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Abstract: Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, 

serving as a core task in computer vision. Despite recent advances, existing methods often struggle to balance structural fidelity and 

computational efficiency. To address this, we propose PFRNet, a lightweight superpixel-aware model integrating superpixel segmentation, 

local attention aggregation, and global structure modeling. The framework comprises four key modules: GASS, SPDF, SPFA, and LAP, 

jointly enabling multi-scale and structure-consistent feature learning. Experiments on benchmark datasets (e.g., Set5, Urban100) show 

that PFRNet achieves superior performance with fewer parameters. Ablation studies further verify the effectiveness of each module. 
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1. Introduction 
 

Single Image Super-Resolution (SISR) reconstructs a 

high-resolution (HR) image from a low-resolution (LR) input 

and is widely used in medical imaging, remote sensing, 

surveillance, and photography. Deep CNNs and Transformers 

have boosted SISR accuracy, yet balancing structural fidelity 

and efficiency remains difficult. 

 

Studies show structural priors [1] and adaptive attention [2] 

improve texture and edge recovery. However, two issues 

persist: (1) fixed-shape attention struggles with irregular 

structures, reducing precision; (2) Transformer-based global 

attention, though effective, suffers from high quadratic 

complexity [3], limiting lightweight deployment. 

 

To address these challenges, we propose PFRNet, a 

superpixel-driven network centered on the Superpixel Prior 

Aggregation Module (SPAM), which integrates four 

synergistic submodules for efficient, structure-aware, 

multi-scale image enhancement: 

 

1) Global-Aware Superpixel Sampling (GASS): Uses 

spatial and gradient cues to generate structurally coherent 

superpixels. 

2) Superpixel-Guided Dual-Stream Fusion (SPDF): Fuses 

pixel- and region-level features via dual attention for 

local-global balance. 

3) Superpixel-Focused Attention (SPFA): Enhances 

regional discriminability through sparse attention on key 

pixels. 

4) Local Attention Partition (LAP): Preserves textures and 

reduces artifacts via overlapping local attention. 

 

By integrating these submodules, PFRNet leverages 

superpixel consistency to enhance detail reconstruction and 

model long-range dependencies. Experiments on standard 

benchmarks confirm its superior performance–efficiency 

trade-off.  

 

2. Related Work 
 

2.1 Super-Resolution Reconstruction Networks 

 

CNN-based methods have achieved remarkable progress in 

SISR. SRCNN [4] first introduced end-to-end mapping from 

LR to HR. VDSR [5] leveraged deeper residual networks, 

while EDSR [6] simplified blocks to boost performance. 

RCAN [7] employed channel attention to enhance feature 

focus, followed by SAN [8], HAN [9], and NLSA [10], which 

incorporated spatial and non-local attention for structure 

restoration. However, these models often fail to capture fine 

structural details, leading to blurring or over-smoothing in 

textures and edges. 

 

2.2 Lightweight Super-Resolution Methods 

 

To meet the constraints of mobile devices, lightweight 

designs like FSRCNN [4] and ESPCN [11] defer upsampling 

to reduce computation. CARN [12] and IMDN [13] further 

optimize efficiency via group convolutions and feature 

distillation. Transformer-based models such as SwinIR [14] 

use sliding-window attention to balance accuracy and cost. 

ELAN [15] extends this with GMSA for faster global 

modeling. However, most rely on fixed or windowed 

partitions, neglecting natural boundaries and textures, which 

leads to fragmented features and weak contextual 

understanding in complex scenes. 

 

2.3 Superpixel and Pixel Clustering Modeling 

 

To overcome structural limitations of patch-based methods, 

recent work introduces superpixel segmentation for 

structure-aware modeling. Superpixels group pixels into 

perceptually coherent regions, naturally aligning with edges 

and semantic boundaries. SSN [16] proposed a differentiable 

superpixel generator via soft k-means, enabling integration 

with GNNs and attention modules. Other works combine 

pixel clustering and graph convolutions, e.g., PAN forms 

semantic graphs to improve texture reconstruction. However, 

superpixel-based priors remain underexplored in SISR due to 

integration complexity and sensitivity to scale, lighting, and 

texture. Designing lightweight, structure-aware aggregation 

remains a key challenge. 

