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Abstract: Spring leaves usually need to bear huge load and impact, thus wear, fracture, fatigue and other forms of failure easily take 

place. In this paper, the fatigue behavior of the air pump spring is numerically analyzed by finite element simulation technology. Based on 

the finite element result data set and the improved particle swarm BP neural network, the mapping relationship between spring structural 

parameters and fatigue damage is established. With the combination of neural network and genetic algorithm, a spring structure 

optimization method is proposed, and on this basis, the structural parameters of air pump springs are optimized by multi-objective, to 

improve its fatigue resistance. This study provides a reference for the health management of air pump spring, a new idea for its structure 

optimization. 
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1. Introduction 
 

Air pumps play an irreplaceable role in biomedical, aerospace, 

and oil and gas [1]. Piston booster air pumps suck in and 

compress gas through a piston that reciprocating in a cylinder 

with a wide variety of valve designs. As shown in Figure 1, 

the ventilation valve port of a booster air pump is composed of 

a spring sheet and an intermediate block, and the outlet is 

equipped with a limiting block and is fixed by rivets. The air 

pump drives the piston to move through the shaft drive the 

crank, and the spring plate opens or resets under the action of 

air pressure. The springs reciprocate frequently during 

operation to ensure air tightness and normal operation of the 

system. The spring disc needs to have high flexibility to allow 

the fluid to pass through, and it must be rigid enough to close 

the valve port in time, so it must have the comprehensive 

performance of the valve disc and the spring. 

 

However, long-term mechanical loads and repeated 

deformations can easily lead to fatigue fracture of spring 

blades [2]. In practical engineering problems, people pay 

more attention to the key factors that affect fatigue. To this 

end, He et al. proposed a cumulative fatigue damage 

saturation model [3], Naderi et al. [4] proposed a method for 

predicting the fatigue life of metals based on cyclic plastic 

strain energy. Lin [5] proposed a model that combined 

Miner-Palmgren and S-N curves and took into account the 

loading situation. These methods rely on empirical formulas 

and simplified assumptions, and fail to account for the 

interaction of multiple factors in practical engineering. The 

finite element method has become an important means to 

predict stress changes. Xu et al. [6] used the finite element 

model to study the effects of preload and friction coefficient 

on the stress of the contact surface, Xu Zhipeng et al. [7] 

analyzed the fatigue life of the connecting rod based on the 

finite element method, Zhang et al. [8] used the finite element 

method to analyze and simulate the natural loosening of bolts 

under wear conditions. Afolabi et al. [9] studied the fatigue 

life parameters and plastic deformation of the machine shaft 

through finite element analysis. The finite element method is 

widely used in dealing with complex engineering problems, 

but it still faces challenges such as large computational 

amount and long calculation cycle. 

 
Figure 1: Schematic diagram of piston booster pump structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

(a)Section view of the pump                      (b)Air outlet / air intake assembly 
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As a data-driven science, machine learning can effectively 

establish nonlinear models by virtue of its big data foundation 

and the advantages of no complex theoretical analysis, and 

can be widely used in problems with complex mapping 

relationships. Ankit et al. [10] discussed the application of 

deep learning to different material data, and analyzed its 

progress and application potential in various fields. Han et al. 

[11] used deep learning to predict the cracking location of 

fretting fatigue cracks, Srinivasan et al. [12] assessed the 

low-cycle fatigue life of 316L stainless steel using a neural 

network; Peng Chao et al. [13] established a BP artificial 

neural network that reflects the mapping relationship between 

the structural parameters of the release trough and the 

stress-strain. Peng [14] used a three-layer LMBP neural 

network to predict the fatigue life of coiled tubing. Zhang et al. 

