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Abstract: The leakage of district heating system can lead to serious consequences. Therefore, the leakage detection of the district heating 

system has always been the focus of research in various industries. Relying on the intelligent heating experimental pipe-network system in 

Shandong Jianzhu University, this paper takes 4 topological heating experimental pipe-networks as the research objects, constructs the 

real-time operation datasets, simulation datasets and the cross datasets of the above two, creatively proposes a PCA-ERF (Principal 

Component Analysis-Extremely Random Forest) based method for the leakage detection task. The method adopts PCA to map the original 

pressure and flow data of the heating network into the vector space, which has a stronger feature expression ability firstly; then the 

decision trees for classification are trained by ERF with stronger randomness; finally, the final classification results are obtained by 

integrating the judgment of all the decision trees. The experimental results show that the PCA_ERF method shows excellent performance 

under different cross-data ratios, especially when the cross-data ratio is 2:1, the accuracy of the proposed PCA-ERF method in the leakage 

prediction for 4 different topologies is 98.08%, 97.1%, 98.92% and 97.64% respectively, which can complete the leakage detection task of 

complex heating network with multiple topologies.  

 

Keywords: Primary Component Analysis, Extremely Random Forest, District heating system, Leakage detection, Multiple topologies.  

 

1. Introduction 
 

With the rapid development of Chinese heating industry, the 

scale of district heating system continues to expand, and the 

topology of it is becoming complex. At the end of 2022, the 

heating area was 11.125 billion square meters [1]. As a 

consequence, the number of operational failures is constantly 

increasing. Among many operation failures, pipeline leakage 

is the most serious one. Once a leak occurs in the pipeline 

network, it will not only result in insufficient heating supply 

meeting user demand, but also increase the energy 

consumption of the heat source and the workload of the heat 

exchange station equipment. For thermal power plants, a 

leakage in the heating pipeline network will affect the normal 

operation of the power plant system, and, in severe cases, 

result in downtime. Therefore, district heating system leakage 

has become an urgent problem to be solved in the heating 

industry. Timely and accurate diagnosis of the leakage are 

necessary to fully guarantee the long-term safe and stable 

operation of the district heating system. 

 

In recent years, the issue of leakage detection has gradually 

received attention from relevant scholars. At present, many 

scholars have conducted extensive research on the issue of 

pipeline leakage detection and achieved many results. Various 

leak detection methods can be roughly divided into three 

categories: hardware-based detection methods, physical 

model-based detection methods, and data-driven detection 

methods [2].  

 

The first category mainly constructs leakage detection 

methods based on the changes in acoustic, optical, thermal 

and other operational characteristics of the pipeline network 

when a leakage occurs, including manual inspection methods, 

infrared methods, tracer detection methods, fiber optic 

sensing detection methods [3], etc. These methods rely too 

much on the arrangement of sensor arrays, and their detection 

effect may be affected by climate conditions. Among them, 

ultrasonic methods and manual inspection methods are not 

suitable for leakage detection tasks in urban pipeline networks 

with large heating areas. 

 

The second category is to construct a physical model of the 

hydraulic condition of the pipeline network based on the 

signal response (pressure and flow changes, etc.) when a 

leakage occurs in the pipeline network [4] - [6]. During the 

physical model building process, various hydraulic conditions 

need to be fully considered, so it is difficult to establish a 

physical model for ideal conditions, which may lead to 

deviations between the simulated results and actual values of 

the model, and may have a certain impact on the accuracy of 

the leak detection method. 

 

The third category is to convert the signal changes of pipeline 

leakage into certain characteristic information, and then use 

relevant mathematical theories to detect the leakage, mainly 

including material balance detection method, 

cross-correlation detection method [7], fuzzy clustering 

detection method [8], wavelet denoising detection method [9], 

etc. However, the detection effect is sometimes limited by 

environmental conditions and method factors. For example, 

for long-distance pipelines, material balance method and 

negative pressure wave method have poor detection effect on 

slight leakage, and cross-correlation detection method and 

wavelet denoising method have high data requirements and 

require complex data preprocessing work. Scholars have also 

applied optimization algorithms to the research of pipeline 

leakage detection, such as genetic algorithm [10-11], 

M-SPRT algorithm [12], particle swarm optimization 

algorithm [13-14], firefly swarm optimization algorithm [15], 

and differential evolution algorithm [16] etc. Although all of 

which have achieved certain detection results, this type of 

method requires specific denoising and data augmentation for 

specific data, and does not effectively solve the problem of 

missing actual leakage operation data in the pipeline network. 
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Therefore, the detection effect of this method on the latest 

leakage conditions in the pipeline network is poor, and the 

data used in the method needs to be continuously updated. 