 

3. Proposed Method 
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To balance global semantics and local details, we propose the 

Superpixel Prior Aggregation Module (SPAM) as the core of 

PFRNet. SPAM comprises four submodules—GASS, SPDF, 

SPFA, and LAP—targeting global modeling, context fusion, 

structural refinement, and detail reconstruction. See Figure 1. 

 
Figure 1: Network Architecture of the Proposed Model 

The proposed Superpixel Prior Aggregation Module (SPAM) 

integrates four lightweight yet synergistic components to 

achieve structure-aware and efficient image reconstruction. 

GASS groups images into coherent regions to extract coarse 

semantic priors and facilitate cross-region flow. SPDF 

employs superpixels as anchors for deformable attention, 

aligning multi-scale context with non-rigid structures. SPFA 

enhances intra-region consistency through Top-K pixel 

attention, while LAP applies sliding-window attention to 

preserve textures and edges. An overlapping fusion strategy 

further mitigates block artifacts and promotes high-fidelity 

restoration. 

 

3.1 Gradient-Aware Superpixel Pooling (GASS) 

 

To capture structural information, we propose the 

Gradient-Aware Superpixel Pooling (GASS) module. It uses 

edge gradients to guide superpixel initialization and 

constructs a soft association matrix based on feature distances. 

An iterative optimization refines the segmentation, enhancing 

spatial consistency and structural perception. See Figure 2 for 

the workflow. 

 
Figure 2: Overall Workflow of the GASS Module 

The input is a batch of image features with shape 𝑋 ∈
𝑅𝐵×𝐶×𝐻×𝑊, where 𝐵 denotes the batch size, 𝐶 is the number 

of channels, and 𝐻 and 𝑊 represent the height and width of 

the image, respectively. The GASS module outputs two 

tensors: One is a soft-assignment matrix 𝐴 ∈ 𝑅𝐵×𝑁×𝑃, where 

𝑁 is the number of superpixels and 𝑃 = 𝐻 × 𝑊 is the total 

number of pixels. The other is a vector representing the 

number of superpixels 𝑁 , which is used for subsequent 

region-based operations in the module. To ensure that the 

initial superpixel segmentation is structurally aware, GASS 

first applies the Sobel operator for edge detection, extracting 

gradient maps in the horizontal and vertical directions, 

denoted as 𝐺𝑥  and 𝐺𝑦 ∈ 𝑅𝐵×𝐶×𝐻×𝑊 , respectively. Then, the 

overall gradient magnitude map is computed as: 

 𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (1) 

The gradient map and the original image features are then 

separately subjected to adaptive average pooling, yielding the 

initial superpixel centroids under gradient guidance 𝐶𝑔  and 

the average image feature values 𝐶𝑥:  

 
𝐶 =

1

2
(𝐴𝑣𝑢𝑃𝑜𝑜𝑙(𝐺) + 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋))

𝐶 ∈ 𝑅𝐵×𝐶×𝑁
 (2) 

Among them, the number of superpixels is defined as 𝑁 =
𝐻𝑠 × 𝑊𝑠 , which is determined by the user-specified token 

resolution (𝐻𝑠, 𝑊𝑠). In addition, we generate the initial label 

mapping for each pixel using nearest-neighbor interpolation, 

denoted as 𝐿0 ∈ 𝑅𝐵×𝑃 , which is used to quickly locate the 

corresponding initial superpixel index for each pixel. In each 

iteration, GASS computes the distance between each pixel 

and the superpixel centroids within its 3×3 neighborhood, and 

obtains the similarity-normalized soft-assignment weights 

through the softmax function: 

