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Abstract: Urban rail transit plays an important role in the rapid economic and social development of China. The integrated storage and 

feedback urban rail traction power supply system is one of the strategies for the green and low-carbon development of urban rail transit. 
This paper establishes a real-time operation optimization model based on the Markov decision process in the context of the integrated 

storage and feedback urban rail traction power supply system. It uses offline training of a deep reinforcement learning agent to optimize 

the control parameters of the energy feedback systems and energy storage systems in real-time to reduce the traction energy consumption 

of the power supply system, providing a reference for energy-saving operation of subways.  
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1. Introduction 
 

Urban rail transit plays a fundamental, pioneering, strategic, 

and service-oriented role in the rapid economic and social 

development [1]. Due to the short distances between stations 

and the frequent starting and stopping of trains, a significant 

amount of regenerative braking energy is generated [2]. The 

integrated storage and feedback urban rail traction power 

supply system can absorb part of this regenerative braking 

energy through the energy storage system, and the energy 

feedback system, which is relatively inexpensive, can reduce 

construction costs. This system is one of the strategies for the 

green and low-carbon development of urban rail transit. 

 

However, traditional integrated storage and feedback urban 

rail traction power supply system face two main issues: (1) 

When the energy feedback by the energy feedback system 

cannot be fully absorbed by the station's step-down load, will 

cause the main substation power back-feeding, which impacts 

energy-saving effectiveness and may cause disturbances to 

the external grid; (2) The low efficiency of energy storage 

system and the competition for regenerative braking energy 

from neighboring trains hinder the system's energy-saving 

operation. Therefore, optimization is required. 

 

Currently, most research by experts and scholars on the 

optimization of urban rail traction power supply system 

focuses on long-term scales. For instance, literature [3] 

proposes the control optimization of the energy feedback 

system’s droop rate, which can reduce total cost by an 

additional 5.4% by optimizing the operational characteristics 

of the energy feedback system. Literature [4] presents a 

bi-level optimization model aimed at minimizing annual costs, 

optimizing the traction substations and energy feedback 

systems, and solving the problem with an improved particle 

swarm algorithm, resulting in a 3.78% reduction in project 

annual costs. Literature [5] establishes an energy management 

system for ground energy storage systems, which adapts the 

device’s charging and discharging voltage thresholds based 

on train schedules and traction network no-load voltage, with 

field tests demonstrating significant improvements in the 

system’s energy-saving performance. However, these systems 

operate independently based on preset parameters, leading to 

weak coordination control. When train schedules change or 

neighboring devices fail, dynamic adjustments cannot be 

made. 

 

Due to the stringent computational time requirements for 

real-time operation optimization, traditional artificial 

intelligence algorithms struggle to find optimal solutions at 

real-time scales. Therefore, this paper employs the TD3 

algorithm [6] in deep reinforcement learning to train an agent, 

allowing the agent to process information and issue control 

commands in order to achieve real-time operation 

optimization of the integrated energy feedback urban rail 

traction power supply system. 

 

2. Integrated Storage and Feedback Urban 

Rail Traction Power Supply System 
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Figure 1: Integrated storage and Feedback Urban Rail 

Traction Power Supply System 

The schematic of the integrated storage and feedback urban 

rail traction power supply system is shown in Figure 1. 

Compared to traditional power supply systems, the energy 

flow is more complex. The distribution of regenerative 
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braking energy from the trains is as follows: 1) It is feedback 

to the AC network through the energy feedback system and is 

used by step-down loads such as escalators, lighting, and air 

conditioning; 2) Some of the feedback energy is sent back to 

the external power supply through the main substation, and 

this energy cannot be utilized by the traction power supply 

system; 3) The energy storage system can store regenerative 

braking energy for use by traction trains, achieving a "peak 

shaving and valley filling" effect; 4) Neighboring traction 

trains directly use the regenerative braking energy from the 

braking trains; 5) Onboard braking resistors consume 

regenerative braking energy. 