 

With the rapid development of computer technology, 

especially machine learning algorithms, machine learning 

algorithms such as neural networks, random forests, and 

support vector machines have been widely applied due to their 

excellent learning abilities. The so-called "learning" refers to 

the ability to continuously learn from a large amount of 

seemingly unrelated and chaotic data to improve the learning 

ability, in order to cope with future prediction tasks [17] - [19]. 

At present, machine learning has been applied in the research 

of traditional energy fields, mainly in load forecasting [20], 

system simulation [21], fault warning [22], and regulation and 

evaluation of energy systems [23]. 

 

Among the numerous prediction algorithms in the field of 

machine learning, random forests are widely used in pattern 

recognition tasks due to their advantages such as simple 

structure, parallel training, fewer hyperparameters, and  

 

resistance to overfitting. This algorithm is based on the idea of 

voting classification and consists of multiple decision trees, 

each of which is trained on a different random training subset. 

The random forest makes the final prediction based on the 

number of occurrences of the classification prediction results 

of numerous decision trees. This method can effectively avoid 

classification errors caused by using a single decision tree 

[24-25]. 

 

This article regards leakage detection in heating pipelines as a 

pattern recognition problem, and creatively applies principal 

component analysis method and extreme random forest 

algorithm in machine learning field to leakage detection in the 

district heating pipelines, achieving good detection results. 

 

2. Introduction to the Experimental 

Heating-network System 
 

The experimental heating-network system and its topology 

structure in the Hydraulic Balance Laboratory of Shandong 

Jianzhu University are shown in Figure 1 and Figure 2.  

 
Figure 1: The physical image of the experimental heating-network system 

 
Figure 2: The topology diagram of the experimental heating-network system 

                       Journal of Research in Science and Engineering (JRSE)
                                ISSN: 1656-1996 Volume-7, Issue-3, March 2025

43



  
  

  

  
 

  

A total of 18 heat users (up supply and down return), 3 heat 

sources (water pump), 3 basic loops are involved in the 

experimental heating-network system, in which different 

loops are connected with each other though the 

electromagnetic conversion valves. The constant pressure 

point is set up at the entrance of each heat source by regulating 

the filling water pump. The meters installed in user pipes are 

as follows: supply pressure meter (Range:0–200kPa, 

Accuracy:0.5%), thermal meter (Range:0–100℃, 

Accuracy:0.5%), electric control valve and return pressure 

meter (Range:0–200kPa, Accuracy:0.5%). The data of all 

meters are recorded by the database system in real time.  

 

In Figure 2, s and n are the number of pipes and nodes 

respectively and the number in brackets are their 

corresponding number in return pipes; DN is the diameter of 

pipes with the unit mm; SCV and SSV are the electric control 

valves and the electromagnetic conversion valves in supply 

(return) pipes.  

 

The system is equipped with leakage valves that simulate pipe 

network leakage, installed at user nodes: n2, n17, n55 and 

pipe sections: s2, s35, s17, s50, s22, s28, s61. Four different 

heating-network topologies can be achieved by regulating 

state of the electric control valves and the electromagnetic 

conversion valves, which are shown in Table 1. 