 𝐴𝑖𝑗 =
𝑒𝑥𝑝(−‖𝑥𝑖−𝑐𝑗‖

2
)

∑ 𝑒𝑥𝑝(−‖𝑥𝑖−𝑐𝑘‖2)𝑘∈𝑁(𝑖)

 (3) 

Let 𝑥𝑖 ∈ 𝑅𝐶  denote the feature of the i-th pixel, and 𝑐𝑗 ∈ 𝑅𝐶  

denote the centroid of the j-th superpixel. 𝑁(𝑖) represents the 

set of neighboring superpixel centroids for pixel i, and 𝐴𝑖𝑗 is 

the probability that pixel i belongs to superpixel j. To improve 

efficiency, GASS constructs a sparse soft-assignment tensor 

𝐴𝑠𝑝𝑎𝑟𝑠𝑒 , avoiding the need to compute distances to all 

superpixels and significantly reducing computational and 

memory overhead. In each iteration, GASS updates each 

superpixel centroid by recalculating it based on the current 

soft-assignment: 

 𝑐𝑗
(𝑘+1)

=
∑ 𝐴𝑖𝑗

(𝑘)
𝑖 ∙𝑥𝑖

∑ 𝐴𝑖𝑗
(𝑘)

𝑖 +𝜀
 (4) 

Here, 𝜀 is a numerical stabilization term. Through iterative 

refinement (typically 2–3 iterations), the clustering process 

gradually converges, making the superpixel centroids 

increasingly approximate the average features of their 

assigned pixels, thereby improving the consistency of region 

aggregation. The final output soft-assignment matrix 𝐴 serves 

as the input for region-level tasks such as region attention and 

region-level graph modeling. 

 

3.2 Superpixel-guided Dual-stream Fusion (SPDF) 

 

To exploit structural–semantic complementarity, we propose 

the Superpixel-guided Dual-stream Fusion (SPDF) module. It 

splits features into structural and semantic streams for local–

global modeling. Using superpixel tokens as anchors, a 

bidirectional attention mechanism enables efficient 

pixel-level fusion. The workflow of SPDF is shown in Figure 

3. 

 
Figure 3: Overall Workflow of the SPDF Module 

Convolutions excel at local texture modeling but struggle with 
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long-range dependencies. To address this, we introduce 

superpixels as intermediaries, enabling efficient non-local 

information propagation. Compared to full-image attention, 

superpixel tokens reduce computation while preserving 

spatial awareness and regional coherence. The input feature 

𝑋 ∈ 𝑅𝐵×𝐶×𝐻×𝑊  is first normalized and then split along the 

channel dimension into two substreams: the structural stream 

𝑋1  and the semantic stream 𝑋2 . The structural stream 

enhances local structural perception — such as edges and 

textures — through large-receptive-field convolution 

operations. 

 𝑋1
′ = 𝐿𝑎𝑟𝑔𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝑜𝑛𝑣(𝑋1) (5) 

The semantic stream preserves the original semantic 

information. The two streams are then fused to obtain the 

enhanced feature representation 𝑋′:  

 𝑋′ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋1
′ , 𝑋2) (6) 

Given the pixel-level feature 𝑋′ and the superpixel-to-pixel 

affinity matrix 𝐴 ∈ 𝑅𝐵×𝑀×(𝐻𝑊)  (generated by the GASS 

module), we perform an aggregation operation to generate M 

superpixel-level tokens. 

 𝑆 =
𝐴∙𝑋𝑓𝑙𝑎𝑡

′

∑ 𝐴
 𝑤ℎ𝑒𝑟𝑒 𝑋𝑓𝑙𝑎𝑡

′ ∈ 𝑅𝐵×(𝐻𝑊)×𝐶 (7) 

Each superpixel token can be regarded as a contextual 

representative of a local region. In SPDF, a two-stage 

attention pathway is introduced to enable both 

pixel-to-superpixel context extraction and superpixel-to-pixel 

context enhancement: Pixel → Superpixel: Superpixels are 

used as queries, while pixels serve as keys and values, 

enabling the transmission of pixel-level features to superpixel 

tokens. 

