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Abstract: In recent years, multiview subspace clustering has gained widespread attention due to its ability to effectively integrate 

complementary information from multiple views, revealing the underlying structure in high-dimensional data. However, existing methods 

still face challenges in handling complex data scenarios due to their limited representation power. Among these methods, the Multiview 

Deep Subspace Clustering Network (MvDSCN) has improved clustering performance to some extent by embedding multiview 

relationships into the feature learning and self-representation stages through the design of a diversity network (Dnet) and a universality 

network (Unet). However, we observe that the shared representation learned by MvDSCN lacks sufficient discriminative power, which 

negatively impacts the quality of the self-representation matrix. Furthermore, due to the limitations of its unsupervised learning strategy, 

the model struggles to effectively leverage latent label information to guide feature learning, thus constraining the improvement in 

clustering performance. To address these issues, we propose a novel multiview subspace clustering method, L12SL-MvSC, based on 

L_(1,2)regularization and self-labeling supervision. First, we apply regularization to the self-representation coefficient matrix to select 

discriminative sample relationships. Then, we introduce a self-labeling supervision strategy, which generates pseudo-labels to assist 

network training, further enhancing the quality of self-representation learning and clustering performance. Experimental results on 

benchmark datasets demonstrate the effectiveness of the proposed method. 
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1. Introduction 
 

In the real world, data is usually described by multiple 

modalities and feature hierarchies. These modalities may 

include images, audio, text, etc., and each modality contains 

multiple feature descriptors. For example, images may 

include features such as color, texture, and shape, while audio 

may include spectral features, temporal features, etc. These 

data from different sources and dimensions together constitute 

multi-view data [1], which can comprehensively represent the 

same object or event from multiple perspectives. Due to its 

rich diversity and information complementarity, multi-view 

data has significant advantages in many application scenarios. 

In order to explore the information of multiple views for 

different tasks, Multi-view Learning (MVL) methods have 

been widely studied [2]. MVL aims to jointly learn data 

representations from multiple perspectives in order to explore 

their shared structures and potential relationships, and has 

become an important research field [3]. 

 

In the study of MVL, Multi-view Clustering (MVC) is an 

important unsupervised learning method that aims to directly 

utilize the complementary information from multiple views 

and automatically mine the underlying clustering structure 

shared by multiple views without labels [4]. Although 

existing MVC methods have achieved good performance in 

many practical tasks, they still face some challenges when 

dealing with high-dimensional complex data. Many methods 

directly perform clustering based on original features and fail 

to effectively mine the potential low-dimensional structure of 

the data. High-dimensional data often contains a lot of 

redundant information and noise. Direct clustering in the 

original feature space will affect the accuracy of the clustering 

results. Therefore, how to discover the low-dimensional 

structure of data through dimensionality reduction or 

subspace learning becomes the key to improving clustering 

quality. 

 

In order to address these challenges, the Multi-view Subspace 

Clustering (MVSC) method [5-7] has gradually become a 

research focus and has received widespread attention. The 

MVSC method can better reveal the structural characteristics 

of the data by learning the potential low-dimensional 

subspace representation of each view and exploring the 

consistency relationship between views. Compared with 

traditional MVC, MVSC can not only process 

high-dimensional data more effectively, but also capture the 

potential low-dimensional structure of the data, thereby 

improving the clustering performance. Although the existing 

multi-view subspace clustering methods have achieved good 

results in many applications [8-10], their performance still has 

certain shortcomings when facing complex data, which is 

mainly reflected in the following two aspects. First, many 

methods adopt a two-stage strategy, that is, first extracting 

features from the data and then learning the association matrix. 

This separate processing method lacks a close connection 

between feature learning and subspace clustering tasks, 

resulting in the failure to fully utilize the potential multi-view 

relationship. Second, existing methods usually ignore 

end-to-end joint optimization and fail to learn hierarchical 

representations in the feature learning process, which limits 

the adaptability and clustering performance of the method on 

multi-view data. 