Table 1: State of the electric control valves and the 

electromagnetic conversion valves under four different 

topology 

Label 
of 

valve 

B-SHS 

(Branch 
network 

with single 

heat source) 

B-DHS 

(Branch 
network with 

double heat 

sources) 

SR-SHS 

(Single-rin
g network 

with single 

heat source) 

DR-DHS 

(Double-ring 
network with 

double heat 

sources) 

SCV1 Close Open Open Open 
SCV2 Open Close Open Open 

SCV3 Open Close Open Open 

SCV4 Open Open Open Open 
SCV5 Open Open Open Close 

SCV6 Open Open Open Close 

SSV1 Close Close Close Open 
SSV2 Open Close Open Open 

SSV3 Close Close Close Close 

SSV4 Open Open Open Open 
SSV5 Close Close Close Open 

SSV6 Open Open Open Close 

SSV7 Close Close Close Close 
SSV8 Open Open Open Close 

 

3. Construction of Datasets 
 

In this article, we generated three types of datasets: 

experimental datasets, simulation datasets, and their cross 

datasets (consisting of experimental data and simulation data). 

 

Each data sample is a line vector with the order of user supply 

pressure, user return pressure, user flow rate and label. The 

dimensions of datasets (the features number of data sample+1) 

for four different topology heating-networks are different due 

to the number of users, specifically, a B-SHS with 18 users, a 

B-DHS with 12 users, a SR-SHS with 18 users and a DR-DHS 

with 12 users. So, the dimensions of datasets respectively are 

B-SHS: 55(18 +18 +18 +1), B-DHS: 37 (12 +12 +12 +1), 

SR-SHS: 55(18 +18 +18 +1), DR-DHS: 37(12 +12 +12 +1). 

 

3.1 Experimental Datasets 

The experimental datasets are obtained through the real-time 

data acquisition module of the experimental heating-network 

system, including the pressure and flow data. We conducted a 

total of 148 experiments, each running for 16 minutes, with a 

data collection frequency of 2 times per second. These 148 

experiments cover different operating conditions of pipeline 

networks under different topological structures, as shown in 

Table 2. Considering the situation of data loss, the 

experimental data corresponding to different topological 

structures we obtained were 287756 (B-SHS), 255093 

(B-DHS), 272013 (SR-SHS), and 254300 (DR-DHS). 

 

The data for each operating condition includes both leak free 

data and leak data (including user node leakage and pipe 

segment leakage). To ensure maximum coverage of the entire 

pipeline network in terms of leakage range, both user node 

leakage and pipe segment leakage include three leakage 

locations in the pipeline network: near, medium, and far from 

the heat source. Each leakage location is divided into four 

leakage conditions based on different leakage rates 

(percentage of leakage to total flow), with leakage rates of 

1.1%, 2.5%, 4%, and 5.5%, respectively. Therefore, the total 

number of operating conditions for the four different topology 

structures studied in this article are: 148=(4 × (9 × 4+1)), 

132=(4 × (8 × 4+1)), 148=(4 × (9 × 4+1)), 132=(4 × (8 × 

4+1)). 

Table 2: Method to regulate operation parameters under 

different Hydraulic Working-Conditions (HWC) 
Name of HWC B-SHS B-DHS SR-SHS DR-DHS 

C0 (Normal 
HWC) 

Water 

pump 
head1 is 

120 kpa 

Water pump 

head1, 
head2 are 

both 30 kpa 

Water 

pump 
head1 is 

45kPa 

Water pump 

head1, head2 
are both 20 

kpa 

C1 

(Intermediate-use
r changing HWC) 

Flow rate 

of user 10 
is 0.5m3/h 

Flow rate of 

user 13 is 
0.5m3/h 

Flow rate 

of user 

10 is 

0.5m3/h 

Flow rate of 

user 5 is 
0.5m3/h 

C2 (Pipe 

control-valve 

changing HWC) 

Opening 

of SCV4 

is 60% 

Opening of 

SCV1 is 

60% 

Opening 

of SCV2 

is 60% 

Opening of 

SCV2 is 

60% 

C3(Centralized-a
djustment 

changing HWC) 

Water 

pump 

head1 is 
110 kpa 

Water pump 

head1, 

head2 are 
both 35 kpa 

Water 

pump 

head1 is 
50kPa 

Water pump 

head 1, head 

2 are 22.5 
and 24.5 kPa 

 

3.2 Simulation Datasets 

 

3.2.1 Basic modeling theory of HWC 

 