 𝑆′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑠𝐾𝑥

𝑇

√𝐷
) ∙ 𝑉𝑥  (1) 

Where: 𝑄𝑠 ∈ 𝑅𝐵×𝑀×𝐷  denotes the superpixel query vectors; 

𝐾𝑥 , 𝑉𝑥 ∈ 𝑅𝐵×𝑁×𝐷 𝐶⁄  represent the pixel keys and values; 𝐷 is 

the attention reduction factor; 𝑆′ ∈ 𝑅𝐵×𝑀×𝐶  is the updated 

superpixel token representation. Superpixel → Pixel: Pixels 

serve as queries, while superpixels are used as keys and values, 

enabling the flow of contextual information back into the 

pixel space. 

 𝑋𝑜𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑥𝐾𝑠

𝑇

√𝐷
) ∙ 𝑆′ (2) 

Where: 𝑄𝑥 ∈ 𝑅𝐵×𝑀×𝐷  denotes the pixel query vectors; 𝐾𝑠 ∈
𝑅𝐵×𝑀×𝐷 represents the superpixel keys; 𝑋𝑜𝑢𝑡 ∈ 𝑅𝐵×𝑁×𝐶 is the 

final pixel output after fusing contextual information from the 

superpixels. 

 

SPDF enables pixels to connect with distant regions via 

superpixel intermediaries, enhancing long-range dependency 

modeling. A lightweight Feed-Forward Network (FFN), 

including layer normalization, gating, and channel attention, 

follows the attention block to improve cross-channel 

interaction and local response selectivity. 

 

3.3 Superpixel-Focused Attention (SPFA)  

 

To capture intra-superpixel similarity and complementarity, 

we propose the Superpixel-Focused Attention (SPFA) module. 

It applies structure-aware attention on Top-K representative 

pixels to enable efficient, consistent feature aggregation. The 

SPFA workflow is shown in Figure 4. 

 
Figure 4: Overall Workflow of the SPFA Module 

While global attention captures long-range dependencies, it is 

computationally expensive and may blur structural details. To 

address this, we adopt superpixel-based partitioning for 

fine-grained modeling on salient local regions, enhancing 

detail preservation and reducing redundancy. Given the input 

feature map 𝑋 ∈ 𝑅𝐵×𝐶×𝐻×𝑊  and the precomputed 

superpixel-to-pixel affinity matrix 𝐴 ∈ 𝑅𝐵×𝑀×(𝐻𝑊), where 𝐵 

denotes the batch size, 𝐶  is the number of channels, 𝑀 

represents the number of superpixels, and 𝐻𝑊  is the total 

number of pixels, the processing pipeline of SPFA consists of 

the following four steps: (1) Query, key, and value feature 

extraction: The input features are first normalized, and then 

pointwise (1×1) convolutions combined with depthwise (3×3) 

convolutions are used to extract the query (Q), key (K), and 

value (V) features. 

 

𝑄 = 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣1×1(𝑋))

𝐾 = 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣1×1(𝑋))

𝑉 = 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣1×1(𝑋))

 (3) 

This design retains local spatial cues and rich channel features. 

(2) Top-K Pixel Selection: We extract the K most similar 

pixels per superpixel from affinity matrix A to focus attention. 

