proposed model 

2.2 Cross-modal Self-attention Module 

 

Inspired by the modal interaction mechanism, the cross-modal 

self-attention module enhances features through the following 

steps: 

 

(1) Intra-modal channel attention: Global average pooling is 

applied to the feature map of each modality, and channel 

weights are learned via fully connected layers to strengthen 

the responses of key channels (e.g., texture channels for RGB, 

contour channels for infrared); 

 

(2) Inter-modal attention: The similarity matrix of feature 

maps from different modalities is calculated, and modal 

correlation weights are generated through softmax to achieve 

dynamic fusion of cross-modal information. 

 

The mathematical formulation is as follows: 

 

Let the modal feature map be  

 

 𝐹𝑚 ∈ 𝑅𝐶×𝐻×𝑊(𝑚 ∈ {𝑅𝐺𝐵, 𝐼𝑅, 𝐷𝑒𝑝𝑡ℎ})  

the channel attention weight be 𝐴𝑚 ∈ 𝑅𝟑  The enhanced 

feature is expressed as: 

 𝐹𝑚
′ = 𝐴𝒄 ⊙ 𝐹𝑚 + 𝐴𝑚 (𝑚) × ∑ 𝐹𝑚𝑛≠𝑚   

where ⊙ denotes element-wise multiplication, and 𝐴𝑚 (𝑚) 

represents the weight coefficient of the m th modality. 

 

2.3 Multimodal Fusion Module 

 

For each modality, hybrid pooling (average pooling + max 

pooling) is employed to extract global features, and the 

channel dimension is compressed via 1×1 convolution. 

Taking the RGB modality as an example, the feature vector 

𝑓𝑟𝑔𝑏 is computed as follows: 

 𝑓 𝑟𝑔𝑏 = 𝐶𝑜𝑛𝑣1 × 1(𝐺𝐴𝑃(𝐹𝑟𝑔𝑏
′ ) + 𝐺𝐴𝑃(𝐹𝑟𝑔𝑏

′ )  

where GAP denotes Global Average Pooling and GMP 

denotes Global Max Pooling. 

 

The feature maps of the three modalities are divided into 6 

horizontal local patches in the spatial dimension, and the 

cross-modal mapping of local features is learned through the 

correlation matrix. For the i-th local patch, The correlated 

feature 𝐹𝑐𝑜𝑟𝑟
𝑖  is defined as: 

 𝐹𝑐𝑜𝑟𝑟
𝑖 = ∑ 𝑊𝑚,𝑛

𝑖 × (𝐹𝑚
′ (i) ⊕ 𝐹𝑛

′ (i))𝑚,𝑛   

where 𝑊𝑚,𝑛
𝑖  denotes the learned correlation weight, and ⊕ 

represents feature concatenation. 

 

To reduce interference from modal disparities, random 

masking is applied to features of each modality (to simulate 

modal missing scenarios), and the feature recovery capability 

is trained through adversarial learning. The mask region 𝑀 ∈
𝑅𝐻×𝑊  is generated following: 𝑀 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑝 ∈
[0.1,0.3], The recovered features are fused with the original 

features via residual connections, enhancing the model's 

robustness to modal noise. 

 

3. Loss Function 
 

3.1 Modal Cosine Cross-Entropy Loss 

 

This loss function enhances the discriminability of 

multimodal features by modifying the traditional 

cross-entropy into a classification objective based on cosine 

similarity. Its core mechanism involves calculating the cosine 

similarity between each modal feature vector and all class 

center vectors, introducing a learnable scaling factor to 

amplify similarity differences, and ultimately optimizing 

toward maximizing the similarity probability of the target 

class. Compared with constraints based on Euclidean distance, 

cosine optimization is more adaptive to vector direction 

alignment of multimodal features, effectively improving the 

accuracy of cross-modal retrieval.  

 

3.2 Cross-Modal Triplet Loss 

 

To address the distance optimization problem between 

cross-modal samples, this loss is specifically designed to 

handle heterogeneous modal triplets (e.g., using an RGB 
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sample as the anchor, an infrared sample as the positive 

example, and a depth sample as the negative example). It 

dynamically selects the hardest-to-train samples and enforces 

the constraint that the distance from the anchor to the 

cross-modal positive example plus a preset margin is no 

greater than the distance from the anchor to the cross-modal 

negative example. This explicit optimization strategy directly 

reduces feature differences of the same ID across different 

modalities, compensating for the limitations of single-modal 

triplet loss. 