 

To address these issues, Multiview Deep Subspace Clustering 

Networks (MvDSCN) [11] was proposed as an effective 
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improvement framework. MvDSCN introduces a diversity 

network (Dnet) and a universality network (Unet), and utilizes 

the complementarity between multi-view data in the feature 

learning and self-representation stages to better capture the 

shared and personalized features in the data, thereby 

improving the clustering performance. However, despite the 

excellent performance of MvDSCN, we still find that it has 

the following shortcomings: First, the shared representation 

learned by MvDSCN lacks sufficient discriminability in some 

cases, especially when faced with complex data. Second, 

MvDSCN still relies on unsupervised learning strategies and 

fails to effectively use label information for precise feature 

guidance, which further affects the accuracy and stability of 

clustering. 

 

To solve the above problems, we proposed an  improved 

method based on ℓ1,2 regularization and self-label supervision 

strategy. Specifically, this paper introduced ℓ1,2 -norm 

regularization in the MvDSCN framework. By constraining 

the learning process of the self-expression matrix, the model's 

ability to distinguish samples of different categories is 

effectively improved, especially on high-dimensional 

complex data. In addition, this paper designs a self-label 

supervision strategy that combines spectral clustering to 

generate pseudo-labels. The generated pseudo-labels are used 

to further train the network, fully explore the potential 

structural information of multi-view data, and improve the 

clustering performance of the model in an unsupervised 

setting. The main contributions of this paper are summarized 

as follows: 

 

1) We propose an enhanced multi-view subspace clustering 

algorithm based on ℓ1,2 -norm regularization and self-labeling 

supervision, termed L12SL-MvSC. This method aims to 

improve the discriminative capability of shared 

representations and guide network training through latent 

label information, thereby enhancing clustering performance. 

 

2) We introduce ℓ
1,2

-norm regularization into the learning 

processes of Dnet and Unet, imposing ℓ
1,2

-norm constraints 

on the self-expression matrix to select the most representative 

sample relationships, which better supports the subsequent 

spectral clustering process. 

 

3) We adopt a self-label supervision strategy and realize a 

two-way feedback mechanism between self-expression 

learning and clustering performance through pseudo-label 

generation, which improves the clustering adaptability of 

multi-view data. 

 

2. Related Work 
 

In recent years, most representative algorithms for multi-view 

subspace clustering (MVSC) have optimized 

self-representation learning by designing specific 

regularization strategies to better explore the consistency and 

diversity between different views [12]. For instance, the 

Latent Multi-view Subspace Clustering (LMSC) method [6] 

facilitates clustering by leveraging the latent representations 

of data points, while simultaneously exploring 

complementary information derived from various views. The 

Consistent and Specific Multi-View Subspace Clustering 

(CSMSC) [13] method learns multi-view self-representation 

by sharing consistent representation and specific 

representation, aiming to capture the commonalities and 

differences between views. Adversarial Multiview Clustering 

Networks With Adaptive Fusion (AMvC) [22] adopts an 

adversarial deep learning framework, extracts latent features 

with the help of a multi-view encoder, and generates 

reconstructed samples of each view through a generator to 

enhance the consistency of latent representations between 

views. This method optimizes view weights through an 

adaptive fusion layer and combines ℓ1,2-norm regularization 

to improve the discriminative ability of shared representations. 

In addition, the Multiview Subspace Clustering via Low-Rank 

Symmetric Affinity Graph (LSGMC) [14] method aims to 

improve clustering performance by combining low-rank 

consistency and symmetric affinity graphs to make full use of 

the consistency and angle information in multi-view data. 

Enhanced Latent Multi-view Subspace Clustering (ELMSC) 

[15] improves the way of learning multi-view latent 

representations by constructing an enhanced data matrix. This 

method stacks the data matrices of different views to the block 

diagonal position of the enhanced matrix to better mine the 

complementary information between multiple views. At the 

same time, consistency information is captured by the 

non-block diagonal parts based on the similarity between 

views. Multi-view Subspace Clustering for Learning Joint 

Representation via Low-rank Sparse Representation (MSCLR) 