The indices are defined as: 

 𝐼𝑘 = 𝑇𝑜𝑝𝐾(𝐴, 𝑘) (4) 

Where 𝐼𝑘 ∈ 𝑅𝐵×𝑀×𝑘 denotes the indices of the Top-K most 

similar pixels corresponding to each superpixel. (3) 

Intra-superpixel Attention Computation: Based on the 

selected pixel indices, we extract the corresponding subsets 

from 𝑄, 𝐾, 𝑉  denoted as 𝑄𝑠, 𝐾𝑠 , 𝑉𝑠 , and perform multi-head 

attention computation within each superpixel. The attention 

computation follows the standard Scaled Dot-Product 

Attention formulation: 

 
𝐴𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝑠∙𝐾𝑠
𝑇

√𝑑
)

𝑂𝑠 = 𝐴𝑠 ∙ 𝑉𝑠

 (5) 

Here, 𝑑 is the dimensionality reduction factor for the attention 

heads. 𝐴𝑠 ∈ 𝑅𝐵×𝑀×ℎ×𝑘×𝑘  represents the attention weights 

among pixels within each superpixel, and 𝑂𝑠 ∈ 𝑅𝐵×𝑀×ℎ×𝑘×𝑑 

is the aggregated output result. (4) Feature Backflow and 

Re-fusion: The aggregated superpixel features 𝑂𝑠  are 

rearranged and projected back to their corresponding original 

pixel positions. Using the scatter_mean operation, the updated 

features are averaged and assigned to their corresponding 

Top-K pixels. 

 𝑋𝑜𝑢𝑡 = 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑀𝑒𝑎𝑛(𝑂𝑠, 𝐼𝑘) (6) 

Finally, normalization yields the final output feature: 
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 𝑋𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋𝑜𝑢𝑡) (7) 

SPFA enhances structural preservation and efficiency by 

combining superpixel priors with sparse attention over Top-K 

pixels, improving feature quality in fine-grained regions such 

as edges and textures. 

 

4. Experimental Setup and Results Analysis 
 

4.1 Dataset Setup 

 

We train our model on the DIV2K dataset [17], which 

includes 800 training and 100 validation images. LR inputs 

are generated using ×2 and ×3 downsampling following 

RCAN [7]. For evaluation, we adopt five standard 

benchmarks—Set5 [18], Set14 [19], BSDS100 [20], 

Urban100 [21], and Manga109 [22]—covering diverse 

content from natural scenes to manga, ensuring 

comprehensive performance assessment. 

4.2 Experimental Configuratio 

 

We train the model with Adam (β₁ = 0.9, β₂ = 0.999), a 

learning rate of 5e-4, for 1000 epochs. Data augmentation 

includes 90°, 180°, 270° rotations and horizontal flips. The 

network comprises 8 SPAM modules, each outputting 40 

channels and initialized with superpixel patches of size 12–24 

for multi-scale structure extraction. Evaluation uses PSNR 

and SSIM on the Y channel, following RCAN [7]. 

 

4.3 Comparison with Lightweight Models  

 

We compare PFRNet with state-of-the-art lightweight models, 

including CNN-based CARN [12], IMDN [13], and 

Transformer-based ESRT [26], SwinIR [20]. Table 1 presents 

PSNR/SSIM results for ×2/×3/×4 upscaling on multiple 

benchmarks. While Transformers capture long-range 

dependencies well, their fixed patching may harm structural 

continuity in reconstructed images. 

Table 1: PSNR and SSIM of Different Methods on Multiple Benchmark Datasets under ×2, ×3, and ×4 Upscaling Factors 

Methods Scale Params 
Set5 Set14 BSDS100 Urban100 Manga109 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

CARN[12] 

X2 

1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765 

IMDN[13] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774 
ESRT[24] 677K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774 

RFDN-L[25] 626K 38.08/0.9606 33.67/0.9190 32.18/0.8996 32.24/0.9290 38.95/0.9773 

FMEN[26] 748K 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778 
DRSAN[23] 690K 38.11/0.9609 33.64/0.9185 32.21/0.9005 32.35/0.9304 - 

SwinIR[14] 878K 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783 

PFRNet(ours) 445K 38.19/0.9614 33.88/0.9213 32.32/0.9015 32.78/0.9340 39.19/0.9785 

CARN[12] 

X3 

1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427 

IMDN[13] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445 

ESRT[24] 770K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455 
RFDN-L[25] 633K 34.47/0.9280 30.35/0.8421 29.11/0.8053 28.32/0.8547 33.78/0.9458 

