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Abstract: At present, UAV aerial photography has a good application prospect in agricultural production and disaster response. The 

application of drones can greatly improve work efficiency and decision-making accuracy. However, due to the inherent characteristics of 

drone aerial images, such as high image density, small target size, complex background, etc. In order to solve these problems, this paper 

proposes a small target detection algorithm for UAV aerial photography based on the improved YOLOv11n. Firstly, the FADC module was 

introduced into the backbone network to optimize the feature extraction process. Then, a small target detection layer was introduced into 

the algorithm to improve the detection performance of small targets in aerial images. Secondly, the scale sequence feature fusion network 

ASF-YOLO was used to replace the PANet network to improve the speed and accuracy of target detection. Then, Wise IoU is used to 

replace CIoU to speed up the network convergence speed and improve the regression accuracy. The algorithm was evaluated on the 

VisDrone-2019 dataset. Compared with YOLOV11n, the algorithm is improved by 5.7% and 4.3% in mAP@50 and mAP@0.5:0.95, 

respectively. Experiments show that compared with YOLOV11n, the performance of the algorithm on small targets is greatly improved.  

 

Keywords: Drone imagery, Small target detection, YOLOv11, Multi-scale feature fusion.  

 

1. Introduction 
 

With the rapid advancement of drone technology, drone aerial 

photography has been widely used in various fields such as 

natural disaster detection, traffic safety monitoring, search 

and rescue, and agricultural and forestry management. This 

technology greatly reduces labor costs, improves monitoring 

efficiency, and achieves better management and service. 

However, compared with the application scenarios of 

traditional object detection algorithms, the images captured 

by drones face many challenges such as a wide range of target 

scales, diverse angle changes, and complex backgrounds [1]. 

These factors significantly affect the accuracy and recall of 

target detection results. 

 

At present, object detection algorithms can be divided into 

two categories: two-stage detection algorithms and one-stage 

detection algorithms. Two stage detection algorithms, 

including convolutional neural networks [2,3], CNN [4], and 

R-CNN [5], generate candidate boxes containing potential 

targets, and then use region classifiers to predict them. Single 

stage detection algorithms, such as SSD [6] and YOLO [7-13] 

series, directly classify and predict targets at each position on 

the feature map, thereby improving detection speed and 

practicality. Academically, the definition of small targets can 

be divided into two categories: relative scale and absolute 

scale. The former defines small targets based on their 

proportion in the entire image. Chen et al. [14] defined a small 

target as follows: when the ratio of the bounding box area to 

the image area is between 0.08% and 0.58%, it can be 

considered a small target. The latter defines small targets 

based on their absolute pixel size, defining them as targets 

with a resolution of less than 32 pixels on each side. 

 

Based on the above definition, most targets in drone aerial 

images can be defined as small targets. However, small object 

detection is a highly challenging task. Lim et al. [15] proposed 

FA-SSD, which improves the detection of small targets by 

integrating feature information from F-SSD and A-SSD 

network structures. However, due to the two-stage detection 

algorithm used by FA-SSD, the detection speed is relatively 

slow. Liu et al. [16] improved the accuracy and generalization 

ability of the algorithm by introducing a shallow feature 

extraction network in the P1 layer and integrating FPN and 

PAN shallow features. Yang et al. [17] aimed to improve 

small object detection by enhancing feature information 

through the addition of scSE attention mechanism module and 

small object detection layer. However, there are still issues 

with missed and false detections of small targets. Zhang et al. 

[18] proposed a new object detection network dclinet, which 

utilizes dense pruning and local attention techniques to 

enhance the feature representation of small targets. They 

further incorporated bottleneck attention mechanism (BAM) 

into the network, greatly improving detection accuracy. Jin et 

al. [19] proposed a scale aware network that can accurately 

determine the scale of predefined anchor points. This network 

can effectively narrow down the scale search range, reduce 

the risk of overfitting, and improve the detection speed and 

accuracy of aerial images. Liu et al. [20] constructed the 

SPPCSPG module and introduced the shuffle attention (SA) 

mechanism into YOLOv5s, implementing a new lightweight 

network that greatly improves detection efficiency. The above 

algorithm model significantly improves the performance of 

small object detection. However, there is still a lot of room for 

improvement in terms of detection efficiency. 

