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Abstract: Accurate prognostic assessment of patients with prolonged disorders of consciousness is critical for clinical decision-making. 

However, traditional behavioral scales and neuroimaging techniques are limited by subjective interpretation and low temporal resolution, 

which impede the dynamic characterization of consciousness fluctuations. To address these challenges, this study proposes a deep 

learning-based prognostic classification model integrating multiscale electroencephalogram features. First, geometric features including 

maximum radius, regional density, and dispersion were extracted from power spectrum-Poincaré scatter plots, while nonlinear dynamic 

features were constructed using sample entropy and multiscale entropy. Second, a temporal hybrid network enhanced by cross-attention 

mechanisms was designed to strengthen the modeling of feature interdependencies. Experimental validation on 8-channel 

electroencephalogram data from 15 patients demonstrated a classification accuracy of 90.83 percent and sensitivity of 94.73 percent, with 

significant performance improvements compared to random forest and support vector machine baselines. 
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1. Introduction 
 

The accuracy of prognostic assessment in patients with 

prolonged disorders of consciousness (pDoC) directly 

impacts clinical decision-making and rehabilitation resource 

allocation [1]. Current mainstream methods rely on 

behavioral scales [2,3] and neuroimaging techniques [4,5]; 

however, the former is susceptible to subjective biases, while 

the latter suffers from low temporal resolution, both failing to 

capture dynamic fluctuations in consciousness [6]. 

Electroencephalography (EEG), with its millisecond-level 

temporal resolution [7], offers unique insights into pDoC 

pathophysiology, such as gamma oscillation attenuation and 

theta-band synchrony abnormalities [8,9]. Nevertheless, 

traditional EEG analysis depends on manual feature 

engineering, which cannot resolve high-dimensional 

nonlinear brain network interactions, limiting prognostic 

stratification accuracy. Deep learning provides a novel 

pathway to overcome these bottlenecks through end-to-end 

feature learning: convolutional neural networks automatically 

identify local oscillatory abnormalities in EEG signals, while 

graph neural networks model dynamic topological evolution 

of cross-regional connectivity [10]. Transfer learning 

leverages EEG big data from epilepsy [11] and Alzheimer’s 

disease [12] to pretrain models, which are then fine-tuned for 

pDoC data, mitigating sample scarcity. Cross-disease studies 

validate the transfer potential of deep learning in neurological 

disorders—for example, CNN-LSTM models precisely detect 

epileptiform discharges in epilepsy [13], and graph networks 

improve Alzheimer’s subtyping accuracy through multimodal 

data fusion [14,15]. These findings demonstrate that deep 

learning exhibits strong generalization capabilities for shared 

pathological features like functional network dissociation and 

oscillatory rhythm abnormalities, establishing a theoretical 

foundation for pDoC prognostic modeling. This study 

proposes a deep learning model integrating multiscale EEG 

features to address the feature representation limitations of 

traditional methods and the overfitting risks in small-sample 

scenarios, aiming to provide an objective and interpretable 

intelligent tool for pDoC prognosis evaluation. 

 

2. Method 
 

2.1 EEG Signal Preprocessing 

 

2.1.1 EEG Denoising 

 

EEG signals are often contaminated by powerline interference 

(50/60 Hz) and baseline drift (<1 Hz), which require 

preprocessing to enhance analytical reliability [16]. This 

study implemented a two-stage denoising protocol: Powerline 

Interference Removal: A notch filter (stopband: 49–51 Hz) 

was applied to attenuate alternating current artifacts. Baseline 

Drift Correction: A 0.5 Hz high-pass filter eliminated 

low-frequency fluctuations. 

 

2.1.2 EEG Normalization 

 

Signal normalization mitigates systemic biases introduced by 

cross-subject, cross-experimental, and cross-device 

variability, ensuring inter-individual comparability. We 

adopted Z-score normalization to align voltage distributions 

across channels through zero-meaning and unit-variance 

standardization. Crucially, signal quality verification and 

prior denoising were mandatory before normalization to 

prevent noise amplitude from distorting standard deviation 

calculations. This method eliminated dimensional 

discrepancies, enabling population-level statistical analysis of 

brain network features. 

 

2.2 EEG Signal Feature Extraction 

 

2.2.1 Power Spectrum-Based Feature Extraction 

 

EEG power spectral features effectively characterize 

cognitive states in patients with prolonged disorders of 

consciousness (pDoC) [17]. Power spectrum analysis, a 

standard method for spectral decomposition of time-series 
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signals, quantifies energy distribution across frequency bands. 