The heating network is similar to the power supply network, 

with flow rate, pressure drop, and resistance characteristic 

coefficients similar to current, voltage, and resistance in the 

power grid, respectively. Based on graph theory and 

Kirchhoff's law that characterizes pipeline characteristics, the 

basic calculation model for hydraulic conditions of any 

heating pipeline network with m branches and n+1 nodes can 

be derived as [10-12]: 

 𝐴𝐺 = 𝑄 (1) 

 𝐵𝑓𝛥𝐻 = 0 (2) 

 𝛥𝐻 = 𝑆|𝐺|𝐺 + 𝑍 − 𝐷𝐻 (3) 

A represents the unique correlation matrix of the pipeline 

network topology structure (𝑛 × 𝑚); G represents flow vector 

of pipeline section, m3/h; Q represents net outflow vector of 
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each node in the pipeline, with positive inflow and negative 

outflow, m3/h; Bf represents the basic circuit matrix of the 

pipeline network, with an order of (𝑚 − 𝑛) × 𝑚 ; 𝛥𝐻 

represents pipeline pressure drop vector, kPa; S represents 

diagonal matrix of resistance characteristic coefficient of pipe 

section, kPa/(m3/h)2; |𝑮| represents the absolute value vector 

of the flow rate of the pipeline section, m3/h; Z represents 

vector of potential difference between two nodes in the branch, 

kPa; DH represents head vector of the water pump in the 

pipeline section, kPa. 

 

3.2.2 Generate simulation datasets 

 

Calculate the resistance characteristic coefficient of the 

pipeline section and construct the correlation matrix and loop 

matrix that characterize the unique topology structure of the 

pipeline network. Then, based on formula (1)-(3), establish a 

simulation model of the normal operating conditions of the 

pipeline network to simulate the pressure and flow 

distribution of users under the conditions of no leakage and 

leakage in the pipeline network, that is, the simulation data. 

Due to the inevitable fluctuations in data reading during the 

actual operation of the pipeline network, in order to make the 

simulation data more realistic in simulating the actual 

operation of the pipeline network, this paper sets the iteration 

times for each working condition with different topology 

structures between 1500-1900. Therefore, the total simulation 

data for all working conditions of B-SHS, B-DHS, SR-SHS, 

and DR-DHS are 222244, 237218, 266400, and 237600, 

respectively. 

 

3.3 Cross Datasets 

 

Sort the experimental data and simulation data out of order, 

and construct their cross data with dimensions consistent with 

the experimental data and simulation data. Cross data ratio 

refers to the ratio of simulated data to experimental data in a 

cross dataset. To investigate the impact of cross data 

comparison on the prediction accuracy of classification 

algorithms, different cross data ratios were used in this paper. 

The distribution of cross data at each ratio is shown in Table 3. 

 

3.4 Setting Labels 

 

The end column of each dataset is the label. The labels are 

encoded by triple digits: The 1–4 hundred digits indicate four 

kinds of HWCs (C0, C1, C2, C3); the 0–4 single digits 

indicate five leakage degrees. 0 represents no leakage, and 1-4 

represents four degrees of leakage (leakage rates are 1.1%, 

2.5%, 4%, and 5.5%, respectively). Ten digits indicate 

leakage locations, represented by 0-9, where 0 indicates that 

there is no leakage at that location. The leakage location labels 

for the four different topology pipe networks are different 

(1-9), as shown in Table 4. 

Table 3: Data distribution under different cross data ratios. 
 B-SHS B-DHS SR-SHS DR-DHS 

Cross-data 
ratio 

Simulation data 
amount 

Experimental 
data amount 

Simulation data 
amount 

Experimental 
data amount 

Simulation data 
amount 

Experimental 
data amount 

Simulation data 
amount 

Experimental 
data amount 

2:1 222244 111122 237218 118609 266400 133200 237600 118800 

4:1 222244 55561 237218 59305 266400 66600 237600 59400 
6:1 222244 37041 237218 39536 266400 44400 237600 39600 

8:1 222244 27781 237218 29652 266400 33300 237600 29700 

10:1 222244 22224 237218 23722 266400 266640 237600 23760 
20:1 222244 11112 237218 11861 266400 13320 237600 11880 