[16] combines low-rank sparse representation under the 

framework of consistency and specificity representation to 

mine the shared structure between views. This method uses ℓ1 

norm and frobenius norm to promote a sparser representation 

while preserving the geometric structure and ensuring the 

grouping effect. In addition to optimizing self-representation 

learning through regularization strategies to mine the 

consistency and diversity between views, researchers have 

further focused on the applicability of multi-view subspace 

clustering algorithms in large-scale data scenarios, conducted 

in-depth explorations around their scalability, and proposed a 

variety of optimization methods [17-20]. Overall, The process 

of most multi-view subspace clustering algorithms can 

usually be divided into two main steps. First, researchers 

design specific regularization techniques to learn a 

self-representative affinity matrix from multi-view data, 

aiming to capture the shared information and potential 

structure between different views. The core of this step is to 

reveal the intrinsic characteristics of the data by maximizing 

the consistency between different views while maintaining the 

diversity of each view. Secondly, the obtained affinity matrix 

is usually input into the traditional spectral clustering 

algorithm for the final clustering analysis. Spectral clustering 

methods group data points by calculating the eigenvectors of 

the affinity matrix to complete the clustering task. 

 

3. Proposed Method 
 

In this section, we will introduce the proposed L12SL-MvSC 

method in detail, and its overall framework is shown in Figure 

1. Drawing on and improving the network architecture of 

MvDSCN, our framework consists of two sub-networks, Dnet 

and Unet, and a self-label supervision module. Among them, 

Dnet aims to extract the self-representation information 

unique to each view to fully capture the diversity 

characteristics in multi-view data; Unet is responsible for 
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learning the self-representation matrix shared across views to 

characterize the common structure of the data. The self-label 

supervision module further uses the generated pseudo-labels 

to optimize the latent representation and enhance the 

consistency and robustness of the clustering. This design 

enables the modules to work together to explore and fuse the 

potential characteristics of multi-view data from multiple 

angles. 

 
Figure 1: Framework of the proposed L12SL-MvSC method. 

�̂�𝑖  includes the data �̂�𝑖
𝑑and �̂�𝑖

𝑢, decoded by the specific 

decoder of the i-th view and the shared decoder, respectively. 

3.1 Dnet 

 

The Dnet aims to capture the unique characteristics of each 

view in multi-view data. By focusing on view-specific 

self-representation learning, it ensures the diversity between 

different views and fully utilizes the potential information of 

multi-view data. To this end, Dnet designs an independent 

encoder-decoder structure for each view, where the encoder 

extracts the latent features of the input view and the decoder 

uses these features to reconstruct the input data. This design 

not only ensures the integrity of the unique information of 

each view, but also effectively reduces the interference of 

shared or redundant features. At the same time, drawing on 

the work of reference [11], Dnet uses a convolutional 

autoencoder, whose convolutional layer has fewer parameters 

and stronger learning ability, and can extract more detailed 

features while improving computational efficiency. 

 

In order to improve the lack of discriminability of latent 

features and improve the quality of the self-expressive matrix, 

we introduce ℓ1,2 -norm regularization constraint on the 

self-expressive matrix. This regularization has been proven to 

be effective in previous work [21,22], which can effectively 

highlight the key information unique to each view and reduce 

the interference of redundant features, thereby improving the 

accuracy of view feature expression. 

 

On this basis, the objective function of Dnet combines 

reconstruction loss, self-expression loss and ℓ1,2 -norm 

regularization constraints, and is defined as follows: 

ℒ𝐷 = ∑ ‖𝑋𝑖 − �̂�𝑖
𝑑‖

𝐹

2
+ 𝜆1‖𝑍𝑖

𝑑 − 𝑍𝑖
𝑑𝐶𝑖‖𝐹

2
+ 𝜆2‖𝐶𝑖‖1,2

𝑣
𝑖=1 . (1) 

Among them, 𝑋𝑖 represents the  𝑖-th view of the input data, 𝑣 

represents the total number of views, �̂�𝑖
𝑑 represents the data 

decoded by the specific decoder of the 𝑖-th  view, 𝑍𝑖
𝑑 signifies 

the latent feature representation obtained through the specific 

encoder of the  𝑖 -th view, and 𝐶𝑖  represents the 

self-expression matrix of the 𝑖-th  view. 

 

3.2 Unet 

 

The Unet aims to capture the shared characteristics of 

multi-view data to learn a universal self-representation matrix 

that can characterize the consistency between views. To 

achieve this goal, Unet is used as a core module in the overall 

framework to build a consistent representation across views 

by jointly learning latent features from different views. 

Specifically, Unet adopts the same convolutional 

encoder-decoder architecture as the Dnet network to 

characterize the global pattern of multi-view data by 

extracting shared latent features. The self-representation 

matrices of different views are aligned with the shared 

common self-representation matrix through a universal 

regularization method to ensure the consistency of each view 

in the same latent space. 