 

This article improves the YOLOv11n object detection 

algorithm by introducing the FADC module into the backbone 

network to extract richer small target feature information; 

Secondly, based on the SSFF module and the introduction of 

p2 detection head in the neck network, the feature fusion 

process is improved to enhance the multi-scale processing 

capability of the model; Finally, the Wise IoU mechanism is 

introduced to provide a gain allocation strategy, focusing on 

ordinary quality anchor boxes to improve the network's 

generalization ability. 

 

2. Algorithm 
 

This article addresses the issue of low accuracy in small target 

detection and improves YOLOv11n based on the 

characteristics of small targets. The algorithm network 
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structure is shown in Figure 1. 

 
Figure 1: Algorithm network structure diagram in this article 

The improvement focus of this article is on the backbone 

network and Neck section: 

 

(1) Introducing FADC module into the backbone network 

helps the model better capture detailed information such as 

edges and textures of objects in the image while maintaining 

parameter quantity. 

 

(2) This article adds a Conv module before the input of p2 and 

p3 feature maps. One function of this module is to enhance the 

fusion of feature information, and the second function is to 

adjust the parameters of the Conv module to achieve scale 

uniformity in the input of feature maps, which facilitates 

subsequent processing; 

 

(3) In Neck, C2f+Conv module is used to replace the CSP 

module in ASF algorithm. The main reason is that the CSP 

module uses C3 structure (used by YOLOv5 algorithm). In 

this paper, C2f structure is used to replace C3 module, which 

can improve network performance and estimation accuracy. 

In addition, C2f module can be further improved in the future 

to increase network flexibility; 

 

(4) Introducing the Wise IoU mechanism [21], the detection 

accuracy of the algorithm is further improved by adaptively 

adjusting the weight coefficients. 

 

2.1 FADC Feature Extraction Module 

 

A significant improvement in YOLOv11 on the backbone 

network is the introduction of the C3k2 block, which replaces 

the C2f module used in YOLOv8. The C3k2 block is a higher 

computational efficiency implementation for the bottleneck of 

Cross Phase Partial Processing (CSP). It uses two smaller 

convolutions instead of one larger convolution like YOLOv8. 

The "k2" in C3k2 represents a smaller convolution kernel size, 

which helps to achieve faster processing speed while 

maintaining performance. Meanwhile, the C3k2 module 

utilizes context aware mechanisms to analyze input feature 

maps, taking into account contextual information from 

multiple locations. This is achieved by utilizing convolutional 

layers, pooling layers, and other operations to capture 

different levels of information in the image. By introducing 

residual connections, the model's ability to understand the 

relationships between features has been improved, enhancing 

its feature extraction capability and detection accuracy. These 

operations expand the receptive domain of neural networks, 

enabling them to more comprehensively understand input 

images and thus improve performance. However, the fixed 

size convolution kernel used may contain interfering 

background features when extracting features from the target 

edge. This may lead to incorrect detection frames, which have 

a negative impact on accuracy and recall, thereby reducing 

overall detection accuracy. To address this issue, we propose 

the FADC (Frequency Adaptive Dilated Convolution) method. 

FADC adjusts the expansion rate based on the different 

frequencies present in the image. This method allows for the 

creation of extended convolutions with different receptive 

field sizes, enhancing the distinction between target edges and 

complex backgrounds. The structure of FADC is shown in 

Figure 2. 

 
Figure 2: FADC Structure Diagram 

2.2 Feature Fusion Module based on Attention Scale 

Sequence Fusion and Head Detection Head 
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The YOLOv11n model utilizes PANet as the neck for feature 

fusion, which is a pyramid shaped structure that fuses feature 

map information from bottom to top. Although this network 

can to some extent solve the problem of large scale 

differences in detecting images, it sometimes misses the 

feature information extraction of small targets because it 

mainly focuses on extracting features from deep layers, and is 

relatively weak in extracting shallow feature information. 

 

ASF-YOLO (Attention Scale Sequence Fusion YOLO) is an 

improved object detection model based on the YOLO 

framework, which combines spatial and scale features to 

achieve accurate and fast cell instance segmentation. By 

introducing multiple innovative modules based on the YOLO 

segmentation framework, such as Scale Sequence Feature 

Fusion (SSFF) module, Triple Feature Encoder (TFE) module, 

and Channel and Position Attention Mechanism (CPAM), 

ASF-YOLO significantly improves the performance of the 

model in handling small, dense, and overlapping objects. 