WR

WF

EFSRU

WT

WTloss

SL

MS

WM

WS

Wtrac Wreg
Wres

Onboard 

braking 

resistor

Wreg-trac

brake

WT
WF

ESS

WCHWDCH

Traction  
Figure 2: Energy Flow Diagram 

The energy consumption evaluation indicators are shown in 

Figure 2. system energy consumption is generally evaluated 

from two perspectives: The energy consumption of the main 

substation, denoted as WM; The energy consumption of the 

main substation excluding the step-down load energy 

consumption, denoted as WM-WS [7], We select the latter and 

define the system's traction energy consumption WTR as the 

energy consumption evaluation indicator. The derivation is as 

follows: 

 𝑊𝑇𝑅 = 𝑊𝑇 − 𝑊𝐹 + 𝑊𝑅  (1) 

3. Markov Decision Process-Based Model 
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Figure 3: MDP Model Schematic 

A schematic of the MDP model is shown in Figure 3. 

 

3.1 Environment 

 

The real-world environment of urban rail transit involves 

many uncontrollable factors. Considering the safety of rail 

transit operation, it is extremely difficult for the agent to 

perform dynamic interactions and online training in the real 

environment. Therefore, a simulation platform (PSDS), 

corrected with real-world measured data, is used as the 

simulation environment for the agent's dynamic interaction 

and offline training. 

 

3.2 State Space 

 

The state space must accurately describe the environmental 

characteristics of the time-varying traction power supply 

system: 

 

(1) Traction Substation State:  

 

The state of each traction substation includes operational 

statuses such as voltage, power, and the operation of the 

regenerative braking energy utilization device installed at the 

substation. The operational state of each traction substation is 

represented by the traction network voltage and DC-side 

output power.  

 

The energy feedback system and rectifier unit do not start 

simultaneously, so the operational state of the energy 

feedback system does not need to be considered separately. 

When the output power of the traction substation is negative, 

it indicates that the rectifier unit is shut down, and the energy 

feedback system is providing power. The traction substations 

with energy feedback systems have two state variables. 

 

When the energy storage system is charging, the rectifier unit 

does not start, and these two operations are mutually exclusive. 

However, when the energy storage system is discharging, the 

rectifier unit will activate the traction train. The charge state 

of the energy storage system directly impacts its operational 

state. Therefore, the traction substations with energy storage 

systems, in addition to the traction network voltage and 

DC-side output power, also need to provide the power and 

charge state of the energy storage system. The traction 

substations with energy storage systems have four state 

variables. 

 

The traction substation state ssub can be expressed as: 

 𝒔𝑠𝑢𝑏 = [𝑠𝑠𝑢𝑏,𝐸𝐹𝑆 𝑠𝑠𝑢𝑏,𝐸𝑆𝑆] (2) 

𝒔𝑠𝑢𝑏,𝐸𝐹𝑆 =

[𝑈𝑇𝑆,1𝑃𝑇𝑆,1𝑈𝑇𝑆,2𝑃𝑇𝑆,2 ⋯ 𝑈𝑇𝑆,𝑖𝑃𝑇𝑆,𝑖 ⋯ 𝑈𝑇𝑆,𝑁𝐸𝐹𝑆
𝑃𝑇𝑆,𝑁𝐸𝐹𝑆

       ](3) 

 

𝒔𝑠𝑢𝑏,𝐸𝐹𝑆 = [𝑈𝑇𝑆,1𝑃𝑇𝑆,1𝑃𝐸𝑆𝑆,1𝑆𝑂𝐶1 ⋯
𝑈𝑇𝑆,𝑖𝑃𝑇𝑆,𝑖𝑃𝐸𝑆𝑆,𝑖𝑆𝑂𝐶𝑖 ⋯

𝑈𝑇𝑆,𝑁𝐸𝐹𝑆
𝑃𝑇𝑆,𝑁𝐸𝐹𝑆

𝑃𝐸𝑆𝑆,𝑁𝐸𝑆𝑆
𝑆𝑂𝐶𝑁𝐸𝑆𝑆

]
 (4) 

Where, UTS,i represents the traction network voltage of the ith 

traction substation; PTS,i represents the DC-side output power 

of the ith traction substation; NEFS represents the number of 

traction substations equipped with energy feedback systems; 

PESS,i represents the power of the energy storage system at the 

ith traction substation; SOCi represents the charge state of the 

energy storage system at the ith traction substation; and NESS 
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is the number of traction substations equipped with energy 

storage systems. 

 

(2) Train State:  

 

At different operational times, the number of trains in 

operation on the line may vary based on the departure interval. 