 

In order to achieve the above goals, the optimization process 

of Unet is constrained by the following objective function: 

 ℒ𝑈 = ∑ ‖𝑋𝑖 − �̂�𝑖
𝑢‖

𝐹

2
+ +𝜆1‖𝑍𝑖

𝑢 − 𝑍𝑖
𝑢𝐶‖𝐹

2 + 𝜆2‖𝐶‖1,2 +𝑣
𝑖=1

𝜆3‖𝐶 − 𝐶𝑖‖𝐹
2 . (2) 

Among them, �̂�𝑖
𝑢  represents the data decoded by the 

consistent decoder of the 𝑖 -th  view, 𝑍𝑖
𝑢  represents the 

potential feature representation obtained by the consistent 

encoder of the 𝑖 -th  view, and 𝐶 represents the common 

self-expressive matrix shared by all views. The first term is 

the reconstruction loss, the second term is the self-expressive 

loss, and the third term is the constraint on the shared 

self-expressive matrix. In addition, the fourth term is the 

consistency constraint, which aims to ensure the consistency 

between the self-expressive matrix of each view 𝐶𝑖 and the 

shared self-expressive matrix 𝐶. The hyperparameters 𝜆1, 𝜆2 

and 𝜆3 are used to balance the trade-offs among the respective 

loss terms, thereby controlling the equilibrium between 

different objectives. 

 

On this basis, in order to fully exploit the complementary 

information from multiple views, we introduce diversity 

regularization consistent with MvDSCN. Specifically, the 

form of diversity regularization is as follows: 

 ℒ𝐻 = ∑ 𝐻𝑆𝐼𝐶(𝑌, 𝐶𝑖 , 𝐶𝑗)𝑖𝑗 . (3) 

Here, 𝐶𝑖 and 𝐶𝑗 denote the self-expression matrices of the 𝑖-th 

and 𝑗-th views, respectively.  𝑌 ∈ 𝐶𝑖 × 𝐶𝑗. 𝐻𝑆𝐼𝐶(∙) is used to 

measure the high-order correlation between variables. The 

detailed calculation method can be found in reference [11]. By 

introducing diversity regularization into the objective 

function, we can penalize the dependency between views, 

thereby more effectively capturing the complementary 

information between views. 

 

3.2 Self-labeling Supervision Module 

 

The self-labeling supervision module aims to further improve 

the quality of the self-expressive matrix by generating pseudo 

labels, thereby enhancing the consistency and robustness of 

clustering. Inspired by [23], after obtaining a consistent 

self-expressive matrix, pseudo labels can be generated 

through spectral clustering. In this paper, with the help of the 
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universal self-expressive matrix captured by Unet, we obtain 

the latent label information through spectral clustering as 

feedback for subsequent optimization to guide the robust 

learning of the self-expressive matrix. 

 

In order to effectively integrate the self-labeling supervision 

module into the optimization process, the objective function is 

defined as follows: 

 ℒ𝑆 = 𝑡𝑟(𝑄𝑇𝐿𝑄). (4) 

Here, 𝐿 is  the Laplacian matrix of 𝐶, 𝑄 ∈ 𝑅𝑛×𝑘 is a cluster 

indicator matrix containing 𝑛  samples and 𝑘  clusters,  

representing the pseudo-labels generated by 𝐶 , and 𝑡𝑟(∙) 

denotes the trace operation of the matrix. 

 

In order to effectively integrate these modules for joint 

optimization, we combine formulas (1), (2), (3) and (4) to 

derive the overall objective function, which combines the loss 

terms of Dnet, Unet and self-label supervision modules. The 

specific definition is as follows: 

 

ℒ𝑎𝑙𝑙 = ∑ ‖𝑋𝑖 − �̂�𝑖
𝑑‖

𝐹

2
+ ‖𝑋𝑖 − �̂�𝑖

𝑢‖
𝐹

2
+ 𝜆1 (‖𝑍𝑖

𝑑 − 𝑍𝑖
𝑑𝐶𝑖‖𝐹

2
+ ‖𝑍𝑖

𝑢 − 𝑍𝑖
𝑢𝐶‖𝐹

2 ) +𝑣
𝑖=1

∑ 𝜆2(‖𝐶𝑖‖1,2 + ‖𝐶‖1,2) + 𝜆3‖𝐶 − 𝐶𝑖‖𝐹
2𝑣

𝑖=1 +

𝜆4 ∑ 𝐻𝑆𝐼𝐶(𝑌, 𝐶𝑖 , 𝐶𝑗)𝑖𝑗 + 𝜆5𝑡𝑟(𝑄𝑇𝐿𝑄), 𝑠. 𝑡. 𝑄𝑇𝑄 = 𝐼.