These modules work together on different parts of the 

network, enhancing multi-scale information extraction 

capabilities, capturing detailed information of small objects, 

and focusing on information rich channels and features related 

to the spatial position of small objects, thereby improving the 

accuracy of detection and segmentation. As an improved 

object detection model based on the YOLO framework, it not 

only performs well in the field of cell instance segmentation, 

but also has technical characteristics such as multi-scale 

information extraction, feature fusion and detail enhancement, 

and attention mechanism, which make it highly compatible 

with the needs of small object detection in drone aerial 

photography. In the detection of small targets in drone aerial 

photography, there may be significant differences in the size 

and scale of the targets. For example, from small vehicles to 

large trucks, from distant pedestrians to nearby obstacles. To 

enhance the processing capability of the model for the above 

scenarios, this paper introduces the SSFF module and 

improves the feature fusion process in the neck network. 

 

In order to solve the multi-scale problem of drone aerial 

images, existing literature adopts a feature pyramid structure 

for feature fusion, usually combining pyramid features 

through summation or concatenation [23]. However, various 

feature pyramid networks must effectively utilize the 

correlation between all pyramid feature maps. The SSFF scale 

sequence feature fusion module combines the 

high-dimensional information of good deep feature mapping 

with the detailed information of shallow feature mapping, 

where the size of the image changes during downsampling, 

but the scale invariant features remain unchanged. Scale space 

is constructed along the axis of an image, representing not 

only a single scale but also the range of scales that an object 

may have. Although blurry images may lose details, the 

structural features of the image can be preserved. The scaled 

image input into SSFF can be obtained from equations (1) and 

(2): 

 𝐹𝜎(𝑤, ℎ) = 𝐺𝜎(𝑤 ⋅ ℎ) × 𝑓(𝑤, ℎ) (1) 

 𝐺𝜎(𝑤 ⋅ ℎ) =
1

2𝜋𝜎2
ⅇ−(𝑤

2+ℎ2)∕2𝜎2 (2) 

Among them, f (w, h) represents the two-dimensional input 

image with width w and height h. F σ (w, h) is generated by 

applying a smoothing process through a series of convolutions 

using a two-dimensional Gaussian filter G σ (w, h). Here, σ 

represents the scale parameter that represents the standard 

deviation of the two-dimensional Gaussian filter used in the 

convolution process. 

 

As shown in Figure 3, the SSFF module combines feature 

maps of different network depths and uses three-dimensional 

convolution to extract cross layer spatial features, enhancing 

feature expression. These are further processed through BN 

and SiLU to optimize and introduce nonlinearity, followed by 

extrusion operations to reduce size. 

 
Figure 3: SSFF Structure Diagram 

At the same time, in order to further enhance the network's 

ability to recognize small targets, we have adopted a strategy 

of increasing the neck structure of the P2 feature map output. 

Taking an input image with a size of 640 × 640 pixels as an 

example, the corresponding P2 feature map size is 160 × 160 

pixels. Under this configuration, each feature map element 

corresponds to a receptive field of 4 × 4 pixels in the input 

image, which facilitates the detection of small targets and 

provides useful information to other levels during feature 

fusion. In addition, it enhances the understanding of context 

and reduces false positives and missed detections. The 

schematic diagram of the P2 small object detection layer is 

shown in Figure 4. 

 
Figure 4: Schematic diagram of P2 small target detection 

layer 

2.3 Optimizing the Positioning Loss Function 

 

For the task of detecting small targets in drone aerial 

photography, this paper optimizes the positioning loss 

function of YOLOv11 and proposes a dynamic loss 

mechanism based on Wise IoU: 

 

YOLOv11 adopts the CIoU + DFL regression loss 

combination, where CIoU introduces an aspect ratio penalty 

term (Equation 4-6) based on DIoU. However, it has 

drawbacks such as complex computation, insufficient sample 

differentiation, and ineffective aspect ratio penalty. DFL: By 

modeling class distribution, class imbalance can be alleviated 

(Equation 7), but the improvement in positioning accuracy is 
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limited. Therefore, this article introduces Wise IoU (WIoU). 

In terms of computational speed, the additional computational 

cost of WIoU mainly lies in the calculation of the focusing 

coefficient and the average statistics of IoU loss. Under the 

same experimental conditions, due to the absence of aspect 

ratio calculations, WIoU has a faster calculation speed than 

CIoU, with a calculation time of 87.2% of CIoU. In terms of 

performance improvement, WIoU not only considers area, 

centroid distance, and overlap area, but also introduces a 

dynamic non monotonic focusing mechanism. When the 

annotation quality of the dataset is poor, WIoU performs 

better relative to other bounding box losses. The weight 

calculation of WIoU can better reflect the differences in 

appearance and structure of the target, provide better target 

saliency, and facilitate the processing of targets with similar 

features. The specific information of WIoU is as follows: 

 

Wise IoU v1: Due to the challenge of avoiding low-quality 

samples in the training data, geometric metrics such as 

distance and aspect ratio exacerbate the punishment for 

low-quality samples, resulting in a decrease in the model's 

generalization performance. A good loss function should 

reduce the penalty on geometric metrics when the anchor box 

and target box overlap well, and intervene as little as possible 

in training to enhance the model's generalization ability. In 

WIoU v1, distance attention is constructed based on distance 

metrics. The definition of WIoU v1 is shown in equation (3). 