For instance, heightened energy in theta (4–8 Hz) and alpha 

(8–12 Hz) bands, coupled with suppressed high-frequency 

(>30 Hz) activity, reflects rhythmic alterations in neural 

oscillations. Investigating time-frequency properties of pDoC 

EEG signals holds significant prognostic value. 

 

Given an EEG signal sequence {x(1),x(2),…,x(N)} with N 

sampling points, the power spectrum is computed follows1: 

𝑃(𝜔) =
|𝑋(𝜔)|2

𝑁
=

1

𝑁
|𝑛=0
𝑁−1𝑥𝑛𝑒

−2𝑅𝜋𝜔𝑛

𝑁 |2, 𝜔 =
2𝜋𝑓𝑠

𝑁
× 𝑛, 𝑛 =

1,2,⋯ ,𝑁  

The complete power spectrum of the EEG signal was 

calculated according to Formula 1. To facilitate data 

visualization and further investigate EEG disparities between 

chronic disorders of consciousness patients with favorable 

and poor prognoses, Poincaré scatter plots were employed for 

characterization. The formula is defined as follows, where T 

denotes the time interval period: 

𝑃𝑃(𝜔) = {(𝑃(𝜔), 𝑃(𝜔 + 𝑇)), 𝜔 =
2𝜋𝑓𝑠
𝑁

× 𝑛, 𝑛

= 1,2,⋯ ,𝑁 − 1} 
Based on Formula 2, gamma-band power spectrum-Poincaré 

scatter plots were generated. Figures 1 and 2 respectively 

display the power spectrum-Poincaré scatter plots of chronic 

disorders of consciousness patients with favorable and poor 

prognoses. The figures distinctly reveal significant 

differences between the two groups: patients with favorable 

prognoses exhibit dispersed scatter plot distributions and 

larger coverage areas, whereas those with poor prognoses 

show clustered distributions and smaller coverage areas. This 

observation aligns with human neural activity patterns, where 

normal brain activity demonstrates higher complexity, 

stronger connectivity, and more dynamic neural interactions. 

 
Figures 1: Power spectrum-Poincaré scatter plots of patients 

with favorable prognosis 

 
Figures 2: Power spectrum-Poincaré scatter plots of patients 

with poor prognosis 

To further characterize the prognostic EEG feature disparities 

in patients with prolonged disorders of consciousness based 

on power spectrum-Poincaré scatter plots, this paper proposes 

three metrics: maximum radius, regional density, and 

dispersion, constructing power spectrum-based prognostic 

EEG features for these patients, denoted as F1. 

 

2.2.2 Nonlinear Characteristics of EEG Signals 

 

EEG signals exhibit complex nonlinear dynamical properties. 

In EEG analysis, entropy quantifies signal irregularity and 

complexity, serving as a parameter to describe system 

complexity. This study extracts EEG features based on 

nonlinear dynamic theory to identify disparities in patients 

with prolonged disorders of consciousness. Li et al. extracted 

features such as approximate entropy and sample entropy 

from a nonlinear dynamics perspective for EEG analysis [18]. 

Among these, sample entropy and multiscale entropy 

demonstrate superior classification performance in 

distinguishing prognostic outcomes for these patients [19]. 

 

Multiscale entropy extends sample entropy to multiple 

temporal scales, providing additional observational 

perspectives when temporal scales are indeterminate. To 

quantify signal complexity across temporal scales, Costa et al. 

proposed multiscale entropy [20]. The implementation 

procedure is detailed below: 

 

For a time series of length N, divide it into multiple 

non-overlapping segments of length τ (scale factor). Compute 

the arithmetic mean for each segment to generate a new time 

series. The multiscale entropy of the signal is obtained by 

calculating the sample entropy of this new series, where the 

elements of the new series are defined as in Formula. 

 𝑦𝑗
(𝜏)

=
1

𝜏𝑖=(𝑗−1)𝜏+1
∑ 𝑥𝑖
𝑗𝜏
𝑖 , 1 ⩽ 𝑗 ⩽ 𝑁/𝜏  

Figures 3 and 4 demonstrate the distributions of sample 

entropy and multiscale entropy feature values across EEG 

segments. Blue points represent feature values from patients 

with favorable prognosis, while red points correspond to those 

with poor prognosis. The figures reveal that the sample 

entropy and multiscale entropy values of patients with 

favorable prognosis are proportionally lower than those of 

patients with poor prognosis. 

 
Figures 3: Sample Entropy 
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Figures 4: Multiscale Entropy 

Fusion of sample entropy and multi-scale entropy as two 

feature indices to construct electroencephalographic 

characteristics for the prognosis of patients with chronic 

consciousness disorders based on nonlinear features, referred 

to as F2. 