If the operation information of a single train is used as the 

state input, it would result in an uncertain number of state 

nodes in the neural network input, which is not conducive to 

stable training of the DRL (Deep Reinforcement Learning) 

model. Therefore, the total traction power and total 

regenerative braking power of the trains in the traction 

substation intervals of the line are used as the state input for 

the trains, as shown in the equation (5). At each time, the 

number of traction substation intervals is a fixed value, 

ensuring a fixed state space dimension. 

 
𝑃𝑡𝑟𝑎𝑐,𝑖,𝑗 = ∑ 𝑃𝑡𝑟,𝑘

𝑁𝑡𝑟,𝑖,𝑗

𝑘=0  𝑃𝑡𝑟,𝑘 > 0

𝑃𝑅𝐵𝐸,𝑖,𝑗 = ∑ 𝑃𝑡𝑟,𝑘
𝑁𝑡𝑟,𝑖,𝑗

𝑘=0  𝑃𝑡𝑟 ,𝑘 < 0
 (5) 

Where, Ptrac,i,j represents the total traction power of the train 

between traction substation i and traction substation j. PRBE,i,j 

represents the total regenerative braking power of the train 

between traction substation i and traction substation j. Ptr,k 

represents the power of the kth train. Ntr,i,j represents the 

number of trains between traction substation i and traction 

substation j. 

 

The train state str can be expressed as: 

 
𝑠𝑡𝑟 = [𝑃𝑡𝑟𝑎𝑐,1,2 𝑃𝑅𝐵𝐸,1,2 𝑃𝑡𝑟𝑎𝑐,2,3 𝑃𝑅𝐵𝐸,2,3   ⋯ 

𝑃𝑡𝑟𝑎𝑐,𝑖,𝑗 𝑃𝑅𝐵𝐸,𝑖,𝑗  ⋯ 𝑃𝑡𝑟𝑎𝑐,𝑁𝑇𝑆 −1,𝑁𝑇𝑆
 𝑃𝑅𝐵𝐸,𝑁𝑇𝑆 −1,𝑁𝑇𝑆

]
 (6) 

3.3 Action Space 

 

The action space consists of three types of encoding: The 

startup voltage of the energy feedback system. The charging 

voltage of the energy storage system. The discharging voltage 

of the energy storage system. Since the number of traction 

substations equipped with energy feedback systems differs 

from the number of traction substations equipped with energy 

storage systems, the action space is represented as a 

one-dimensional vector. These three action types can be 

expressed as aINV, aCH, aDCH: 

 

𝒂𝐼𝑁𝑉 = [𝑘𝑖𝑛𝑣,1 𝑘𝑖𝑛𝑣,2  ⋯ 𝑘𝑖𝑛𝑣,𝑖  ⋯  𝑘𝑖𝑛𝑣,𝑁𝐸𝐹𝑆
]

𝒂𝐶𝐻 = [𝑘𝑐ℎ,1 𝑘𝑐ℎ,2  ⋯ 𝑘𝑐ℎ ,𝑖   ⋯  𝑘𝑐ℎ,𝑁𝐸𝑆𝑆
]

𝒂𝐷𝐶𝐻 = [𝑘𝑑𝑐ℎ,1 𝑘𝑑𝑐ℎ,2  ⋯ 𝑘𝑑𝑐ℎ,𝑖  ⋯  𝑘𝑑𝑐ℎ,𝑁𝐸𝑆𝑆
]

 (7) 

Where, kinv,i represents the startup voltage coefficient of the 

ith energy feedback system; kch,i and kdch,I represent the 

charging and discharging voltage coefficients of the ith 

energy storage system, respectively. 𝑘𝑖𝑛𝑣,𝑖、𝑘𝑐ℎ,𝑖、𝑘𝑑𝑐ℎ,𝑖 ∈
(−1,1). 

 

The action space is re-normalized as shown in the equation: 

 

𝑈𝑖𝑛𝑣,𝑖 = (𝑈𝑏𝑟 + 𝑈𝑑0)/2 + 𝑘𝑖𝑛𝑣,𝑖 × [(𝑈𝑏𝑟 − 𝑈𝑑0)/2]

𝑈𝑐ℎ ,𝑖 = (𝑈𝑏𝑟 + 𝑈𝑑0)/2 + 𝑘𝑐ℎ,𝑖 × [(𝑈𝑏𝑟 − 𝑈𝑑0 )/2]

𝑈𝑑𝑐ℎ ,𝑖 = (𝑈𝑑0 + 𝑈𝑇𝑚𝑖𝑛)/2 + 𝑘𝑑𝑐ℎ,𝑖[(𝑈𝑑0 − 𝑈𝑇𝑚𝑖𝑛)/2]𝑇𝑚𝑖𝑛

 (8) 

Where, Ubr represents the onboard braking resistor's startup 

voltage; Ud0 represents the no-load voltage of the rectifier 

unit. 

