
Implementing Micro Front End Architecture:
Vue.Js' Diversified Strategy

Muhammed Rafi

Abstract: This paper presents an in - depth exploration of micro - frontend architectures, a burgeoning methodology designed to address

the complexities and scalability challenges inherent in large - scale web application development. As digital projects expand, they often

become unwieldy, with increased build times, extensive unit testing requirements, and larger team sizes, all of which contribute to

maintenance and collaboration difficulties. This research argues for the subdivision of monolithic applications into smaller, more

manageable projects, facilitated by micro - frontends, to enhance team performance and accelerate product delivery to end - users.

However, the integration of numerous features within a single application can complicate the division into smaller projects and teams.

Micro - frontends emerge as a strategic solution to this dilemma, not as a framework or library, but as an architectural approach that

divides large applications into manageable segments. These segments, or micro - frontends, are then orchestrated to appear as a cohesive

application to the end - user. The paper outlines eight distinct strategies for implementing micro - frontends, regardless of the underlying

technology: Webpack Module Federation, Iframes, NGINX, Web Components, React Component Libraries, Monorepos, Utilization of

Frameworks, and Custom Orchestrators. Through a high - level architectural overview, this study sets the stage for a series of detailed

analyses on each approach, aimed at providing a comprehensive framework for deploying micro - frontend architectures effectively.

Keywords: Vue. js, Micro - Frontends, Software Architecture, Programming, Software Development

1. Introduction

Through my extended research and practical experience with

micro - frontends, I've amassed a considerable body of

knowledge that I am eager to disseminate. The challenge of

managing and collaborating on increasingly large projects is

a notable concern within the development community. As

projects scale, they often encounter heightened build times,

expanded unit tests, and growing team sizes, culminating in a

complexity that becomes nearly unmanageable.

The argument for segmenting larger projects into smaller,

more manageable units is compelling, particularly from the

perspective of enhancing team performance and expediting

the delivery of products to end - users. However, the reality is

that the complexity of modern applications, replete with

myriad features, frequently renders the division into smaller

teams and projects unfeasible. While the idea of assigning

separate teams to individual features may appear as a solution,

the logistics involved in team management, feature

integration, and conflict resolution present significant

challenges. Micro - frontends offer a promising avenue to

circumvent these obstacles.

Micro - frontends should not be misconstrued as merely

another framework or library. Instead, they represent a

sophisticated architectural methodology that enables the

decomposition of large, cumbersome applications into

smaller, more manageable components. These components

can then be orchestrated in such a manner that they are

presented seamlessly as a unified application to the end - user.

My research elucidates eight distinctive strategies for the

implementation of micro - frontends, transcending

technological boundaries. These strategies include: Webpack

Module Federation, Iframes, deployment via NGINX, Web

Components, React Component Libraries, Monorepos,

leveraging existing Frameworks, and the development of

Custom Orchestrators. This paper will provide a preliminary

overview of the high - level architecture of these strategies,

setting the groundwork for a series of detailed follow - up

discussions dedicated to the comprehensive implementation

of each approach.

• Webpack Module Federation

• Iframes

• Through NGINX

• Web Components

• React Component Libraries

• Monorepos

• Customized Orchestrator

1) Webpack Module Federation

The architecture of a singular application should be composed

of numerous independent builds, each functioning as a

standalone unit. This design principle ensures that these

builds operate without interdependencies, allowing for their

development and deployment to proceed autonomously. Such

a structure not only facilitates parallel development streams

but also enhances the flexibility and scalability of the

deployment process, enabling updates and modifications to be

made to one part of the application without necessitating

adjustments to others.

Webpack Module Federation

In the context of modular application architecture, there exist

two categories of modules: local and remote. Local modules

refer to the components that are part of the current build or

application in development, essentially constituting the

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-2, February 2025

12

DOI: 10.53469/jrse.2025.07(02).03

https://www.ijsr.net/

immediate codebase. On the other hand, remote modules are

external components that must be imported into the current

application or build, originating from separate development

environments or builds.

Each build functions both as a self - contained unit and as a

consumer of other builds, effectively adopting the role of a

container. This dual capability enables any given build to

access and utilize functionalities from other modules by

importing them from their respective containers.

Furthermore, the architecture supports the nesting of

containers, allowing for a hierarchical organization where

containers can incorporate modules from other nested

containers, thereby fostering a highly flexible and

interconnected module system.

Moreover, this model accommodates circular dependencies

among containers, wherein two or more containers rely on

each other's functionalities. Such a structure ensures a

versatile and dynamic interaction between different parts of

the application, enabling developers to create complex and

highly integrated software solutions.

Module Federation (https: //webpack. js.

org/concepts/module - federation/)

2) IFRAMES

Iframes represent a feature in HTML that allows the

incorporation of one HTML document within another. This

embedding is facilitated through the use of the iframe tag,

which specifies the source document to be displayed within

the confines of the parent document. An iframe can host any

content chosen by the developer, and its display is governed

by the dimensions—width and height—assigned to the frame

within the parent document. This flexibility makes iframes a

powerful tool for integrating varied content, such as videos,

maps, or even other web pages, directly into a web page's

layout.

• Iframe example (https: //gist. github.

com/bbachi/37e1e1eb3019d9e50cd11ca8c533d823#file -

iframe - html)

In the provided example, two separate React applications are

being executed simultaneously on ports 3000 and 3001. These

applications serve as the content sources for the iframes

specified in the document mentioned previously. Upon

loading this document in a web browser, the result is the

display of both applications side by side within the same

browser window, illustrating a straightforward method of

content integration via iframes. While this instance serves as

a basic demonstration of the concept, a more advanced and

detailed example will be presented in forthcoming posts,

aiming to further explore and elucidate the potential of iframe

integration within web development.