 

2.3 Algorithm Design for EEG Signal Feature 

Classification 

 

After extracting the electroencephalographic (EEG) features 

of patients with chronic consciousness disorders, five EEG 

features are obtained: based on power spectrum-Poincaré 

scatter plot: maximum radius, regional density, and 

discreteness; based on nonlinear features: sample entropy and 

multi-scale entropy. Due to the complexity of the EEG signals 

in chronic consciousness disorder patients, this study 

proposes a lightweight deep learning model—Cross-Attention 

Enhanced Temporal Hybrid Network. First, the original 

features are mapped to a high-dimensional space through an 

embedding layer, and layer normalization is applied to 

eliminate dimensional differences. Then, a cross-attention 

mechanism is introduced to analyze the correlation weights 

between Poincaré geometric features and nonlinear entropy 

features, enhancing the synergistic expression of pathological 

key features. Next, a bidirectional gated recurrent unit (GRU) 

is used to model the temporal evolution patterns of 

multi-time-window features, capturing the dynamic 

compensatory trajectory of the brain network. Finally, an 

adaptive pooling strategy is employed to integrate temporal 

information, and a multi-layer perceptron is used to output 

prognostic classification probabilities. To improve the 

classification model's accuracy and generalization, this paper 

proposes the fusion of all features to obtain the 

electroencephalographic feature fusion of patients with 

chronic consciousness disorders, referred to as F3. 

 𝐹3 = [𝐹1, 𝐹2]  

3. Result 
 

3.1 DATA 

 

The electroencephalographic (EEG) dataset used in this study 

was collected from the neurosurgery department of a hospital 

in Sichuan Province. All EEG data were collected under the 

supervision of professional physicians. This EEG dataset 

records data from 15 patients with chronic consciousness 

disorders, with each patient having 4 sets of 8-channel EEG 

data (2 sets recorded at admission and 2 sets recorded at 

discharge). Each EEG data set was recorded for 2 hours, with 

a sampling frequency of 2048Hz. Neurosurgeons conducted a 

comprehensive clinical assessment of the patients' 

consciousness states using both EEG and the CRS-R scale, 

and classified the EEG data based on the corresponding time 

points into two groups: poor prognosis and good prognosis. 

 

3.2 Experimental Results 

 

To validate the classification performance of the extracted 

features for prognostic assessment of patients with chronic 

consciousness disorders, the features were input into 

classifiers after EEG signal preprocessing to verify the 

classification accuracy. Based on the fusion of EEG features 

from patients with chronic consciousness disorders, three 

classifiers were tested: Random Forest Classifier, Support 

Vector Machine Classifier, and Cross-Attention Enhanced 

Temporal Hybrid Network. The performance of these three 

classifiers was compared. Before discussing the classification 

performance metrics, four classification situations need to be 

defined, as shown in Table 1: Positive class (correctly 

predicting good prognosis), False negative (predicting good 

prognosis as poor prognosis), False positive (predicting poor 

prognosis as good prognosis), and Negative class (correctly 

predicting poor prognosis). The performance metrics used for 

evaluation in this study include Accuracy, Sensitivity, 

Specificity, and F1 score (H-mean). 

 

Figure 5 shows the classification performance of feature 

fusion based on EEG signals from patients with chronic 

consciousness disorders, input into the Random Forest 

Classifier, Support Vector Machine Classifier, and 

Cross-Attention Enhanced Temporal Hybrid Network. The 

comparison of feature fusion across the three classifiers is 

presented. From the chart, it can be observed that, compared 

to the Random Forest Classifier and Support Vector Machine 

Classifier, the Cross-Attention Enhanced Temporal Hybrid 

Network achieves better classification performance, with an 

accuracy of 90.12% and sensitivity of 94.37%. 

 
Figures 5: Performance evaluation of feature fusion in each 

classifier 

4. Conclude 
 

A feature extraction scheme based on power 

spectrum-Poincaré scatter plot is designed, and three 

measurement indicators are proposed: maximum radius, 

regional density, and discreteness, which are fused into 

feature F1. Nonlinear EEG features, sample entropy and 
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multiscale entropy, are designed and fused into feature F2. 

Finally, features F1 and F2 are fused into feature F3. A 

classification algorithm for prognostic assessment of patients 

with chronic consciousness disorders is designed based on 

Random Forest. The proposed method is validated using EEG 

data collected from the Neurosurgery Department of a 

hospital in Sichuan Province. The method successfully assists 

clinical doctors in diagnosis in clinical applications. 
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