 

3.4 Reward Function 

 

The agent's goal is formally represented as a special signal 

called a reward, which is transmitted from the environment to 

the agent. In the urban rail traction power supply system, the 

states of the traction substations at different times are 

independent. The reward function r in this paper is defined 

based on the energy consumption evaluation indicator, as 

shown in the equation (9). Rp is used for constant optimization 

effects and Rn is used to apply penalties when constraints are 

not satisfied. 

 𝑟 = 𝑅𝑝 − 𝑅𝑛 (9) 

 𝑅𝑝 = (𝑃𝑇𝑅
𝑟𝑒𝑓 − 𝑃𝑇𝑅)/1000 (10) 

Where, represents the reference system's current step traction 

power, and PTR represents the agent's current step traction 

power. 

 

When the control parameters issued by the agent at this step 

cause the traction network voltage or rail potential of the 

power supply system to exceed the limit, the system will 

feedback a large negative reward as a penalty to the agent, as 

expressed in the equation (11): 

 𝑅𝑛 = {
0 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑅𝑓𝑎𝑖𝑙 𝑑𝑖𝑠𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (11) 

This design provides clear and comprehensive guidance for 

the agent to learn a reasonable strategy in the real-time 

operation optimization of the integrated energy feedback 

urban rail traction power supply system. 

 

4. Case Study 
 

4.1 Project Overview 

 

To verify the effectiveness of the real-time operation 

optimization model for the integrated storage and feedback 

traction power supply system proposed in this paper, a 

flexible traction power supply simulation system was built 

using a real-world subway line as an example, and a deep 

reinforcement learning agent was trained offline. 

 

The subway project's line topology is shown in Figure 4. The 

traction power supply system uses a centralized DC 1500V 

contact rail system. The total length of the line is 59.55 km, 

with 2 main substations (MS1 and MS2), 18 traction 

substations (TS1-TS18), and 7 step-down substations 

(SS1-SS7). Among the traction substations, there are two 

types of equipment installations: rectifier units (RU) with 

energy feedback systems (EFS) and rectifier units with energy 

storage systems (ESS). Except for substations TS7 and TS8, 

all other substations are equipped with stations. The power 

supply system parameters are shown in Table 1, and the 

operational line uses the "4B" train formation, with train 

parameters shown in Table 2. The full-day operating schedule 

is shown in Table 3. 
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Figure 4: Subway Line Power Supply 

Table 1: Power Supply System Parameters 
Parameters Value 

Contact rail resistance (Ω/km) 0.0083 
Rail resistance (Ω/km) 0.02 

Rail-to-Earth Transition Resistance (Ω/km) 15 

Rated power of rectifier unit (kV・A) 1950 

Capacity of energy storage system/(MJ) 160 

Maximum charging and discharging power /kW 3000 
Charge/discharge efficiency/(%) 93 

Maximum of SOC 1 

Minimum of SOC 0.25 
Rated power of energy feedback system/kW 3000 

Rated capacity of step-down substation/(kV・A) 1250 

Average load of step-down transformer /% 10(spring) 
Simulation step /s 1 

Table 2: Train Parameters 
Parameters Value 

Train formation 3M1T 

Load AW2 
Weight/t 167.88 

Rated voltage /V 1500 

Maximum braking voltage /V 1800 
Pollination method contact rail 

Auxiliary power /kW 46(spring) 
Structural speed /(km/h) 120 

Table 3: Full-Day Operation Schedule 
Departure 

interval (s) 
Operating hours 

Running 

time (h) 

600 5:00-6:00, 21:00-23:00 3 
240 6:00-7:00, 9:00-13:00, 16:00-17:00, 19:00-21:00 8 
120 7:00-9:00 2 

300 13:00-16:00 3 

 

4.2 Operation Optimization Results Analysis 

 

Among the 18 traction substations on the line, 12 substations 

are equipped with energy feedback systems, and 6 substations 

are equipped with energy storage systems. In the reference 

system, the charging voltage of energy storage system is 

1750V, the discharging voltage is 1600V, and the startup 

voltage of energy feedback system is 1750V. 