 ℒ𝑊𝐼𝑜𝑈𝑣1 = 𝑅𝑊𝐼𝑜𝑈ℒ𝐼𝑜𝑈 (3) 

 𝑅𝑊𝐼𝑜𝑈 = ⅇ𝑥𝑝 (
(𝑥−𝑥𝑔𝑡)

2
+(𝑦−𝑦𝑔𝑡)

(𝑤𝑔
2+𝐻𝑔

2)
∗ )

2

 (4) 

In equation (4), R_WIoU ∈ [1, e) significantly amplifies the 

L_IoU of a regular mass anchor box, L_IoU∈[0,1], 

Significantly reduced the R-WIoU of high-quality anchor 

boxes, and in the case of good overlap between the anchor box 

and the target box, the attention of the anchor box to the 

distance from the center point was significantly reduced. 

 

2) Wise IoU v2: The focus loss introduces a monotonic 

focusing mechanism tailored for cross entropy, effectively 

reducing the contribution of simple examples to the loss value. 

This enables the model to focus on challenging examples, 

thereby improving classification performance. Similarly, in 

v2, a monotonic focusing coefficient L_IoU ^ (r ^ *) was 

constructed for L_WIoUv1. The definition of Wise IoU v2 is 

shown in equation (5). 

 ℒ𝑊𝐼𝑜𝑈𝑣2 = ℒ𝐼𝑜𝑈
𝑟∗ ℒ𝑊𝐼𝑜𝑈𝑣1, 𝑟 > 0 (5) 

During the model training process, the gradient gain 

L_WIoUv1 decreases as Liou decreases, resulting in slower 

convergence speed in the later stages of training. Therefore, 

the introduced mean is used as the normalization factor, as 

shown in equation (6): 

 ℒ𝑊𝐼𝑜𝑈𝑣2 = (
ℒ𝐼𝑜𝑈
𝑟∗

ℒ𝐼𝑜𝑈
)
𝑟

ℒ𝑊𝐼𝑜𝑈𝑣1
 (6) 

The term L_IoU represents a moving average with 

momentum 𝓂, which dynamically updates the normalization 

factor to maintain the overall gradient gain 𝓇 = ((L_IoU ^ (r ^ 

*))/L_IoU) ^ r at a high level, solving the problem of slow 

convergence speed in the later stages of training. 

 

3) Wise IoU v3: Introducing the concept of outliers to 

characterize anchor box quality, defined as shown in equation 

(7): 

 𝛽 =
𝐿𝐼𝑜𝑈
∗

ℒ𝐼𝑜𝑈̅̅ ̅̅ ̅̅ ̅
∈ [0, +∞) (7) 

On the basis of Wise IoU v1, Wise IoU v3 introduces a non 

monotonic focusing coefficient based on β, defined as 

equation (8). A smaller outlier means a higher quality anchor 

box, resulting in a smaller gradient boost assigned to it, 

allowing better bounding box regression to focus on anchor 

boxes with common quality. For anchor boxes with large 

outliers, allocate smaller gradient boosting to effectively 

prevent harmful gradients from occurring in low-quality 

examples. 

 ℒ𝑊𝐼𝑜𝑈𝑣3 = 𝑟ℒ𝑊𝐼𝑜𝑈𝑣1, 𝑟 =
𝛽

𝛿𝛼𝛽−𝛿
 (8) 

At this point, when β=δ, δ makes r=1. When the outlier of the 

anchor box satisfies β=C (C is a constant value), the anchor 

box will obtain the maximum gradient lift. Due to the 

dynamic nature of LIoU and the dynamic quality standards of 

anchor boxes, Wise IoU v3 can dynamically allocate gradient 

boosting based on the current situation at any given time. 