30:1 222244 7408 237218 7907 266400 8880 237600 7920 

40:1 222244 5556 237218 5930 266400 6660 237600 5940 
50:1 222244 4445 237218 4744 266400 5328 237600 4752 

60:1 222244 3704 237218 3954 266400 4440 237600 3960 

70:1 222244 3715 237218 3389 266400 3806 237600 3394 
80:1 222244 2778 237218 2965 266400 3330 237600 2970 

90:1 222244 2469 237218 2636 266400 2960 237600 2640 

100:1 222244 2222 237218 2372 266400 2664 237600 2376 

Table 4: Setting of leakage location labels for four different topological structures 
B-SHS B-DHS SR-SHS DR-DHS 

Leakage location Label Leakage location Label Leakage location Label Leakage location Label 

n2 1 n17 1 n2 1 n2 1 
n17 2 n29 2 n17 2 n55 2 

n55 3 s17 3 n55 3 s2 3 

s2 4 s50 4 s2 4 s35 4 

s35 5 s22 5 s35 5 s22 5 

s17 6 s55 6 s17 6 s55 6 

s50 7 s28 7 s50 7 s2 7 
s2 8 s61 8 s2 8 s35 8 

s35 9   s35 9   

 

4. PCA_ERF Algorithm 
 

The pressure and flow data of a district heating system are 

functions of time and constantly change over time, which are 

a set of strongly correlated data. Principal component analysis 

(PCA) method is a multi-variate statistical analysis method. 

The purpose of PCA is to map the original data to a new 

feature space, which is called the feature mapping. Different 

data feature distributions are unified during this process. 

Therefore, the data transformed to the new feature space will 

have stronger expressive power. In addition to reducing the 

dimensionality of the original data, this method can also 

rearrange the original data from large to small according to the 

eigenvalues. 

 

Random Forest is a supervised ensemble learning algorithm 

that has better accuracy than most individual machine 

learning algorithms due to the use of ensemble algorithms. 
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Additionally, the introduction of two randomness factors 

makes it less prone to overfitting, making it widely used in 

classification and regression tasks. Extreme Random Forest 

(ERT) is similar to the random forest method in that it consists 

of many decision trees. The difference between the two is that 

ERT is more random. It randomly selects a subset of features 

at each node and randomly splits to obtain the optimal 

branching attributes and thresholds. This increased 

randomness helps to create more independent decision trees 

and train a better performing learning model. 

 

4.1 Principal Component Analysis 

 

The principal component analysis [26] - [27] method is a 

multivariate statistical analysis method that performs linear 

transformation on input data to select a small number of 

important feature vectors. This article uses this method to map 

data features to unify the feature distribution of simulation 

data and experimental data. The calculation process is as 

follows: 

 

1) Standardization transformation of raw data. The calculation 

method for standardizing the original data is as follows: 

 𝑋 = [

𝑋11 𝑋12 . . . 𝑋𝑘1

𝑋21 𝑋22 . . . 𝑋𝑘2

. . . . . .  . . .
𝑋𝑛1 𝑋𝑛2 . . . 𝑋𝑛𝑘

]        𝑋𝑖𝑗 =
𝑥𝑖𝑗−�̄�𝑗

𝑠𝑗
 (4) 

In the above equation, 𝑥𝑖𝑗  is the original data, �̄�𝑗 is the mean 

of the jth column of the original data, and 𝑠𝑗 is the standard 

deviation of the jth column of the data. 

 

2) Calculation of correlation coefficient matrix 

 

The purpose of calculating the correlation coefficient matrix 

is to obtain the degree of correlation between each column of 

data. The calculation method is as follows: 

 

𝑅 = 𝐶 𝑜𝑣( 𝑋) = [

𝑟11 𝑟12 … 𝑟𝑘1

𝑟21 𝑟22 … 𝑟𝑘2

… …  …
𝑟𝑛1 𝑟𝑛2 … 𝑟𝑛𝑘

] = [

1 𝑟12 … 𝑟𝑘1

𝑟21 1 … 𝑟𝑘2

… …  . . .
𝑟𝑛1 𝑟𝑛2 . . . 1

]

