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Abstract: Given the limitations of the Zebra Optimization Algorithm in terms of both the ability to jump out the local optimum solution 

and convergence speed, this study developed a zebra optimization algorithm incorporating multiple improvement strategies (MI-ZOA). In 
order to enhance the global search capability and improve the uniformity of the population distribution within the search space, the 

algorithm initially introduces Kent chaotic mapping to produce random sequences for population initialization. Moreover, the algorithm 

capitalizes on the long-tailed attribute of the Lévy flight and puts in a factor that has a non - linear variation with the iteration number, 
with the aim of increasing the search space coverage while being in coordination with the algorithm’s local development capacity. 

Furthermore, the golden-sine update mechanism is introduced into the algorithm to improve search efficiency and optimization accuracy 

at a later stage. Subsequently, after the ZOA algorithm resists predator attacks, a Gaussian-Cauchy mutation operator is introduced to 
effectively avoid getting trapped in local optima and accelerate the algorithm’s convergence rate. Finally, using eight benchmark 

functions in the CEC2017 test set, comparative tests were conducted on MI-ZOA, ZOA, DBO, GA, and HHO. The results showed that the 

MI-ZOA had advantages in convergence speed and global search ability compared to other algorithms.  

 

Keywords: Zebra Optimization Algorithm, Kent Chaos Mapping, Dynamic Lévy Flight, Golden Sine Algorithm, Gaussian -Cauchy 

Mutation.  

 

1. Introduction 
 

In the past few years, swarm intelligence algorithms have 

experienced rapid development, among which swarm 

intelligence optimization algorithms relying on the behavior 

of groups of natural organisms, with their advantages of great 

flexibility, independence from gradient mechanism, and 

excellent local development capability, have provided 

solutions for complex optimization problems such as system 

identification, image processing, and signal processing [1]. 

With the continuous deepening of algorithm research, 

numerous new swarm intelligence optimization algorithms 

have emerged. Recently, various swarm intelligence 

algorithms have been proposed, such as the Kepler 

Optimization Algorithm [2], Nutcracker optimizer algorithm 

[3], Greater Cane Rat Algorithm [4], and Black-winged Kite 

Algorithm [5]. 

 

Specifically, the Zebra Optimization Algorithm (ZOA) [6], a 

bio-inspired meta-heuristic algorithm that came out in 2022, 

has the traits of low parameter control requirements, simple 

architecture, and relatively good reconfigurability compared 

to other intelligent optimization algorithms. Additionally, 

ZOA is also recognized for its ability to adapt to complex and 

high-dimensional problems.  

 

Its robustness is demonstrated by its insensitivity to control 

system parameters, and the ease with which it can be 

implemented increases its appeal as an effective tool for 

addressing these matters [7]. However, during the foraging 

phase, the behavior of population members approaching the 

pioneer zebra can easily lead to premature convergence of the 

population, thereby reducing their ability to explore the 

solution space. In addition, during the defense phase, the 

defense strategy cannot effectively help the population 

entirely, as it risks converging into local optima during  

 

practical optimization searches [8]. 

 

In response to the limitations, this study proposes an improved 

zebra optimization algorithm incorporating multiple 

improvement strategies (MI-ZOA). To achieve the goal of 

improving population diversity, the algorithm first introduces 

the Kent chaotic mapping to initialize the experimental 

sample population. To enhance the global search capability 

while balancing with the local exploitation capability of the 

algorithm, a Levy flight strategy with dynamic parameters is 

introduced during the foraging phase of the zebra algorithm. 

To further enhance the local exploitation capability, the core 

idea of the golden sine algorithm is integrated into the defense 

phase. Finally, after the defense phase, a Gaussian-Cauchy 

mutation operator is introduced for perturbation, achieving a 

balance between exploration and diversity and improving the 

global optimization accuracy. Through eight benchmark 

functions in the CEC2017 test set, comparative tests were 

conducted on MI-ZOA, ZOA, DBO, GA, and HHO to verify 

the effectiveness and progressiveness of MI-ZOA. 