 

Through the above comparative analysis, this study achieved 

significant performance improvement by using Wise IoU v3 

instead of traditional CIOU in YOLOv11. Wise IoU v3 adopts 

a dynamic non monotonic mechanism to evaluate the quality 

of anchor boxes, making the model more focused on anchor 

boxes of ordinary quality, thereby improving the object 

localization ability of the model. For the task of detecting 

small targets in drone aerial photography, the high proportion 

of small targets increases the difficulty of detection. 

Wise-IoUV3 can dynamically optimize the loss weight of 

small targets to improve the detection performance of the 

model. 

 

3. Experimental Results and Analysis 
 

3.1 Dataset and Experimental Environment 

 

VisDrone 2019 is a drone aerial visual dataset collected by the 

AISKYEYE team from the Machine Learning and Data 

Mining Laboratory at Tianjin University, as shown in Figure 6. 

This dataset includes 10 categories: pedestrians, crowds, 

bicycles, cars, trucks, tricycles, sun shading tricycles, buses, 

and motorcycles, as well as many useful scenarios such as 

weather, terrain, and time. This dataset includes 6471 training 

set images, 548 validation set images, and 1610 test set 

images. In the dataset, image sizes range from 2000 × 1500 to 

480 × 360. Due to being taken from a drone perspective, there 

are significant differences in shooting angle, image content, 

background, environmental illumination, and other aspects 

compared to images taken by ground personnel such as 

MS-COCO and VOC2012. Figure 5 shows an example image 

of VisDrone2019: (a) aerial view of urban roads at night under 

low light conditions; (b) Residential area images under 

high-intensity daytime lighting conditions; (c) Urban road 

intersections under glare conditions; (d) Panoramic view of 

city squares under cloudy conditions; (e) Aerial view of urban 

road areas under cloudy conditions; (f) Daytime low altitude 

sports field scene. The scenes composed of dataset images are 

very diverse, including streets, squares, parks, schools, 
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residential communities, etc. The lighting conditions for 

images include well lit daytime, poorly lit nighttime, cloudy, 

strong light, and glare conditions. The object types annotated 

in the image include 10 types: pedestrian, person, bicycle, car, 

truck, truck, tricycle, sunshade tricycle, bus, and electric 

motor. 

 
Figure 5: Example image of VisDrone 2019 dataset 

The experimental equipment used in this article is RTX 3080ti 

12GB. To ensure the effectiveness and fairness of the 

experiment, the hyperparameters of the experiment are 

uniformly set. The input image size is 640 × 640, IoU=0.5, 

The number of training rounds is 200, with an initial learning 

rate of 0.01 and a termination learning rate of 0.2, respectively. 

The SGD optimizer is used, and the batch_2 is 16. This article 

analyzes the performance of the algorithm model from two 

aspects: classification accuracy and model size. Select 

precision P and average precision mean mAP as evaluation 

indicators for classification accuracy, and model parameter 

Par and computational complexity O as evaluation indicators 

for model size. 

 

3.2 Experimental Indicators 

 

The experiment evaluated the proposed method from two 

aspects: detection performance and model parameter size. The 

experimental indicators include precision (P), recall (R), 

average precision (AP), mean average precision (mAP), and 

million parameters of network parameter size (M). 

 

Precision (P) is the proportion of correctly predicted targets to 

all detected targets. Calculate through equation (9), where TP 

represents the correct prediction target and FP represents the 

incorrect prediction target. 
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 𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (9) 

The recall rate (R) is the proportion of correctly detected 

targets among all existing targets. Calculate through equation 

(10), where FN represents a target that exists but has not been 

correctly detected. 

 𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (10) 

Average precision (AP) represents the area enclosed by the 

curve composed of precision and recall. Calculate through 

equation (11). Our metrics include three different average 

accuracy metrics: AP0.5, AP0.75, and AP0.95. For AP0.5, in 

order to evaluate the bounding box prediction as true, the 

intersection of the joint score (IoU) between the predicted 

bounding box and the annotated bounding box must be greater 

than 0.50. For AP0.75, A bounding box prediction with an 

IoU score higher than 0.75 is considered correct. For AP0.95, 

we calculate the average accuracy values of different IoU 

scores within the range of 0.50:0.05:0.95, and then take the 

average of these calculated average accuracy values. 

 𝐴𝑃 = ∫ 𝑝(𝑟) ⅆ𝑟
1

0
 (11) 

Mean Precision (mAP) is the average precision of all types of 

samples, calculated using Equation (12). Our metrics include 

three different average accuracy metrics: mAP0.5, mAP0.75, 

and mAP0.95. 