𝑟𝑖𝑗 =
∑ (𝑋𝑘𝑗−�̄�𝑗)(𝑋𝑖𝑗−�̄�𝑗)𝑛

𝑘=1

√∑ (𝑋𝑘𝑖−�̄�𝑖)2𝑛
𝑘=1 √∑ (𝑋𝑘𝑖−�̄�𝑖)2𝑛

𝑘=1

 (5) 

𝑟𝑖𝑗  presents the correlation coefficient between the i-th 

column data and the j-th column data, with the numerator 

being the covariance of the corresponding data and the 

denominator being the product of the standard deviations of 

the two columns. According to the above formula, the higher 

the correlation coefficient, the greater the degree of 

correlation between data. If the correlation coefficient is 1 or 

-1, it indicates a completely linear correlation between the 

data. 

 

3) Eigenvalue calculation of correlation coefficient matrix 

 

The purpose of calculating the eigenvalues of the correlation 

coefficient matrix is to rank the eigenvalues to determine the 

principal components. The calculation method is as follows: 

 

 

𝐶𝑜𝑣(𝑋)𝐿 = 𝐿 [

𝜆1   0
 𝜆2   
  …  
0   𝜆𝑘

]

𝐿 = [𝑙1 𝑙2 … 𝑙𝑘]

𝑙𝑖 = [𝑙𝑖1 𝑙𝑖2  𝑙𝑖𝑘]′(𝑖 = 1,2, … , 𝑘)

 (6) 

 

𝑙𝑖  represents the eigenvector of the correlation coefficient 

matrix, and 𝜆𝑖 represents the corresponding eigenvalue of the 

eigenvector. After sorting all feature values in descending 

order, the distribution of feature vectors corresponding to the 

order can be obtained.  

 

4.2 Extreme Random Forest 

 

The basic idea of extreme random forest is to combine 

multiple classifiers with weaker classification ability to form a 

classifier group with stronger classification ability. The core 

training process of this algorithm lies in the decision tree 

algorithm. The decision tree is based on a top-down 

hierarchical structure, which sequentially judges one or more 

features of the sample until the leaf node, and derives the final 

prediction label. The calculation process is as follows [28] - 

[31]:  

 

1) Construct root nodes 

 

Place all training samples on the root node, which determines 

the decisive feature after evaluating multiple data features and 

divides the training dataset according to this feature, so that 

each segmented subset has the best classification and 

distributes these subsets on all branches of the root node; 

 

2) Construct leaf nodes 

 

The principle of constructing leaf nodes for decision-making 

lies in whether the segmented subset is correctly classified. If 

the segmented subset can be correctly classified, leaf nodes 

are constructed and the segmented subset is assigned to the 

corresponding leaf nodes; If the segmented subsets cannot be 

classified correctly, then the optimal features are re selected 

for these subsets, and the segmentation process is repeated to 

construct the corresponding leaf nodes; The classification 

operation of the decision tree follows the above two steps 

recursively until all training subsets are classified correctly. 

At this point, each subset is assigned to a leaf node, that is, all 

subsets have a clear category, and the decision tree training is 

complete. 

 

The purpose of decision tree partitioning of a dataset is to 

make unordered raw data more ordered. The partitioning 

criteria are mainly based on information gain, that is, 

obtaining the feature with the highest information gain is the 

best choice [32] - [33]. 

 

3) Flow chart of PCA_ERF algorithm 
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The flow chart of PCA-ERF algorithm includes two parts: the 

training part and the test part, as shown in Figure 3 and Figure 

4. 

 
Figure 3: Training section of PCA_ERF algorithm 

 
Figure 4: Test section of PCA_ERF algorithm 

5. Experiment 
 

This article uses a cross dataset as the training set for this 

simulation experiment, as shown in Table 3. At the same time, 

in order to more accurately obtain the actual leakage detection 

performance of the PCA-ERF method in pipeline networks, 

the test set is only composed of experimental datasets. 

 

5.1 PCA Variance Contribution Analysis 

 

In the PCA method, the variance contribution rate can explain 

the amount of data information that feature vectors can reflect. 