[15] used deep learning models to predict creep, fatigue, and 

creep fatigue life of materials. Brito et al. [16] proposed a 

hybrid model combining artificial neural networks and 

non-local multiaxial fatigue analysis to predict fretting fatigue 

life. In summary, artificial neural networks can accurately 

map the nonlinear relationship between data and effectively 

improve the prediction accuracy, and machine learning has 

been more widely used in the study of fatigue problems.  

 

Regarding the optimal design of the influencing parameters of 

mechanical design, Xin [17] used BP neural network as the 

objective function and gamultiobj function to carry out the 

lightweight optimization design of automobile bracket. Fares 

et al. [18] carried out multi-objective optimization based on 

the Lipno-Belman theory. Peng et al. [19] used genetic 

algorithm to consider the optimization objectives and 

optimization conditions, and obtained the optimal palletizing 

sequence and material distribution. Song et al. [20] expressed 

the unknown relationship between the design variable and the 

objective function based on finite element analysis and 

response surface method, combined with the NSGA-II genetic 

algorithm, to optimize the structural parameters. Yas et al. [21] 

used genetic algorithm to optimize the layer arrangement 

under load. While these studies focus on optimizing the 

design, this study uses the data results obtained by the neural 

network as input variables, thus improving the design process.  

 

The main purpose of this study is to construct a finite element 

simulation model of air pump springs, and on this basis, an 

optimization method combining neural network and genetic 

algorithm is proposed to realize the optimal design of spring 

structural parameters and effectively improve the fatigue 

resistance of springs. 

 

2. Physical Model 
 

2.1 Mathematical Model of the Fatigue Strength of the 

Spring Sheet 

 

Prediction and evaluation of fatigue life often involves several 

factors, including the nature of the material, loading 

conditions, environmental factors, and the geometry of the 

design. In complex engineering systems, the influencing 

factors of fatigue life are more complex. In the past, the 

critical plane method has been widely used in predicting the 

initiation life of multiaxial fatigue cracks, and the commonly  

 

 

used criteria in the critical plane method include the 

stress-based Findley parameter (FP), the strain-based 

Fatemi-Social parameter (FS), and the strain energy 

density-based Smith-Watson-Topper (SWT) parameters. 

Among them, the SWT parameter was proposed by Smith et 

al., which can effectively solve the problem of multi-axis 

fatigue. The life is greatly affected by the load characteristics, 

such as the magnitude and fluctuation of the load, and the 

SWT damage parameters are determined by the maximum 

normal stress 𝜎𝑛,𝑚𝑎𝑥 and the normal strain amplitude ∆𝜀𝑛,𝑎 in 

a load cycle. It is expressed as: 

 𝑆𝑊𝑇 = 𝜎𝑛，max
𝜀𝑛，𝑎 =

(𝛿𝑓)
2

𝐸
(2𝑁𝑓)

2b + 𝜎𝑓
′𝜀𝑓

′ (2𝑁𝑓)
b+c  (1) 

where E is the elastic modulus of the material, 𝑁𝑓  is the 

fatigue life, 𝜎𝑓
′  is the fatigue strength coefficient, b is the 

fatigue strength index, 𝜀𝑓
′  is the fatigue toughness coefficient, 

and c is the fatigue toughness index. 

 

2.2 Data Acquisition 

 

In the field of machine learning, large and diverse data is the 

key to model training and optimization. Therefore, the 

numerical simulation method is used to generate the dataset, 

which can provide rich samples for the model, so as to 

improve the accuracy and generalization ability of the model. 

By changing different parameter levels for numerical 

simulation, the distribution results of SWT damage 

parameters and displacements under each parameter 

combination can be obtained. 