 𝑚𝐴𝑃 =
1

𝐾
∑ 𝐴𝑃𝑖
𝑘
𝑖=1  (12) 

3.3 Ablation Experiment 

 

This article conducted 5 sets of ablation experiments, and the 

experimental results are shown in the table. MAP50 

represents the average detection accuracy value of all 

categories when IoU=0.5, and mAP50-95 represents the 

average detection accuracy of all categories under 10 different 

IoUs with increasing IoUs from 0.5 to 0.95 at a step size of 

0.05. The first set of experiments as a benchmark model 

showed poor performance in detecting small targets; The 

second experiment used the ASF-P2 structure proposed in this 

article. Due to the increase in small target information output 

by the backbone network, the accuracy of object detection 

was significantly improved. On the test set, the detection 

accuracy P and mAP50 increased by 4.7% and 3.9%, 

respectively; The third experiment added Wise IoU to the 

network, which resulted in a certain improvement in accuracy; 

The fourth experiment replaced the c3k2 module in the 

network with the FADC module. The experimental results 

showed that compared to the second experiment, the 

parameter calculation was reduced and the detection accuracy 

was improved; Finally, in the fifth experiment, the above 

three improvement methods were combined to improve the 

target detection accuracy by 6.7% compared to the baseline 

model. mAP50 and mAP50-95 improved by 5.7% and 4.3% 

respectively, with a parameter size of 2.5 × 106 and a 

computational complexity of 11.9 × 109. This indicates that 

the algorithm constructed in this article can significantly 

improve the accuracy of small object detection. The 

performance of the experimental results on the Visdrone 2019 

test set is shown in Table 1. 

Table 1: Results of ablation experiments 
number model P/% mAP50/% mAP50-95/% Par/ O/ 

106 109 

1 YOLOv11n 42.1 32.6 18.8 2.6 6.3 

2 
YOLOv11n+ 

ASF-P2 
46.8 36.5 21.6 3.4 12.0 

3 

YOLOv11n+ 

ASF-P2+ 

Wise IoU 

47.1 37.1 22.0 3.4 12.0 

4 

YOLOv11n+ 

ASF-P2+ 

FADC 

48.3 38.0 22.6 2.5 11.9 

5 

YOLOv11n+ 

ASF-P2+ 

FADC+ 
Wise IoU 

48.8 38.3 23.1 2.5 11.9 

 

3.4 Comparative Experiment 

 

Our experimental results were compared with those of other 

methods published on this dataset over the years, including 

fast-R-CNN, RetinaNet, cascade-R-CNN, YOLOv4, 

TPH-YOLOv5, etc. Testing was conducted using the 

VisDrone2019 dataset in the same experimental environment 

to compare the mAP50 (%), mAP50-95 (%), and FPS of the 

algorithm. Due to limitations in experimental equipment, 

some experimental data were obtained by referencing other 

literature. The experimental results are shown in Table 2. 

Table 2: Performance of Various Models in Comparative 

Experiments 

method mAP50/% mAP50-95/% FPS 

faster - R-CNN 21.8 15.1 15 

RetinaNet 13.9 9.6 4 

cascade-R-CNN 23.2 16.5 6 

YOLOv4 30.7 15.9 35 

TPH-YOLOv5 37.3 20.8 32 

YOLOv8 33.0 18.6 119.4 

YOLOv10 34.7 18.9 125.9 

Ours 38.3 23.1 130 

 

From Table 2, it can be seen that the mAP50 and mAP50-95 

of our algorithm reached 38.3% and 23.1%, respectively, 

surpassing all YOLO series models and some improved 

models based on R-CNN that participated in the comparison. 

This significant performance improvement fully demonstrates 

that the algorithm proposed in this paper has higher accuracy 

in small target detection tasks in drone aerial photography. 

 

3.5 Performance Analysis 

 

Below is an analysis of the differences in object detection 

results between our algorithm and YOLOv11n in images of 

different scenes, lighting conditions, shooting positions, and 

target types. 

 

As shown in Figure 6, in the middle right part of the image, 

there are 5 cars driving on the street, marked with red boxes. 

The first car had just arrived at the foot of the pedestrian 

overpass, and two bright lights could be seen shining on the 

ground. For these five vehicles, the algorithm in this article 

detected two of them, while YOLOv11n did not detect any of 

them. In the middle left part of the image, there are two cars 

driving on the road, marked with red boxes. The algorithm in 

this article detected two highly stable vehicles. YOLOv111n 

did not detect any vehicles. 