 

Using the full-day operating schedule from Table 3, the agent 

was trained with varying train departure intervals as input 

conditions. The agent's iterative process is shown in Figure 5, 

where the light blue curve represents the cumulative reward at 

each iteration, and the dark blue curve represents the average 

reward. 

 
Figure 5: Iterative Process 

From Figure 5, it can be seen that the agent stabilizes after 800 

iterations, with an average reward of 50.6057. The reward 

varies significantly with different departure intervals, 

indicating that the arrangement of trains differs under various 

departure intervals, leading to substantial differences in 

energy utilization between trains and different energy-saving 

potential. The agent increases the regenerative braking energy 

utilization rate and reduces the traction energy consumption 

of the power supply system by changing the startup voltage of 

the regenerative braking energy utilization device, thereby 

influencing the energy flow on the line every second. 

 

Taking a 240-second departure interval as an example, the 

hourly energy averages in the reference system and the 

optimized system by the agent are shown in Table 4. 

Table 4: Hourly energy averages 

Case 
WTR 

/kWh 
Wres  

/kWh 
WF 

/kWh 
WR 

/kWh 
WCH 

/kWh 
WDCH 

/kWh 

Reference 9206 354 370 144 578 500 
Optimization 8845 29 671 47 1022 884 

 

Compared to the reference system, WTR in the optimized 

system is reduced by 361 kWh, achieving an energy-saving 

rate of 3.92%. The energy that was originally consumed by 

the onboard braking resistors is now utilized by the energy 

feedback system and energy storage systems after 

optimization. Additionally, the real-time optimization system 

changes the energy flow on the line every second. As the 

amount of feedback energy increases, the power sent back by 

the main substation actually decreases, significantly 

improving the utilization of regenerative braking energy and 

reducing the traction energy consumption of the power supply 

system. 

 

At a 240-second departure interval, the energy distribution at 

the 217th second of the line is shown in Table 5. During this 

second, multiple trains on the line are braking. In the reference 

system, the regenerative braking energy is primarily feedback 

to the AC side by the energy feedback system, but the 

step-down load cannot absorb the energy, resulting in a large 

amount of power being sent back to the main substation. This 

not only wastes regenerative braking energy but also impacts 

the external grid. In the optimized system, the agent lowers 

the charging voltage of the energy storage system and 

increases the EFS's startup voltage, allowing most of the 

regenerative braking energy to be absorbed by the energy 

storage system for use by subsequent traction trains. This 

significantly reduces the feedback power, and as a result, the 

power sent back to the main substation is also reduced. 

Table 5: 217th second energy distribution 

Case 
PTR 

/kW 

Pres 

/kW 

PF 

/kW 

PR 

/kW 

PCH 

/kW 

PDCH 

/kW 

Reference -1543 0 5754 4211 454 0 
Optimization -1065 0 1708 643 4479 0 

 

Using the full-day operating schedule from Table 3, the agent 

optimized the power supply system's control parameters for 

the entire day's operation. The hourly traction energy 

consumption of the power supply system under different 

departure intervals is shown in Table 6. The total traction 

energy consumption of the reference system for the entire day 

is 171 MWh, while the total traction energy consumption of 

the optimized system is 166 MWh. The system's traction 
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energy consumption is reduced by 4994 kWh, achieving an 

energy-saving rate of 2.92%. 

Table 6: Comparison of full-day energy consumption 
WTR/kWh 120 150s 240s 300s 600s 

Reference 17295 14307 9206 7416 3965 

Optimization 17215 13984 8845 7172 3776 

 

5. Conclusion 
 

This paper presents an integrated energy feedback urban rail 

traction power supply system as the operating environment, 

with traction substation and train operation data serving as 

states, and the control parameters of regenerative braking 

energy utilization devices as actions. The traction energy 

consumption of the power supply system is used to define the 

reward function. A real-time operation optimization model 

based on the Markov decision process is developed, and a 

deep reinforcement learning (DRL) agent is employed to 

optimize the control parameters of the regenerative braking 

energy utilization devices in real-time. The proposed system 

achieves a 2.92% reduction in traction energy consumption 

over the course of a full day’s operation. 
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