 

Three design variables were selected, and the design 

parameters of the spring sheet were thickness D, width X, and 

fillet R, as shown in Figure 2(a). The size level of the three 

design parameters is based on the original size of the spring 

sheet, and a reasonable range containing the original size is 

selected. D selected 6 size levels, X and R selected 4 

parameter levels, and the spring blades with different 

parameter combinations were modeled, and Abaqus was used 

for finite element analysis. For the convergence of the mesh, 

as shown in Figure 2(b), when the mesh size is 0.05mm, the 

analysis results show good stability and meet the simulation 

accuracy requirements. Therefore, this size was selected to 

mesh the model, and 1236839 C3D8 element meshes were 

established. Ninety-six finite element simulations were 

carried out for the combination of geometric parameters of 

different sizes of springs, and the distribution of stress and 

SWT damage parameters of springs, as well as their 

maximum displacement U, were further obtained through 

finite element simulations. The SWT is output by Uvarm, a 

custom subroutine in Abaqus. The specific process is as 

follows, firstly, the stress-strain data of each node obtained by 

simulation is extracted, secondly, the different angle planes at 

each position are obtained as alternative planes through the 

coordinate conversion equation, and then the maximum 

normal stress and normal strain amplitude on each plane are 

extracted to obtain the corresponding SWT values on each 

alternate plane, and the plane where the maximum SWT is 

located in the alternative plane at each position is selected as 

the critical plane, and the distribution of the maximum SWT 

value is further obtained. 
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(a) Spring parameters (b) Grid convergence 

Figure 2: Spring structure and mesh Convergence 

3. PSO-BP Surrogate Model 
 

3.1 PSO-BP Agent Model Construction 

 

BPNN is a multi-layer feedforward neural network that uses a 

backpropagation algorithm to optimize the weights and biases 

of the network to minimize the prediction error. Considering 

that the BP algorithm is easy to fall into the local optimal 

solution, the global search ability of the PSO algorithm is 

combined with the local search ability of the BP algorithm, 

and the improved particle swarm optimization algorithm 

(PSO) is used to search for the optimal initial weight and 

threshold, which can effectively avoid the problem of local 

optimum. As a result, the initial weight jumps out of the local 

extremum, which helps to accelerate the convergence process 

and enhance the accuracy and generalization ability of BPNN. 

 

In the standard PSO algorithm, the inertia weight is a key 

influencing parameter in the tunable parameters of the 

algorithm. The nonlinear inertia weights used in this paper 

help to balance the global and local search capabilities, and 

the equation is as follows: 

 𝑤𝑡 = 𝑤 (𝑤𝑚𝑖𝑛𝑚𝑎𝑥 ⋅ (
𝑡

𝑡𝑚𝑎𝑥
()2))

𝑚𝑎𝑥

 (2) 

where 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛  are the maximum and minimum 

inertia weights, which are set to 0.9 and 0.4. 

 

In addition, the learning factor determines the optimal 

trajectory of the particle to a certain extent. So improvements 

were made to the evolution of the asynchronous learning 

factors used: 

 𝑐1
𝑡 = 𝑐1𝑠 + (𝑐1𝑒 − 𝑐1𝑠) ⋅

𝑡

𝑡𝑚𝑎𝑥1𝑠1𝑒
 (3) 

 𝑐2
𝑡 = 𝑐2𝑠 + (𝑐2𝑒 − 𝑐2𝑠) ⋅

𝑡

𝑡𝑚𝑎𝑥2𝑠2𝑒
   (4) 

where 𝑐1𝑠  and 𝑐1𝑒  are the start and end values of 𝑐1 , 

respectively. The similarity 𝑐2𝑠 and 𝑐2𝑒 represent the start and 

end values of 𝑐2, respectively. Therefore, in the early stage of 

iteration, 𝑐1 > 𝑐2, enhances the global search capability and 

prevents premature convergence to the suboptimal solution. 

In the later stage of iteration, 𝑐1 > 𝑐2, which is conducive to 

strengthening the local search and accelerating the 

convergence to the global optimal solution. 

 

Therefore, PSO-BPNN was used to deal with the mapping 

relationship between the influencing factors and the response, 

and the sample set obtained by numerical simulation was 

divided into a training set and a test set, as shown in Figure 3, 

the input layer included three neurons, the thickness of the 

spring blade (D), the transition arc radius (R) and the 

bifurcation width (X), and then SWT and U were used as the 

output layers to train two neural networks. 