                       Journal of Research in Science and Engineering (JRSE)
                                  ISSN: 1656-1996 Volume-7, Issue-4, April 2025

13



  
  

  

  
 

  

 
(a) YOLOv11n 

 
(b) This article's algorithm 

Figure 6: Comparison effect of detection under insufficient 

lighting conditions 

As shown in Figure 7, the upper part of the picture is 

surrounded by a large red box, which is a main road with 

many vehicles driving on it. Due to the high altitude and 

distance of aerial photography, the size of the car in the 

picture is relatively small. YOLOv11n only detected three 

cars in this area of the image. And the algorithm in this article 

detected most of the targets. In the center of the screen, there 

are two cars driving on the auxiliary road. YOLOv111n also 

did not detect these two cars; However, the algorithm in this 

article can detect these two vehicles. On the left side of the 

image, there is a car driving on a small road behind a building. 

For targets exposed in building gaps, YOLOv11n did not 

detect it, but our algorithm detected cars. 

 
(a)YOLOv11n 

 
(b) This article's algorithm 

Figure 7: Comparison effect of detection under normal 

lighting conditions 

As shown in Figure 8, in a low light nighttime environment, 

there are two motorcycles and two cars driving under the 

overpass in the red box on the left side of the image. This 

algorithm discovered a car, two motorcycles, and pedestrians 

on the motorcycles. YOLOv11n detected a car and a 

motorcycle. 

 
(a)YOLOv11n 

 
(b) This article's algorithm 

Figure 8: Comparison effect of detection under insufficient 

lighting conditions 

4. Conclusion 
 

In response to the inherent characteristics of drone aerial 

images, such as high image density, small target size, and 

complex background, which result in low detection accuracy, 

this paper proposes an improved YOLOv11n based drone 

aerial small target detection algorithm. To enhance target 

background discrimination, we integrated the FADC module 

into the backbone of YOLOv11n. This module effectively 

enhances the backbone feature extraction of small targets, 

making it easier to distinguish them from the background. At 

the same time, ASF structure was introduced into the neck 

network to optimize the feature extraction and fusion process. 

It enhances the scale, spatial, and task perception capabilities 

of the model, and finally adopts the Wise IoU loss function 

and dynamic sample allocation strategy to reduce the model's 

focus on extreme samples and improve overall performance. 

The experimental results show that the proposed algorithm 

has significantly improved detection performance compared 

to other object detection algorithms. In the future, the model 

will be designed to be lightweight while ensuring its accuracy, 

and attempts will be made to deploy it to mobile devices to 

expand the application scope of the algorithm. 

 

References 
 

[1] Wu, X.; Li, W.; Hong, D.; Tao, R.; Du, Q. Deep 

Learning for Unmanned Aerial Vehicle-Based Object 

                       Journal of Research in Science and Engineering (JRSE)
                                  ISSN: 1656-1996 Volume-7, Issue-4, April 2025

14



  
  

  

  
 

  

Detection and Tracking: Asurvey. IEEE Geosci. Remote 

Sens. Mag. 2021, 10, 91–124. [CrossRef] 

[2] Ahmed, S.; Kamal, U.; Hasan, K. DFR-TSD: A Deep 

Learning Based Framework for Robust Traffic Sign 

Detection under Challenging Weather Conditions. IEEE 

Trans. Intell. Transp. Syst. 2020, 23, 5150–5162. 

[CrossRef] 

[3] Cao, J.; Zhang, J.; Jin, X. A Traffic-Sign Detection 

Algorithm Based on Improved Sparse R-cnn. IEEE 

Access 2021, 9, 122774–122788. [CrossRef] 

[4] Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, 

I.; Yao, J.; Mollura, D.J.; Summers, R.M. Deep 

Convolutional Neural Networks for Computer-Aided 

Detection: CNN Architectures, Dataset Characteristics 

and Transfer Learning. IEEE Trans. Med. Imaging 2016, 

35, 1285–1298. [CrossRef] [PubMed] 

[5] Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich 

feature hierarchies for accurate object detection and 

semantic segmentation. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern 

Recognition, Columbus, OH, USA, 23–28 June 2014;pp. 

580–587. 

[6] Wei, L.; Dragomir, A.; Dumitru, E.; Christian, S.; Scott, 

R.; Cheng-Yang, F.; Berg, A.C. SSD: Single shot 

multibox detector. InProceedings of the Computer 

Vision–ECCV 2016: 14th European Conference, 

Amsterdam, The Netherlands, 11–14 October 2016. 