The larger the variance contribution rate, the more data 

information the feature vector covers, and the stronger its 

feature representation. In most cases, the first three 

eigenvectors can represent most of the data information. 

Therefore, this article selects the first three eigenvectors for 

analysis, and the trend of their variance contribution rate with 

the change of cross data ratio is shown in Figure 5. 

 
a) B-SHS 

 
b) B-DHS 

 
c) SR-SHS 

 
d) DR-DHS 

Figure 5: The variation of the first three eigenvectors with 

cross data ratio under four different topological structures 
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From Figure 5, it can be seen that for the four different 

topological structures of the pipeline network, as the 

cross-data ratio continues to increase (i.e., the amount of 

simulated data in the cross data continues to increase), the 

sum of the variance contribution rates of the first three feature 

vectors slowly increases and closes to 1, indicating that it 

retains more feature information from the original data. 

 

5.2 PCA-RF Method 

 

After preliminary experiments and analysis, this article sets 

the number and depth of decision trees in the random forest 

for leak detection of four different topological structures of 

pipeline networks, with values of 216= (4 × 54), 144= (4 × 36), 

216= (4 × 54), and 144= (4 × 36), respectively. To ensure that 

each leaf node can quickly find the best features, this article 

sets the maximum number of features traversed by each node 

to be equal to the number of features in the input dataset. The 

prediction accuracy of the algorithm varies with the cross-data 

ratio as shown in Figure 6. 

 
Figure 6: Prediction accuracy of PCA-RF method under 

different cross data ratios 

From Figure 6, it can be seen that this method has a high 

prediction accuracy and changes slowly with the cross-data 

ratio. However, for B-DHS pipeline network, the prediction 

accuracy of its leakage conditions is significantly lower than 

the other three pipeline networks, indicating that the 

prediction performance of PCA-RF is not suitable for leak 

detection tasks in various topological structures. Therefore, 

we consider using the Extremely Random Forest (ERT) 

method to solve our problem. 

 

5.3 PCA-ERF Method 

 

In this article, the number of extreme random trees is set to be 

twice the number of features in the dataset, where the depth of 

the trees and the number of features traversed by nodes are the 

same as described in Section 4.2.  

 

For different cross data ratios, the prediction accuracy of the 

algorithm also varies, and its values and distribution trends are 

shown in Table 5 and Figure 6. 

Table 5: Prediction accuracy of PCA-ERF under different 

cross data ratios 
Cross data ratios B-SHS B-DHS SR-SHS DR-DHS 

2:1 98.08% 97.17% 98.92% 97.64% 

4:1 97.57% 96.58% 98.61% 97.68% 
6:1 97.40% 96.07% 98.38% 97.23% 

8:1 97.11% 95.05% 98.19% 96.98% 

10:1 96.79% 95.48% 98.04% 96.80% 
20:1 95.81% 95.08% 97.26% 96.27% 

30:1 95.23% 92.94% 96.54% 95.95% 

40:1 94.25% 91.51% 95.91% 95.53% 
50:1 93.23% 90.09% 95.46% 95.15% 

60:1 92.05% 88.67% 94.11% 94.54% 

70:1 90.97% 86.96% 93.05% 94.27% 
80:1 89.60% 85.15% 91.89% 93.68% 

90:1 88.85% 84.03% 90.91% 93.15% 

100:1 86.65% 81.68% 89.31% 92.62% 

 
Figure 7: Prediction accuracy of PCA-ERF under different 

cross data ratios 

According to Table 6, even in the case of the highest cross 

data ratio (100:1), the prediction accuracy of this method is 

still high. From Fig 7, it can be seen that the distribution trend 

of prediction accuracy is stable and relatively small with 

changes in pipeline network topology. This result indicates 

that the randomness in PCA-ERF further enhances the 

algorithm's performance in finding the best data features, and 

its feature transfer learning ability is further improved. The 

pipeline leakage detection method constructed using 

PCA-ERF is suitable for leakage detection tasks in multi heat 

source circular complex pipelines. 