 
Figure 3: Neural network structure 

3.2 PSO-BP Neural Network Analysis 

 

The ability of the neural network trained based on the 

PSO-BPNN model to predict SWT and U is evaluated by 

scatter plots, and Fig. 4 shows that the predicted values of the 

PSO-BP neural network are in good agreement with the finite 

element calculation results. 

 

For the neural network with SWT as output, the R2 values of 

the training set and the test set were 0.99795 and 0.9945, and 

the MAE were 0.0068713 and 0.01218; respectively, and for 

the neural network with U as output, the R2 values were 

0.99912 and 0.99899, and the MAE were 0.0018107 and 

0.0021919, respectively. Moreover, the prediction errors of 

the two neural networks for SWT and U are within the range of 

5% (black dotted line), as shown in Figure 4(c)-(f). The above 

results show that the prediction results are in good agreement 

with the calculation results of the physical model, which 

proves the prediction ability of the model. 

                       Journal of Research in Science and Engineering (JRSE)
                                   ISSN: 1656-1996 Volume-7, Issue-6, June 2025

60



  
  

  

  
 

  

   
(a) Training set (b) Test set (c) Error analysis 

   
(d)Training set (e) Test set (f) Error analysis 

Figure 4: Neural network prediction result 

Table 1: PSO-BPNN prediction output 1 result error 

Ki 1 2 3 4 5 6 

Training R2 0.97969 0.99087 0.99214 0.99429 0.99278 0.98247 
Test R2 0.97266 0.92076 0.98303 0.95652 0.94697 0.98056 

Training MAE 0.025841 0.018162 0.012479 0.010113 0.013219 0.014726 

Test MAE 0.022522 0.013862 0.020949 0.038754 0.032735 0.01464 

Table 2: PSO-BPNN prediction output 2 result error 

Ki 1 2 3 4 5 6 

Training R2 0.99108 0.99752 0.98054 0.98058 0.94708 0.97369 

Test R2 0.95387 0.94765 0.98633 0.97025 0.94589 0.98152 

Training MAE 0.011488 0.0047275 0.02517 0.023661 0.012016 0.02506 
Test MAE 0.039426 0.013583 0.02924 0.028541 0.013319 0.02522 

 

Then, K-fold cross-validation (K takes 5) was used to evaluate 

the accuracy of the model and verify the generalization 

performance. The dataset is divided into 5 parts, one of which 

is used as the test set, and the remaining 4 are used as the 

training set for multiple training and verification, which can 

verify the reliability of the method under limited data, and has 

a good effect on evaluating the generalization ability of the 

model and selecting the best combination of hyperparameters. 

Finally, the Mean Absolute Error (MAE) was compared to 

discuss the cross-validation results, and the influence of 

different data partitions on the prediction accuracy of the 

neural network model was analyzed. 

 

Table 1 and Table 2 show the K-fold cross-validation 

prediction results, and it can be seen that the accuracy of the 

prediction results can be maintained at a high level under 

different data partitioning methods, and the performance 

parameters remain stable, which shows that the data 

partitioning has little impact on the prediction results of the 

neural network, which further reflects that the prediction 

model has good prediction accuracy and generalization 

ability. 

 

4. Optimization Method 
 

4.1 Parametric Analysis 

 

Orthogonal experiments (DOE) were used to analyze the 

sensitivity of the main design factors. Four different values of 

the three factors were selected as DOE levels, as shown in 

Table 3. SWT and maximum displacement U were selected as 

the responses to DOE. 16 sets of experimental data were 

generated using array L16(43). The range analysis method was 

used to analyze the sensitivity of each influencing factor, and 

the range contribution of each input parameter to the output 

was calculated. Firstly, the amplitude of SWT and U at 

different levels of each factor is given, as shown in Table 4. 