FMEN[26] 757K 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.9462 

DRSAN[23] 740K 34.50/0.9278 30.39/0.8437 29.13/0.8065 28.35/0.8566 - 

SwinIR[14] 886K 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478 

PFRNet(ours) 517K 34.66/0.9292 30.56/0.8464 29.24/0.8087 28.72/0.8628 34.21/0.9487 

CARN[12] 

X4 

1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070 

IMDN[13] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075 
ESRT[24] 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100 

RFDN-L[25] 643K 32.28/0.8957 28.61/0.7818 27.58/0.7363 26.20/0.7883 30.61/0.9096 

FMEN[26] 769K 32.24/0.8952 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107 
DRSAN[23] 730K 32.30/0.8954 28.66/0.7838 27.61/0.7381 26.26/0.7920 - 

SwinIR[14] 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 

PFRNet(ours) 503K 32.46/0.8981 28.81/0.7861 27.72/0.7413 26.53/0.7996 30.97/0.9153 

 

Unlike fixed-grid methods, PFRNet leverages 

superpixel-guided attention for region-consistent modeling, 

preserving structural boundaries. On complex datasets like 

Set14, Urban100, and Manga109, it achieves high ×4 

upscaling scores: 28.81/0.7861, 26.53/0.7996, and 

30.97/0.9153 (PSNR/SSIM), outperforming SwinIR and 

ESRT with only 503K parameters. Figure 5 shows visual 

results on Urban100. For example, PFRNet better 

reconstructs textures in “X4_Urban100_img_011,” while 

DRSAN [23] and IMDN [13] fail in corrupted areas. 

Compared to attention-based models like ESRT [24] and 

SwinIR [14], PFRNet retains finer details and sharper edges, 

validating its structural priors and adaptive regional modeling. 

 
Figure 5: Comparison of Reconstruction Results Across 

Different Models 
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4.4 Ablation Stud 

 

To assess the contribution of each submodule, we conduct 

ablation by progressively removing GASS, SPDF, SPFA, and 

LAP from the full PFRNet. The resulting variants are 

evaluated on Set5 and Urban100 under ×2 upscaling. Table 2 

reports the corresponding PSNR and SSIM scores. 

Table 2: Impact of Sequential Module Removal on Model 

Performance 

Model Variant 
Set5 Urban100 

PSNR/SSIM PSNR/SSIM 

Full model (all modules) 38.19/0.9614 32.78/0.9340 

w/o GASS 37.92/0.9596 32.42/0.9308 
w/o SPDF 37.87/0.9592 32.34/0.9297 

w/o SPFA 37.90/0.9595 32.40/0.9301 

w/o LAP 37.88/0.9593 32.36/0.9299 

 

Ablation results show that GASS has the greatest impact, with 

0.27dB and 0.36dB PSNR drops on Set5 and Urban100, 

respectively, confirming its importance for edge preservation 

via structure-aligned sampling. SPDF significantly affects 

detail fusion, and its removal degrades both PSNR and SSIM, 

indicating the value of superpixel-guided multi-scale 

interaction. SPFA, though slightly less impactful, improves 

coherence by integrating regional and global features. LAP 

mainly enhances local reconstruction; while its effect is 

modest, it helps preserve textures and reduce noise. Overall, 

all four modules contribute to PFRNet’s performance, each 

addressing different aspects of structure-aware and 

detail-preserving reconstruction. 

 

5. Conclusion 
 

This paper presents PFRNet, a lightweight super-resolution 

network that enhances structural restoration via 

structure-aware, multi-scale fusion. It integrates four 

modules—GASS, SPDF, SPFA, and LAP—for texture 

modeling and feature enhancement. Experiments show 

superior performance across benchmarks, especially on 

complex datasets like Urban100, with under 500K parameters. 

Ablation confirms 8 SPAM modules as optimal. Future work 

will refine superpixel–attention synergy to boost adaptability 

across diverse image types. 
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