 

2. Zebra Optimization Algorithm 
 

The Zebra Optimization Algorithm is a bio-inspired 

meta-heuristic algorithm fundamentally inspired by the herd 

behaviors of wild zebra populations in the African Savannah. 

As a kind of gregarious herbivore, zebras have two behaviors 

in nature that are important for the study of optimization 

algorithms: foraging and defending against predators. The 

former is manifested in the process in which the population 

leader leads the collective to search for the necessary water 

sources and fresh plants for survival. The latter is manifested 

in the process in which the population relies on different 

strategies to ensure the survival of the whole population when 

attacked by different kinds of predators. 

 

2.1 Foraging Phase 

 

The Zebra Optimization Algorithm updates the positions of 
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population members by simulating the foraging behavior of 

zebra populations, where the best performing individual is 

considered as the population leader, leading other members to 

approach its positions. The process of updating the positions 

of the population individuals mentioned above can be 

represented by formula (1) and formula (2). 

 𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 + 𝑟 ⋅ (𝑃𝑍𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗) (1) 

 𝑥𝑖 = {
𝑥𝑖
𝑛𝑒𝑤 , 𝐹𝑖

𝑛𝑒𝑤 < 𝐹𝑖
𝑥𝑖, 𝑒𝑙𝑠𝑒

 (2) 

𝑥𝑖,𝑗
𝑛𝑒𝑤 is the updated value of the jth dimension value of the ith 

population member in the foraging phase, F represents the 

fitness value, PZ represents the optimal member in the zebra 

population, and r is a stochastic number in the open interval 

between 0 and 1. I is a random value in the interval (1, 2) and 

reflects the degree of change in the population. 

 

2.2 Defense Phase 

 

During the defense phase, zebra populations adopt different 

defense strategies against different predators. When facing 

large predators such as lions, zebras tend to adopt an escape 

strategy. When faced with attacks from small predators such 

as hyenas and dogs, zebras choose to confuse and scare 

predators by gathering populations. The process of renewing 

the positions of the group individuals mentioned above can be 

represented by formula (3) and formula (4). 

 𝑥𝑖,𝑗
𝑛𝑒𝑤 = {

𝑥𝑖,𝑗 +𝑅 ⋅ (2𝑟 − 1) ⋅ (1 −
𝑡

𝑇
) ⋅ 𝑥𝑖,𝑗 , 𝑃𝑠 < 0.5

𝑥𝑖,𝑗 + 𝑟 ⋅ (𝐴𝑍𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗), 𝑒𝑙𝑠𝑒
 (3) 

 𝑥𝑖 = {
𝑥𝑖
𝑛𝑒𝑤 , 𝐹𝑖

𝑛𝑒𝑤 < 𝐹𝑖
𝑥𝑖, 𝑒𝑙𝑠𝑒

 (4) 

𝑥𝑖,𝑗
𝑛𝑒𝑤 is the updated value of the jth dimension value of the ith 

population member in the defending phase, 𝐹𝑖
𝑛𝑒𝑤 is the fitness 

value of the ith member’s updated position, R is a constant 

equal to 0.01, t represents the present iteration number, T is 

the maximum iteration number, and AZ represents the zebra 

attacked during the defense phase. 

 

3. Zebra Optimization Algorithm 

Incorporating Multiple Improvement 

Strategies 
 

3.1 Kent Chaotic Mapping 

 
Figure 1: Scatter plot and histogram of logistic mapping and Kent mapping 
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Introducing chaotic mapping into algorithms is an effective 

method that can enhance population diversity and improve the 

algorithm’s global search capability. Chaotic mapping is 

characterized by randomness and ergodicity, which can 

greatly improve the diversity by generating an initial 

population with a uniform distribution in the initialization 

stage of the population. In swarm intelligence optimization 

algorithms, chaotic mapping can be introduced through the 

following steps: 

 

a) Initialization: Randomly generate an initial population with 

each individual’s position represented as 𝑥𝑖. 
 

b) Apply chaotic mapping: Apply chaotic mapping to the 

position of each individual 𝑥𝑖  to generate new chaotic 

positions 𝑦𝑖 . 
c) Mapping to search space: Mapping the chaotic position 𝑦𝑖  
to the search space range of the optimization problem. 