 (5) 

4. Experiments 
 

In this section, we experimentally evaluate the performance 

and advantages of the proposed L12SL-MvSC method on the 

multi-view subspace clustering task. 

 

4.1 Experiment Setup 

 

Datasets: To evaluate the clustering effect of the 

L12SL-MvSC algorithm, two multi-view public benchmark 

datasets and a real-world RGB-D Object dataset [23] are used 

in the experiment. Table 1 shows the detailed information of 

each dataset. 

 

1) ORL: This dataset consists of images from 40 individuals, 

with each individual represented by 10 images. The images 

were captured under varying lighting conditions and include 

different facial expressions and details. 

 

2) Still DB: This dataset contains 467 images from six action 

categories. Each image is described by three types of features: 

SIFT Bag-of-Words (BoWs), color SIFT BoWs, and shape 

context BoWs. 

 

3) RGB-D Object: This dataset includes RGB and depth 

images of 300 objects grouped into 51 categories. For the 

experiments, 50 categories were randomly selected, with each 

category containing 10 samples. All images were resized 

to 64 × 64 pixels for consistency. 

Table 1: Statistics of the three benchmark multi-view 

datasets. 
Dataset Samples Class View Dimension 

ORL 400 40 3 4096/3304/6750 

Still DB 467 6 3 200/200/200 

RGB-D Object 500 50 2 4096/4096 

Comparison Methods: In our experiments, we selected several 

representative single-view and multi-view methods as 

baselines for comparison to comprehensively evaluate the 

effectiveness of the proposed method. 

 

1) BestSV [24]. This method is based on single view data and 

uses the standard spectral clustering algorithm to achieve the 

best clustering performance on a single view. 

 

2) LRR [25]. This method uses low-rank representation to 

restore the subspace structure of the data and obtains a more 

stable self-expression matrix through global low-rank 

constraints. 

 

3) LMSC [6]. This method integrates multi-view information 

through latent space mapping and learns a shared 

self-expression matrix in a common latent subspace, thereby 

improving the clustering effect. 

 

4) SURE [26]. This method adopts a contrastive learning 

strategy, taking available sample pairs as positive samples and 

randomly selecting some cross-view samples as negative 

samples. At the same time, it introduces noise-resistant 

contrast loss to alleviate the impact of erroneous negative 

samples caused by random sampling. 

 

5) MvDSCN [11]. This method adopts a deep self-expressive 

learning framework, which consists of two sub-networks, 

Dnet and Unet. Dnet learns a view-specific self-expressive 

matrix, while Unet learns a self-expressive matrix shared by 

all views to simultaneously capture the personalized 

information and global structure of multiple views. 

 

Evaluation Metrics: Following [11], we adopt four widely 

used metrics to assess clustering performance: accuracy 

(ACC), normalized mutual information (NMI), adjusted Rand 

index (ARI), and F-measure. To reduce the influence of 

randomness, each method is executed 15 times, and the 

average performance is reported. 

 

4.2 Clustering Result 

 

Tables 2-4 report the clustering results of each method on 

three benchmark datasets. It can be seen that our method 

achieves the best performance among almost all the compared 

methods. For ease of comparison, the best results for each 

indicator are highlighted in bold in the table. Specifically, the 

performance of multi-view methods is significantly improved 

compared with single-view methods, mainly due to the fact 

that multi-view methods can effectively utilize the 

complementary information between views, which cannot be 

fully captured by the limitation of single-view methods. In 

addition, for the traditional multi-view method LMSC, our 

method significantly surpasses the performance of LMSC 

through a deep learning framework. Although LMSC 

effectively integrates multi-view information, it relies on 

predefined handcrafted features and fails to fully exploit the 

potential of deep learning models.  Our L12SL-MvSC method 
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significantly outperforms LMSC on all datasets, indicating 