 

5.4 Comparison Studies 

 

In order to explore the connection between the PCA_ERF and 

the popular machine learning methods, totally five models are 

established for comparison. Four of them use PCA described 

in section 4.1 as feature sets for classification. The rest one 

method is a deep neural network-based model, which can 

carry out both feature extraction and fault classification 

operations.  

 

First, the widely used classification algorithms including 

support vector machine (SVM), k-nearest neighbor (KNN), 

random forest (RF), and back propagation neural network 

(BPNN) are employed to classify the extracted features. After 

that, a convolution neural network (CNN) is designed for 

leakage detection. The BPNN consists of three fully 

connected layers with a softmax classifier while the CNN 

model contains two convolution layers and two max-pooling 

blocks, a flatten layer, and a fully connected layer. The 

cross-data ratio used for the comparison experiments is 

uniformly set to 2:1, and the results are shown in Table 6. 

Table 6: Comparison results on four datasets 

Method 
accuracy (%) 

B-SHS B-DHS SR-SHS DR-DHS Average 

SVM 92.6 91.8 89.7 89.6 90.925 
KNN 95.6 95.7 94.9 94.7 95.225 

RF 96.3 95.8 96.8 96.4 96.325 

BPNN 
CNN 

97.8 
99.1 

97.5 
98.3 

97.2 
98.1 

96.8 
98.42 

97.325 
98.48 

Proposed 

method 
98.08 97.17 98.92 97.64 97.95 
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As can be seen from table 6, in term of the classification 

accuracy, the method proposed in this paper performs best 

among all the non-deep models, including SVM, KNN, RF 

and BPNN, which indicate the effectiveness for leakage 

detection in district heating system of the proposed method. 

When it comes to the deep model CNN, it performs better than 

the proposed method. The main reason is that the CNN which 

employs a complex structure with two convolution layers and 

two max-pooling blocks, a flatten layer, and a fully connected 

layer can obtain better feature representations from original 

pressure and flow data of heating system. Meanwhile, CNN 

requires more training data and longer training time. Thus, the 

proposed method is more suitable for industry application 

since it is designed to solve the practical problem with less 

training data and shorter training time. 

 

6. Conclusions 
 

Relying on the experimental heating-network system in the 

Hydraulic Balance Laboratory of Shandong Jianzhu 

University, four topological structures, including B-SHS 

(single heat source branch), B-DHS (double heat source 

branch), SR-SHS (single heat source single ring), and 

DR-DHS (double heat source double ring), are taken as the 

research object, the leakage detection of the district heating 

system is regarded as a pattern recognition problem, and the 

real-time operation dataset, simulation dataset, and their cross 

dataset are constructed, the principal component analysis 

method and extreme random forest method are creatively 

combined for the leakage detection task of the district heating 

pipeline network, and high detection results are obtained. We 

can draw the following conclusions: 

 

1) The PCA-ERF method does not require a large dataset and 

can achieve higher leakage detection accuracy for 4 operating 

conditions, 5 leakage levels, and 10 leakage points in 

topologies of B-SHS, B-DHS, SR-SHS, DR-DHS. It has the 

characteristics of fast detection speed and high detection 

accuracy; 

 

2) The impact of the cross- data ratios on recognition results: 

As the cross-data ratio increases, that is, as the amount of 

experimental data in the cross-data set decreases, the 

recognition accuracy slightly decreases, indicating that 

compared to simulation data, experimental data has a greater 

impact on recognition accuracy; 

 

3) The impact of different topological structures on 

recognition results: Different pipe network topological 

structures have little effect on recognition results, because the 

randomness of the extreme random forest method in 

PCA-ERF further improves the performance of the algorithm 

in finding the best data features. Therefore, the pipe network 

leakage detection method constructed using PCA-ERF is 

suitable for leakage detection tasks in multi heat source 

circular complex topology pipe networks.  

 

In the future, the research group will further study the leakage 

detection problem of district heating pipelines, including 

applying the PCA-ERF method to actual heating pipelines for 

leakage detection; The thermal characteristics of district 

heating system with different topological structures and their 

impact on pressure and flow data; Apply other new machine 

learning algorithms to the leakage detection field. 
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