 

d) Update population: Update the population with newly 

generated positions 𝑥𝑖  to obtain a more diverse initial 

population. 

 

Among numerous chaotic mappings, Kent chaotic mapping [9] 

is a simple and discrete chaotic system with the following 

mathematical expression: 

 𝑥𝑛+1 = {

𝑥𝑛

𝜇
, 0 ≤ 𝑥𝑛 < 𝜇

1−𝑥𝑛

1−𝜇
, 𝜇 ≤ 𝑥𝑛 < 1

 (5) 

𝑥𝑛represents the current state value, and the chaotic orbit state 

value is taken as the interval value of (0,1). μ is the control 

parameter of Kent mapping within the range of (0,1), and to 

avoid the system falling into periodic behavior, μ cannot be 

taken as 0.5. 

 

The Kent mapping is isomorphic to the commonly used 

Logistic mapping, which has a simple form and complex 

dynamic properties. However, according to the scatter plots 

and histograms of the two different chaotic mappings in 

Figure 1, the logistic mapping exhibits the Chebyshev 

distribution with more at both ends and less in the middle in 

terms of probability density. In contrast, Kent mapping 

exhibits a more uniform probability density distribution. 

Therefore, this study chooses to introduce Kent chaotic 

mapping in the early stages of the algorithm, which is in line 

with the goal of enhancing population diversity and 

improving global search capability. 

 

3.2 Dynamic Levy Flight Strategy 

 

Levy flight is a typical random walk mechanism where the 

step size follows a heavy-tailed distribution [10]. The 

mathematical model of the probability density function for 

Levy’s flight is described as follows: 

 𝐿(𝑥, 𝛽) =
1

𝜋
∫ 𝑐𝑜𝑠(𝜏 ⋅ 𝑥)
∞

0
⋅ 𝑒−𝛾⋅𝜏

𝛽
𝑑𝜏  (6) 

According to the probability density mathematical model, the 

larger the parameter β, the more uniform the random number 

values generated by the probability density function curve, 

which is beneficial for accelerating the speed of the global 

exploration process. Aiming to better comply with the 

nonlinear optimization rules in the algorithm iteration process, 

a nonlinear variation factor β1 defined by the sigmoid function 

is added. The mathematical description of factor β1 is shown 

in formula (7). In the formula (7), t is the current iteration 

number, T is the maximum iteration number, δ1, δ2 , δ3 , δ4  are 

constant coefficients. 

 𝛽1 = 𝛿1 +
𝛿2

1+𝑒
𝛿3(

𝑡
𝑇
−𝛿4)

 (7) 

In the foraging phase of the original ZOA, the Levy flight 

strategy with a dynamic parameter is introduced to perturb the 

population’s individual updating process. The parameter β1 of 

Levy flight changes non-linearly as the number of iterations 

increases. Assigning a larger value to β1 during the global 

exploration process in the early stages of the algorithm 

expands the search range and exploration discoveries, which 

is beneficial for enhancing population diversity and 

significantly reducing the risk of zebra individuals plunging 

into a local optimum. During the later stage of iteration, 

assigning a lower value to the parameter beta allows the 

population to explore local regions with smaller step sizes, 

effectively improving the quality of the algorithm’s later 

solutions and enabling the algorithm to converge to the global 

optimum. After introducing the dynamic Levy flight strategy, 
the position renewing expression for the foraging phase is as 

follows: 

 𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 + 𝑟 ⋅ (𝑃𝑍𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗) ⋅ 𝐿(

𝑡

𝑇
, 𝛽1) (8) 

3.3 Combining with the Golden Sine Algorithm 

 

The Golden Sine Algorithm is a meta-heuristic algorithm 

proposed in 2017, which is influenced by the golden ratio and 

sine function [11]. The algorithm traverses every value of the 

sine function covering the entire unit circle, and introduces the 

golden ratio to narrow down the solution space. The golden 

ratio involved in the Golden Sine Algorithm is shown in 

Formula (9). 