Table 3: Orthogonal experimental level 

 D/mm R/mm X/mm 

1 0.3 0.7 3.6 

2 0.35 1 3.9 

3 0.4 1.5 4.2 

4 0.45 2 4.5 
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Table 4: The change range of response at different levels 

 D/mm R/mm X/mm 

n1i 2.762624 1.718842 1.922019 

n2i 1.576569 1.65128 1.658529 

n3i 1.036765 1.473735 1.38399 

n4i 0.721459 1.25356 1.132879 

m1i 1.452915 0.97056 1.029403 

m2i 0.972922 0.938112 0.943906 

m3i 0.658828 0.908835 0.889591 

m4i 0.466975 0.869241 0.823848 

Note: nji is the SWT change amplitude of factor i at different levels, and mji is 
the U change amplitude of factor i at different levels. 

 

By analyzing and identifying the magnitude of the range 

difference of different influencing factors, the influence 

degree of different design parameters on the working 

performance of the spring sheet can be obtained, and then the 

sensitivity of different factors can be obtained, as shown in 

Figure 5: 

 

The order of the test factors on the SWT of spring blades was 

as follows: factor 1 (D) > factor 3 (X) > factor 2 (R). 

 

The order of the test factors influencing the maximum U of 

the spring disc is as follows: factor 1 (D) > factor 3 (X) > 

factor 2 (R). 

 

As can be seen from Figure 6, the change trend of the 

maximum SWT and U is consistent with the change of D and 

R, and both decrease with the increase of the factor level, 

among them, the SWT reaches the maximum value at the 

radius of the circular line of about 1.4mm, but the 

displacement U should not be too small because the spring 

blade needs to ensure that the air can pass smoothly to meet 

the requirements of work efficiency. As X increases, the 

maximum SWT and maximum U tend to decrease gradually. 

 
Figure 5: Sensitivity based on range analysis 

 
Figure 6: The changing trend of output under the influence of single factor 

4.2 Multi-objective Optimization Approach 

 

On the basis of the neural network model trained in 2.2, the 

relationship between each parameter combination and SWT 

and U can be obtained by establishing the PSO-BP neural 

network model, and all combinations within the parameter 

range can be predicted. Finally, the genetic algorithm is used 

to bring the pre-optimization parameter combination and the 

optimized optimal parameter combination into the neural 

network model respectively, and the corresponding results are 

obtained. 

 

Considering the SWT and the U of the spring blade, the 

objective function is evaluated according to the artificial 

neural network corresponding to SWT and U trained in 2.2 

above. The specific optimization process and size level are as 

follows. Different parameter combinations were brought into 

the neural network model to calculate the output values, and 

the optimal parameter combinations were found with the goal 

of minimizing the SWT and maximizing the U. 

  SWT=netSWT(𝐷, 𝑅, 𝑋) (5) 

     𝑈 = 𝑛𝑒𝑡𝑈(𝐷, 𝑅, 𝑋) (6) 

 𝐷 ∈ [0.3,0.55], 𝑅 ∈ [0.7,2], 𝑋 ∈ [3.6,4.5] (7) 

netSWT and netU are the neural network models trained with 

SWT and U as outputs, respectively. D is the thickness, R is 

the radius of the transition fillet, and X is the width. 
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Table 5: Parameter setting of NSGA- Ⅱ 
Parameter Value 

Crossover Fraction 0.8 

Mutation Fraction 0.05 

Population Size 200 

Generations 100 

 

The specific operating parameters of the NSGA-II. algorithm 

are shown in Table 5, and then the TOPSIS method is used to 

rank the Pareto frontier solutions to obtain the optimal 

solution. 

 

4.3 Multi-objective Optimization Analysis 

 

The Pareto optimal solution set of the NSGA-II. algorithm to 

solve the SWT and U is shown in Figure 7, and if the small 

SWT is blindly pursued without considering U, the work 

efficiency of the spring sheet will be seriously affected. 