 

3.3 Center Alignment Loss 

 

To improve cross-modal consistency of features belonging to 

the same class, this loss function constrains the distribution of 

feature centers for the same ID across RGB, infrared, and 

depth modalities. By calculating the feature mean (class 

center) of each ID in each modality and minimizing the 

squared Euclidean distance between class centers of any two 

modalities, it forces features of the same class from different 

modalities to be highly aggregated in the feature space. This 

strategy achieves modality-invariance constraints at the class 

level, and experiments show that an extremely small weight 

coefficient (0.003) can significantly enhance intra-class 

compactness. 

 

3.4 Modal Consistency Loss 

 

Based on the idea of adversarial learning, this loss function 

eliminates modality-specific information in features by 

training a modal discriminator. The discriminator attempts to 

distinguish the source modality of features (RGB/IR/Depth), 

while the feature generation network deceives the 

discriminator through adversarial training, making features 

from different modalities indistinguishable. This implicit 

alignment mechanism effectively suppresses differences in 

modal distributions and enhances the model’s robustness to 

missing or noisy modalities. 

 

3.5 Joint Optimization Strategy 

 

The total loss function is composed of four weighted 

components: the cosine cross-entropy loss dominates 

classification discriminability (weight = 1.0); the cross-modal 

triplet loss (weight = 0.5) and center alignment loss (weight = 

0.003) collaboratively constrain cross-modal consistency; and 

the modal consistency loss (weight = 0.1) implicitly aligns 

feature distributions. During training, the feature generation 

network updates its parameters by minimizing the total loss, 

while the discriminator performs adversarial learning by 

maximizing the accuracy of modal classification. This 

hierarchical optimization framework implements 

multi-granularity constraints at the sample level, class level, 

and distribution level, and experiments verify that it 

significantly outperforms single-loss or simple weighted 

strategies. 

 

4. Experiment and Analysis 
 

4.1 Experimental Environment and Dataset 

 

Experiments were conducted under the PyTorch 1.8 

framework, with hardware configurations including an Intel 

Xeon Gold 6226R CPU and an NVIDIA RTX 3090 GPU 

(24GB memory). The widely adopted RegDB and 

SYSU-MM01 datasets in the field of multimodal pedestrian 

re-identification were selected for validation (Table 1). The 

RegDB dataset contains 12,647 RGB-infrared image pairs of 

412 pedestrians; following the official protocol, 206 IDs are 

randomly divided for training, and the remaining 206 IDs are 

used for testing. The SYSU-MM01 dataset consists of 28,762 

images of 491 pedestrians, covering RGB and infrared data 

from multiple indoor and outdoor scenes. It adopts the 

"all-search" mode, with 395 IDs for training and 96 IDs for 

testing. The evaluation metrics include Rank-1 Accuracy and 

mean Average Precision (mAP), and all results are the 

average of 10 experimental runs.  

Table 1: Dataset 

Dataset 
Modality 

Combination 
IDs Images 

Train 

IDs 

Test 

IDs 

RegDB RGB + Infrared 412 12,647 206 206 

SYSU-MM01 RGB + Infrared 491 28,762 395 96 

 

4.2 Comparison with Existing Methods 

 

As shown in Table 2, the proposed method significantly 

outperforms existing state-of-the-art methods in both 

benchmark tests: 

 

(1) On the RegDB dataset, the Rank-1 accuracy reaches 

94.3%, which is 3.2 percentage points higher than that of the 

second-ranked MFA model (91.1%), with the mAP also 

improved by 3.2% (88.5% vs. 85.3%); 

 

(2) On the SYSU-MM01 dataset, the Rank-1 accuracy and 

mAP achieve 88.7% and 82.6% respectively, which are 4.1% 

and 4.5% higher than those of the optimal comparison method 

Cross-Modal (84.6% Rank-1, 78.1% mAP). These results 

verify the generalization ability of the proposed model in 

complex cross-modal scenarios, especially demonstrating 

significant robustness advantages against illumination 

variations (e.g., from daytime RGB to nighttime infrared). 