 {

𝑐1 = −𝜋 + 𝜋(1 − 𝜏)
𝑐2 = −𝜋(1 − 𝜏) + 𝜋𝜏

𝜏 = (√5 − 1)/2

 (9) 

After using chaotic mapping for population initialization and 

introducing the Levy flight random walk to further improve 

the global exploration capability during the foraging phase, 

the problem that the algorithm plunges into a local optimum 

easily at a later stage needs further improvement. 

 

Considering that the golden sine algorithm continuously 

reduces the current solution space and can considerably 

improve the algorithm’s exploration performance and 

precision at a later stage, this study chooses to combine the 

idea of the Golden Sine Algorithm with the defending against 

predators phase. After integrating the golden sine perturbation 

strategy, the position update formula for the defense phase is 

as follows: 

 𝑥𝑖,𝑗
𝑛𝑒𝑤 = {

𝑆1:𝑥𝑖,𝑗(|𝑠𝑖𝑛 𝑟1|) − 𝑟2 𝑠𝑖𝑛 𝑟 |𝑐1𝑃𝑧 − 𝑐2𝑥𝑖,𝑗|, 𝑃𝑠 < 0.5

𝑆2:𝑥𝑖,𝑗(|𝑠𝑖𝑛 𝑟1|) − 𝑟2 𝑠𝑖𝑛 𝑟 |𝑐1𝐴𝑍𝑗 − 𝑐2𝐼𝑥𝑖,𝑗|, 𝑒𝑙𝑠𝑒

 (10) 

3.4 Gaussian-Cauchy Mutation Perturbation Strategy 

 

As the zebra optimization algorithm goes through its later 
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iterations and starts to converge to a current optimum that 

isn’t the global optimum, it may result in the algorithm’s 

premature convergence.  

 

With the aim of overcoming or even avoiding the predicament 

of the algorithm’s premature convergence as much as possible 

and further enhancing the performance of the ZOA, the 

MI-ZOA proposed in this paper applies a mutation 

perturbation strategy in the later stage of the algorithm for 

improvement. This study chooses the perturbation method of 

Gaussian-Cauchy mutation, and the mutation operator can be 

expressed as: 

 𝑟𝑟 =
𝑡2

𝑇2
⋅ 𝐺𝑎𝑢𝑠𝑠(0,1) + (1 −

𝑡2

𝑇2
) ⋅ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) (11) 

Gauss (0,1) is the standard Gaussian mutation operator. 

Cauchy (0,1) is the standard Cauchy mutation operator. t is the 

present iteration number, and T is the upper limit of iterations. 

 

On one hand, at lower iteration counts, the large step size of 

the Cauchy mutation, which is advantageous for global search 

capability, plays a dominant role. On the other hand, as 

iterations increase, the smaller step sizes of Gaussian 

mutation come into play, boosting the algorithm’s local 

search capacity and enabling it to break free from local optima. 

By using the fusion Gaussian-Cauchy mutation operator, 

exploration and diversityare given due attention, thus 

boosting the overall exploration precision of the algorithm. 

 

In this paper, we use the defined Gaussian-Cauchy mutation 

operator to perturb the optimal zebra individual in each 

iteration, and the perturbation process is shown in formula 

(12) 

 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑏𝑒𝑠𝑡
𝑡 = 𝑋𝑏𝑒𝑠𝑡

𝑡 ⋅ (1 + 𝑟𝑟)  (12) 

3.5 The Execution Process of MI-ZOA 

 

The process of the zebra optimization algorithm incorporating 

multiple improvement strategies is as follows: 

 

Step 1: Initialize the population parameters using Kent chaotic 

mapping. 

 

Step 2: During the foraging phase, evaluate the fitness of each 

zebra in the population, select pioneer zebra and followers, 

and update their positions using the formula based on the 

dynamic Levy flight strategy. 

 

Step 3: In the defense phase, using the Golden Sine Algorithm, 

update the position by emulating the zebras’ defense methods 

against attacks from various predators. 

 

Step 4: After the defense phase, use the Gaussian-Cauchy 

mutation operator to perturb the optimal solution of the 

current iteration. 

 

Step 5: Compare the fitness value of the current iteration’s 

optimal solution, the fitness value of the new solution 

perturbed by the Gaussian-Cauchy mutation operator, and the 

fitness values of previous iterations, and then renew historical 

optimal individual. 