Therefore, in the design process of spring sheets, both SWT 

and U factors should be considered. On the premise that the U 

is larger and can maintain normal work efficiency, the SWT 

value should be reduced as much as possible. 

 
Figure 7: Optimization results of SWT and U 

Table 6: Optimization result 
 D R X SWT U 

Raw value 0.35 1 3.6 0.498029 0.268158 
Optimize the value 0.32 2 4.13 0.4438763 0.3043495 

Verify the value 0.32 2 4.13 0.425982 0.305126 

 

Table 6 shows the results before and after optimization. 

Comparing the data before and after optimization, it can be 

seen that the parameter combination obtained by the NSGA-II. 

algorithm is reduced by 10.9% and the displacement is 

increased by 13.5% compared with the parameter group SWT, 

and the thickness D is 0.32mm, the bifurcation width radius R 

is 0.2mm, and the bifurcation width X is 4.13mm. 

Subsequently, the finite element method was used to verify 

the optimized data, and the SWT error was 4%, the 

displacement error was 0.25%, and the errors were within the 

range of 5%. It can be seen that the results obtained by the 

genetic algorithm optimization are better than those in the 

orthogonal experimental group, which effectively reduces the 

SWT of the springs while ensuring the higher U of the springs 

and thus ensuring the work efficiency. 

 

5. Conclusion 
 

(1) This study is based on a finite element structural dataset 

and has trained a PSO-BP artificial neural network model 

capable of accurately predicting the SWT and displacement of 

spring leaves. And according to different data division, it is 

proved that it has a certain generalization ability. Therefore, 

the trained PSO-BP model is feasible as a surrogate model for 

predicting SWT damage parameters and displacements of 

spring blades. 

 

(2) According to the results of parameter analysis, it can be 

seen that for the SWT and U of spring blades, thickness is a 

more significant factor than the radius and width of the 

circular line. 

 

(3) Based on the optimization method and the combination of 

improved PSO-BP neural network and NSGA-II., the three 

design parameters of the spring blade were optimized, and the 

SWT and displacement of the spring blade were considered, 

and the results of the optimization method can minimize the 

damage parameters while meeting the requirements of work 

efficiency. 

 

References 
 

[1] Q. He, X. Wu, B. Gan, et al. Study on Characteristics 

and Application of Micro Air Pump [J]. Electronic 

technology, 2022, 51(4): 284-285. 

[2] A.B. Beate, C.D. Patricia, H.S.K. Alexander, et al. 

Piezoelectric titanium based microfluidic pump and 

valves for implantable medical applications [J]. Sensors 

and Actuators: A. Physical, 2021, 323: 112649. 

[3] L. He, H. Akebono, A. Sugeta, et al. Cumulative fatigue 

damage of stress below the fatigue limit in weldment 

steel under block loading [J]. Fatigue & Fracture of 

Engineering Materials & Structures, 2020, 43(7): 

1419-1432. 

[4] B.M. Naderi, M. Amiri, M.M. Khonsari. On the 

thermodynamic entropy of fatigue fracture [J]. 

Proceedings: Mathematical, Physical and Engineering 

Sciences, 2010, 466(2114): 423-438. 

[5] S. Lin, W. Long, D. Tian, et al. A new fatigue damage 

accumulation model considering loading history and 

loading sequence based on damage equivalence [J]. 

International Journal of Damage Mechanics, 2018, 27(5): 

707-728. 

[6] Y. Xu, Z. Sun, Y. Zhang. The fretting fatigue 

experiments and finite element analysis of the friction 

type high-strength bolt joints [J]. Industrial Construction, 

2017, 47(3): 175-181. 

[7] Z. Xu, C. Liu, H. Feng. Fatigue-life prediction of 

hydraulic support’s front connecting rod based on 

finite-element analysis and RBF neural network [J]. 