[7] Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. 

You only look once: Unified, real-time object detection. 

In Proceedings of the2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Las 

Vegas, NV, USA, 27–30 June 2016; pp. 779–788. 

[8] Redmon, J.; Farhadi, A. YOLO9000: Better, faster, 

stronger. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 

Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. 

[9] Redmon, J.; Farhadi, A. YOLOv3: An Incremental 

Improvement. arXiv 2018, arXiv:1804.02767. 

[10] Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: 

Optimal Speed and Accuracy of Object Detection. arXiv 

2020, arXiv:2004.10934. 

[11] Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: 

Improved YOLOv5 based on transformer prediction 

head for object detectionon drone-captured scenarios. In 

Proceedings of the IEEE/CVF International Conference 

on Computer Vision (ICCV) Workshops, Montreal, BC, 

Canada, 11–17 October 2021; pp. 2778–2788. 

[12] Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, 

Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A 

Single-Stage Object Detection Framework for Industrial 

Applications. arXiv 2022, arXiv: abs/2209.02976. 

[13] Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M.J.A. 

YOLOv7: Trainable bag-of-freebies sets new 

state-of-the-art for real-time object detectors. arXiv 

2022, arXiv: abs/2207.02696. 

[14] Chen, C.; Liu, M.Y.; Tuzel, O.; Xiao, J. R-CNN for 

small object detection. In Proceedings of the Computer 

Vision–ACCV 2016: 13thAsian Conference on 

Computer Vision, Taipei, Taiwan, 20–24 November 

2016; Springer: Cham, Switzerland, 2016. 

[15] Lim, J.-S.; Astrid, M.; Yoon, H.; Lee, S.-I. Small object 

detection using context and attention. In Proceedings of 

the 2021 International Conference on Artificial 

Intelligence in Information and Communication 

(ICAIIC), Jeju, Republic of Korea, 13–16 April 2019; pp. 

181–186. 

[16] Liu, H.; Duan, X.; Chen, H.; Lou, H.; Deng, L. 

DBF-YOLO: UAV Small Targets Detection Based on 

Shallow Feature Fusion. IEEJTrans. Electr. Electron. 

Eng. 2023, 18, 605–612. [CrossRef] 

[17] Yang, R.; Li, W.; Shang, X.; Zhu, D.; Man, X. 

KPE-YOLOv5: An Improved Small Target Detection 

Algorithm Based on YOLOv5.Electronics 2023, 12, 817. 

[CrossRef] 

[18] Zhang, X.; Feng, Y.; Zhang, S.; Wang, N.; Mei, S. 

Finding Nonrigid Tiny Person With Densely Cropped 

and Local Attention Object Detector Networks in 

Low-Altitude Aerial Images. IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens. 2022, 15, 4371–4385. 

[CrossRef] 

[19] Jin, R.; Lin, D. Adaptive Anchor for Fast Object 

Detection in Aerial Image. IEEE Geosci. Remote Sens. 

Lett. 2020, 17, 839–843. [CrossRef] 

[20] Liu, P.; Wang, Q.; Zhang, H.; Mi, J.; Liu, Y. A 

Lightweight Object Detection Algorithm for Remote 

Sensing Images Based onAttention Mechanism and 

YOLOv5s. Remote Sens. 2023, 15, 2429. [CrossRef] 

[21] Tong, Z., Chen, Y., Xu, Z., et al. (2023) Wise-IoU: 

Bounding Box Regression Loss with Dynamic Focusing 

Mechan-ism. 

https://doi.org/10.48550/arXiv.2301.10051 

[22] CHEN L, GU L, FU Y. Frequency-Adaptive Dilated 

Convolution for Semantic Segmentation[J]. ArXiv 

Preprint, 2024, ArXiv: 2403. 05369. 

[23] Y. Quan, D. Zhang, L. Zhang, and J. Tang, ‘‘Centralized 

featurepyramid for object detection,’’ IEEE Trans. 

Image Process., vol. 32, pp. 4341–4354, 2023, doi: 

10.1109/TIP.2023.3297408. 

[24] Zhang, H.; Wang, Y.; Dayoub, F.; Sünderhauf, N. 

VarifocalNet: An IoU-aware Dense Object Detector. In 

Proceedings of the 2021IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), 

Nashville, TN, USA, 20–25 June 2021. 

                       Journal of Research in Science and Engineering (JRSE)
                                  ISSN: 1656-1996 Volume-7, Issue-4, April 2025

15

https://doi.org/10.48550/arXiv.2301.10051