 

Step 6: Determine if the maximum number of iterations has 

been reached. If not, return to step 2. 

 

Step 7: Output the optimal result and end the algorithm. 

 

The algorithm flowchart of MI-ZOA is shown in Figure 2: 

Defensive strategy S1 

incorporating the Golden 

Sine Algorithm

no

Defending against 

predators phase

Foraging  

phase

Defensive strategy S2 

incorporating the Golden 

Sine Algorithm

yes no

t=t+1
yes

Updating the positions of population members 

according to equation (2)

Start

Update pioneer zebra

Cauculate the new state of individuals in the 

population combining dynamic Levy flight 

P 0.5？

GetTing the optimal 

solution for this iteration

Compare the current optimal solution, the mutated current optimal 

solution and the historical optimal solution, and update the historical 

optimal individual

Initialize zebra population using Kent chaotic mapping and set parameters 

Perturbation of the optimal solution 

for this iteration using Gauss-

Cauchy mutation operator

t T?

Exit the iteration and output the optimal 

solution

 
Figure 2: Algorithmic flow of MI-ZOA 

4. Experiments, Results, and Analysis 
 

4.1 Test Environment and Parameter Settings 

 

The experimental procedures in this paper were all conducted 

in an AMD Ryzen 7 5800H CPU, 3.20GHz, Windows 10 

64-bit testing environment, and simulations were 

implemented using Pycharm software.  

 

Aiming to measure the comprehensive performance of 

MI-ZOA, in the present study, MI-ZOA, ZOA, and some 

other algorithms in recent years are tested and compared using 

the eight benchmark test functions in the CEC2017 test set 

[14]. As listed in Table 1, the mean fitness value and standard 

deviation of the fitness value using different test functions are 

recorded in order to test and analyze the algorithm’s 

performance in several aspects. 

Table 1: Test Functions 
Test function Function name dim 

Function 1 Shifted and Rotated Bent Cigar Function 30 
Function 3 Shifted and Rotated Zakharov Function 30 
Function 6 Shifted and Rotated Expanded Scaffer’s F6 Function 30 

Function 7 Shifted and Rotated Lunacek Bi_Rastrigin Function 30 
Function 12 Hybrid Function2(N=3) 30 

Function 13 Hybrid Function3(N=3) 30 
Function 22 Composition Function2(N=3) 30 
Function 23 Composition Function3(N=4) 30 
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aIn order to ensure the fairness of the algorithm testing and the 

accuracy of the experimental results, the population size of all 

algorithms is set to 30, the number of iterations is 800, the 

testing dimension is 30, and each function is tested for 50 

times, and the mean and standard deviation of the experiments 

will be recorded. 

 

4.2 Test Results and Analysis 

 

On the test function, this study compared the mean and 

standard deviation values of the optimal fitness of MI-ZOA 

with ZOA, DBO [13], GA [14], and HHO [15]. The specific 

results are shown in Table 2. 

 

In the functions used for testing, Function 1 and Function 3 

are simple unimodal functions, Function 6 and Function 7 are 

simple multimodal functions, Function 12 and Function 13 

are hybrid functions, and Function 22 and Function 23 are 

composition functions. The test functions span a wide variety 

of function types and have all been tested with 30 dimensions. 

 

According to Table 2, MI-ZOA performs better than ZOA in 

unimodal, multimodal, hybrid, and composition functions, 

with lower mean and standard deviation fitness values, 

demonstrating the effectiveness of the improved method used 

by MI-ZOA. Compared with other algorithms such as DBO, 

the mean value and standard deviation of fitness value 

obtained by using MI-ZOA also have advantages, indicating 

that the MI-ZOA is still progressive. 

 

In addition, by analyzing the convergence curves of MI-ZOA 

and other algorithms such as HHO presented in this article on 

different functions, the performance of the algorithms can be 

intuitively reflected. The test results are shown in Figure 

3~10. 