Journal of Machine design, 2024, 41(1): 110-116. 

[8] M. Zhang, D. Zeng, L. Lu, et al. Finite element 

modelling and experimental validation of bolt loosening 

due to thread wear under transverse cyclic loading [J]. 

Engineering Failure Analysis, 2019, 104: 341-353. 

[9] S.O. Afolabi, B.I. Oladapo, C.O. Ijagbemi, et al. Design 

and finite element analysis of a fatigue life prediction for 

safe and economical machine shaft [J]. Journal of 

Materials Research and Technology, 2019, 8(1): 

105-111. 

[10] A. Ankit, C. Alok. Deep materials informatics: 

Applications of deep learning in materials science [J]. 

MRS Communications, 2019, 9(3): 779-792. 

                       Journal of Research in Science and Engineering (JRSE)
                                   ISSN: 1656-1996 Volume-7, Issue-6, June 2025

63



  
  

  

  
 

  

[11] S. Han, S. Khatir, M.W. Abdel. A deep learning 

approach to predict fretting fatigue crack initiation 

location [J]. Tribology International, 2023, 185: 108528. 

[12] V.S. Srinivasan, M. Valsan, K. Bhanu Snakara Rao, et al. 

Low cycle fatigue and creep–fatigue interaction 

behavior of 316L(N) stainless steel and life prediction by 

artificial neural network approach [J]. International 

Journal of Fatigue, 2003, 25(12): 1327-1338. 

[13] C. Peng, J. Chen, F. Feng. Optimization design for the 

stress-releaser of solid propellant gain based on genetic 

algorithm and neural network [J]. Journal of Solid 

Rocket Technology, 2014, 37(2): 198-203. 

[14] S. Peng, Q. Zhang, H. Wang, et al. Coiled Tubing 

Fatigue Life Prediction Method Based on LMBP 

Algorithm of Neural Network [J]. Petroleum tubular 

goods & instruments, 2018, 4(6): 36-40. 

[15] X. Zhang, J. Gong, F. Xuan. A deep learning based life 

prediction method for components under creep, fatigue 

and creep-fatigue conditions [J]. International Journal of 

Fatigue, 2021, 148: 106236. 

[16] A.G.O. Brito, C.R.J.F. Silverio, A.L.M.C. Veloso, et al. 

A hybrid ANN-multiaxial fatigue nonlocal model to 

estimate fretting fatigue life for aeronautical Al alloys [J]. 

International Journal of Fatigue, 2022, 162: 107011. 

[17] S. Xin. Multi-objective optimization design of of 

automobile leaf spring bracket based on genetic 

algorithm and BP neural network [J]. Journal of machine 

design, 2022, 39(12): 89-95. 

[18] M.E. Fares, Y.G. Youssif, M.A. Hafiz. Structural and 

control optimization for maximum thermal buckling and 

minimum dynamic response of composite laminated 

plates [J]. International Journal of Solids and Structures, 

2003, 41(3-4): 1005-1019. 

[19] X. Peng, M. Wang, B. Yi, et al. Optimization design of 

stacking sequence and material distribution for variable 

thickness hybrid composite structure based on improved 

stacking sequence table [J]. Composite Structures, 2023, 

307: 116614. 

[20] Y. Song, J. Yang, Z. Xu, et al. Response Surface 

Optimization of Static Fatigue Characteristics of Joint 

bearings [J]. Machinery Design & Manufacture. 2022, 

(2): 229-232+236. 

[21] M.H. Yas, A. Bayat, S. Kamarian, et al. Buckling 

analysis and design optimization of trapezoidal 

composite plates under hygrothermal environments [J]. 

Composite Structures, 2023, 315: 116935. 

                       Journal of Research in Science and Engineering (JRSE)
                                   ISSN: 1656-1996 Volume-7, Issue-6, June 2025

64