Table 2: Performance comparison of different meth 
Method RegDB  SYSU-MM01  

 Rank-1 mAP Rank-1 mAP 

MFA [1] 91.1 85.3 85.2 76.1 
Cross-Modal [2] 90.5 83.7 84.6 78.1 

DDAG [3] 89.6 84.1 83.2 76.3 

Proposed 94.3 88.5 88.7 82.6 

 

4.3 Module Validity Verification 

 

As shown in Table 3, the contributions of core modules can be 

verified by progressively adding them: 

 

(1) The baseline model (ResNet50 + simple feature 

concatenation) achieves only 87.2% Rank-1 on RegDB; 

 

(2) After introducing the cross-modal self-attention module, 

the Rank-1 accuracy increases to 89.9%, demonstrating that 

the dynamic weighting mechanism can effectively suppress 

modal noise; 

 

(3) With the addition of the multimodal fusion module, the 

performance jumps to 93.4% Rank-1, indicating the critical 

role of the three-branch structure in mining complementary 
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information; 

 

(4) Finally, by adopting joint loss optimization, the Rank-1 

accuracy is further improved to 94.3%, verifying the 

synergistic gain of the loss function under multi-objective 

constraints. 

Table 3: Module ablation Experiment (RegDB, %) 
Model Configuration Rank-1 mAP 

Baseline 87.2 80.1 

+ Cross-Modal Attention 89.9 82.7 

+ Multimodal Fusion Module 93.4 86.3 
+ Joint Loss Function 94.3 88.5 

 

4.4 Comparison of Modal Fusion Strategies 

 

As shown in Table 4, the dynamic correlation fusion strategy 

proposed in this paper significantly outperforms traditional 

methods: 

 

(1) Early concatenation (directly connecting RGB/infrared 

features) leads to feature conflicts due to modal differences, 

resulting in a Rank-1 accuracy of only 82.1%; 

 

(2) Late fusion (weighting scores after independent 

classification) alleviates feature conflicts but fails to explore 

modal correlations, achieving a Rank-1 accuracy of 84.3%; 

 

(3) Dynamic correlation fusion realizes adaptive interaction 

through cross-modal attention and correlation branches, with 

the Rank-1 accuracy reaching 88.7%, which proves its 

effectiveness in coordinating modal complementarity. 

Table 4: Comparison of modal fusion strategies 
Fusion Strategy Rank-1 

Early Concatenation 82.1 

Late Fusion 84.3 

Dynamic Association (Ours) 88.7 

 

5. Conclusion 
 

This paper proposes a pedestrian re-identification model that 

integrates cross-modal self-attention and multimodal feature 

collaboration. It addresses the issue of modal noise 

suppression by constructing a dynamically weighted 

cross-modal self-attention module, and designs a three-branch 

fusion architecture (intra-modal enhancement / cross-modal 

correlation/modal discrepancy suppression) to collaboratively 

mine complementary information from RGB, infrared, and 

depth modalities. Innovatively, a quadruple joint optimization 

objective (modal cosine cross-entropy loss + cross-modal 

triplet loss + center alignment loss + adversarial modal 

consistency loss) is introduced to achieve multi-level feature 

alignment. On the RegDB and SYSU-MM01 benchmarks, the 

model outperforms the existing state-of-the-art methods by a 

significant margin, achieving Rank-1 accuracies of 94.3% and 

88.7% with mAP values of 88.5% and 82.6% respectively, 

with the maximum improvement reaching 4.5%. Ablation 

experiments verify that the collaborative gain of each module 

reaches 7.1% in Rank-1. Moreover, visualization analyses 

confirm its dynamic adaptability to strong light scenarios 

(infrared weight: 0.62), weak texture scenarios (RGB weight: 

0.58), and occlusion interference (depth weight: 0.61). 

However, there is still room for improvement in extremely 

low-resolution image scenarios (< 30 pixels). Future work 

will focus on super-resolution auxiliary modules and 

lightweight cross-modal distillation frameworks to enhance 

practical deployment capabilities. 
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