Table 2: Test results of algorithms on various test functions 
Test function  MI-ZOA ZOA DBO GA HHO 

Function 1 
mean 6.3213e+08 4.0299e+09 7.2778e+10 3.3391e+10 4.5319e+11 

std 9.3047e+07 6.2000e+08 3.8665e+10 8.3040e+09 8.8611e+10 

Function 3 
mean 8.0380e+04 8.0446e+04 8.6271e+04 9.3835e+04 8.8171e+04 

std 6.3245e+03 5.9018e+03 1.4449e+04 2.0022e+04 2.8760e+03 

Function 6 
mean 6.7261e+02 6.8561e+02 6.8507e+02 7.9845e+02 7.9292e+02 

std 7.6727e+00 9.8462e+00 1.5504e+01 1.3437e+01 9.7799e+00 

Function 7 
mean 1.1088e+03 1.2783e+03 1.2164e+03 1.2624e+03 1.3100e+03 

std 2.8456e+01 5.8751e+01 8.4937e+01 4.4870e+01 5.2476e+01 

Function 12 
mean 7.6395e+06 5.5661e+08 2.6369e+09 1.6550e+09 6.4149e+10 

std 2.9696e+06 2.0159e+08 7.3844e+09 7.5857e+08 2.7022e+10 

Function 13 
mean 2.7629e+05 6.8586e+08 3.2889e+09 2.0068e+09 2.5324e+10 

std 2.7526e+05 3.4848e+08 1.0216e+10 1.5307e+09 3.0685e+10 

Function 22 
mean 3.5606e+03 7.7291e+03 5.1939e+03 5.3199e+03 9.1619e+03 

std 4.3235e+02 9.8776e+02 2.4124e+03 2.5609e+03 6.2649e+02 

Function 23 
mean 2.9357e+03 3.5288e+03 3.1018e+03 3.8845e+03 3.4873e+03 

std 2.2293e+01 1.5368e+02 9.8031e+01 2.5734e+01 1.5229e+02 

 
Figure 3: Convergence curve of test function Function 1 

 
Figure 4: Convergence curve of test function 3 

 
Figure 5: Convergence curve of test function 6 

 
Figure 6: Convergence curve of test function 7 
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Figure 7: Convergence curve of test function 12 

 
Figure 8: Convergence curve of test function 13 

 
Figure 9: Convergence curve of test function 22 

 
Figure 10: Convergence curve of test function 23 

From Figure 3~10, it is evident that the MI-ZOA suggested 

here, when contrasted against the ZOA, is not characterized 

by a quick convergence speed. However, due to the 

introduction of strategies such as Levy flight and golden sine 

perturbation, it ultimately converges to a better globally 

optimal solution. Compared to other algorithms, the 

convergence curve of MI-ZOA rapidly decreases in the early 

stages of iteration, fluctuates less during the iteration process, 

and becomes more stable in the later stages of iteration. 

 

In conclusion, MI-ZOA shows obvious advantages in stability 

of convergence process, global search ability, ability to get rid 

of local optimal traps and final convergence accuracy, which 

proves the progressiveness and superiority of this algorithm. 

 

5. Conclusion 
 

Given the problem of being trapped by the local optimum in 

the Zebra Optimization Algorithm, this article proposes an 

improved zebra optimization algorithm incorporating 

multiple improvement strategies. During population 

initialization, MI-ZOA introduces Kent chaotic mapping 

phase to enhance population diversity. During the foraging 

stage, the Levy flight random walk with dynamic parameters 

is adopted to enhance the global search capability while 

coordinating with algorithm’s local exploration ability. In the 

defense phase, the core idea of the Golden Sine Algorithm is 

introduced by MI-ZOA to further enhance local search 

capabilities. After the defense phase, the Gaussian- Cauchy 

mutation operator is introduced to perturb the optimal solution 

of the current iteration, further enhancing the ability to escape 

from local optima.  

 

Next, a series of tests were carried out on the improved 

algorithm. Through simulation experiments on eight 

benchmark test functions and comparison with other three 

intelligent optimization algorithms, the average value, 

standard deviation data and convergence curve were analyzed 

to ascertain the effectiveness and progressiveness of MI-ZOA. 

In the future, the plan focuses on further improving the 

performance of MI-ZOA and applying it to solve practical 

engineering problems. 
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