that deep learning is better able to capture latent structures and 

improve clustering performance when dealing with complex 

datasets.  Comparisons with state-of-the-art  methods, such as 

SURE and MvDSCN, further highlight the improvements 

achieved by our approach. Although both SURE and 

MvDSCN adopt the deep learning framework for MVC, our 

method achieves further improvement in performance by 

introducing key innovations. For example, on the RGB-D 

Object dataset, compared with MvDSCN, our method 

improves ACC, NMI, ARI and F-measure by 2.4%, 0.7%, 1.6% 

and 1.1% respectively. MvDSCN introduces a complex 

network structure, embeds multi-view relations into feature 

learning through two sub-networks, and achieves good 

performance. However, the unsupervised nature and lack of 

discriminative feature learning limit its further optimization. 

On the ORL dataset, although MvDSCN slightly outperforms 

L12SL-MvSC in NMI and F-measure, the improvements of 

our method on all metrics such as accuracy and NMI are more 

balanced, which indicates that our method exhibits more 

stable and reliable performance on different datasets. 

 

Experimental results demonstrate the effectiveness of 

L12SL-MvSC in multi-view subspace clustering tasks. Our 

method demonstrates excellent performance on multiple 

benchmark datasets, mainly due to two key innovations. First, 

by introducing ℓ1,2 -norm regularization constraints, the 

quality of the self-expression matrix is enhanced, which helps 

the model to distinguish samples of different categories more 

effectively. Second, the self-label supervision strategy that 

combines pseudo-label generation with multi-view 

relationship learning enables the model to fully explore the 

potential structural information of the data. 

Table 12: Clustering performance on ORL dataset. 
Method ACC NMI ARI F-measure 

BestSV 0.777 0.903 0.738 0.711 

LRR 0.773 0.895 0.724 0.731 

LMSC 0.819 0.931 0.769 0.758 

SURE 0.843 0.925 0.791 0.788 

MvDSCN 0.870 0.943 0.819 0.834 

L12SL-MvSC 0.883 0.934 0.821 0.825 

Table 3: Clustering performance on Still DB dataset. 
Method ACC NMI ARI F-measure 

BestSV 0.297 0.104 0.063 0.221 

LRR 0.306 0.109 0.066 0.260 

LMSC 0.328 0.137 0.088 0.269 

SURE 0.363 0.227 0.142 0.296 

MvDSCN 0.377 0.245 0.169 0.320 

L12SL-MvSC 0.405 0.519 0.272 0.437 

Table 4: Clustering performance on RGB-D Object dataset. 
Method ACC NMI ARI F-measure 

BestSV 0.278 0.554 0.106 0.125 

LRR 0.299 0.589 0.143 0.156 

LMSC 0.335 0.593 0.151 0.167 

SURE 0.373 0.622 0.202 0.228 

MvDSCN 0.388 0.639 0.210 0.225 

L12SL-MvSC 0.412 0.646 0.226 0.236 

 

5. Conclusion 
 

This paper proposes an enhanced multi-view subspace 

clustering method (L12SL-MvSC) integrating ℓ1,2 -norm 

regularization and self-labeling supervision strategies, 

designed to optimize the quality of the self-expression matrix 

and significantly improve clustering performance. By 

introducing ℓ1,2 -norm regularization constraints, we can 

effectively select the most representative sample relations, 

thereby improving the quality of the self-expression matrix 

and enhancing the discriminative ability of feature learning. 

At the same time, combined with the self-label supervision 

strategy for pseudo-label generation, we implement a 

two-way feedback mechanism between self-expression 

learning and clustering performance, further improving the 

adaptability of multi-view data in clustering tasks. 

Experimental results show that L12SL-MvSC outperforms 

existing multi-view subspace clustering methods on multiple 

benchmark datasets, especially showing stronger clustering 

capabilities when processing high-dimensional complex data. 

Despite significant performance gains, there is still room for 

improvement. Future research can explore how to further 

optimize the self-label generation strategy to improve the 

efficiency and robustness of the model when processing 

large-scale datasets. In addition, combining other supervised 

learning methods and optimization techniques may further 

improve the clustering accuracy of the model. 
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