Micro Frontends with Iframes

This strategy is particularly advantageous for projects

designed to consolidate all functionalities within a single

page, eliminating the need for navigation between different

pages. Communication between various components or

functionalities is facilitated through the Window object,

allowing for seamless interaction within the unified page

environment. Such an approach ensures that users can access

and interact with multiple features without the need to

navigate away, providing a streamlined and cohesive user

experience.

3) THROUGH NGINX

The described methodology may not be the most effective

when the project involves complex navigation and routing

mechanisms. While it is possible to implement this strategy,

it necessitates the creation of an additional "shell" project to

handle navigation intricacies. In such cases, NGINX can

serve a dual role as both a web server and a reverse proxy,

managing the delivery of static content efficiently. Utilizing

NGINX's capabilities, one can configure routing to direct

users to the correct micro - application based on the context

path. For instance, in the illustrated setup, an NGINX web

server acts as an intermediary, directing traffic to specific

micro frontends according to the defined routing rules—such

as directing requests for "/users" to the Micro Users app, and

requests for "/customers" to the Micro Customers app. This

arrangement allows for a modular, scalable approach to

managing different segments of a web application, each

serving a distinct function or serving different user bases,

while maintaining a cohesive overall user experience.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-2, February 2025

13

https://www.ijsr.net/
https://gist.github.com/bbachi/37e1e1eb3019d9e50cd11ca8c533d823#file-iframe-html
https://gist.github.com/bbachi/37e1e1eb3019d9e50cd11ca8c533d823#file-iframe-html
https://gist.github.com/bbachi/37e1e1eb3019d9e50cd11ca8c533d823#file-iframe-html

NGINX routing different apps based on context path

Here is the sample NGINX configuration file. We define

block directive location for each Micro Frontend and load

appropriate app based on the location path or context root.

nginx. conf (https: //gist. github.

com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file -

nginx - conf)

This strategy is particularly well - suited for projects that

require navigation or routing and are structured as a collection

of multiple applications, each corresponding to distinct

features. In such setups, communication and data exchange

between the various applications are facilitated with a state

management tool like Vuex, alongside local storage

mechanisms. As users transition from one application to

another within this ecosystem, the state of the application—

including user interactions, preferences, and data—is

preserved and conveyed through these tools. This ensures a

seamless user experience, with the application maintaining

continuity and context across navigational transitions, as

depicted in the accompanying diagram. Such an architecture

enables the effective compartmentalization of features into

discrete applications, while still providing a unified and

cohesive interface for the end - user.

Communication between Micro Frontends

A notable drawback of this modular approach is the

occurrence of a page refresh each time there is a transition

between applications. This can interrupt the fluidity of the

user experience, as each app switch involves reloading the

webpage. To mitigate this and ensure a consistent user

interface across the different applications, it's common to

replicate shared components—like headers and footers—

within each app. By doing so, even though the page refreshes,

the overall layout remains familiar to the user, helping to

maintain a sense of continuity and cohesion throughout the

navigation process. This strategy helps in balancing the

modular benefits of the approach with the need for a stable

and uniform user experience.

4) Web Components

Web components represent a synergistic integration of

various technologies designed to foster the creation of

reusable and modular elements within web development.

Central to the ethos of the DRY (Don't Repeat Yourself)

principle, web components aim to streamline development

processes by eliminating redundant code. This is achieved

through a trio of core technologies:

Custom Elements: These enable developers to define and

use new types of HTML elements, extending the language to

include custom functionality and styling. Custom elements

can be placed anywhere on a web page, offering a high degree

of flexibility in design and functionality.

Shadow DOM: This technology provides a means for

encapsulating a piece of the document tree within a separate

DOM, distinct from the main document DOM. This isolation

allows developers to write styles and scripts that do not

conflict with the rest of the web page, promoting a modular

architecture.

HTML Templates: HTML templates facilitate the definition

of markup structures that are meant to be used repeatedly.

Using the <template> tag, developers can create chunks of

HTML that can be cloned and inserted into the document as

needed, without being rendered until explicitly invoked.

Together, these technologies empower developers to craft

sophisticated, maintainable, and reusable web components,

significantly enhancing the efficiency and quality of web

development projects. For further details on web components

and their implementation, additional resources and

documentation are readily available to explore.

Micro Frontends with web components

Here is an example of a custom component. With this

approach, we can convert each micro app into a custom

component and place it accordingly on the page.

<my - message message="Hello, How are you!!"></my -

message>

All the browsers don’t support these web components. You

need to add polyfills for unsupported versions.

5) VUE Component Libraries

Within this methodology, each micro - frontend is developed

as a Vue. js library, which is then packaged and distributed as

a node module into a private repository. This encapsulation

strategy allows for the modularized components to be easily

shared and reused across different parts of the application or

even across multiple projects. To integrate these micro -

frontends into the main application, a "shell" application is

employed. This shell application is designed to dynamically

import or lazily load (in the case of Angular projects) the

necessary micro - frontend libraries from the private

repository as required, enhancing performance and reducing

initial load times.

Illustrated in the diagram below, the concept is applied to

three separate micro - applications. Each of these applications

is transformed into a library, subsequently stored in a

repository. This setup not only streamlines the development

process by promoting reusability and modularity but also

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-2, February 2025

14

https://www.ijsr.net/
https://gist.github.com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file-nginx-conf
https://gist.github.com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file-nginx-conf
https://gist.github.com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file-nginx-conf
https://angular.io/api/common/http/HttpErrorResponse#message

facilitates a more efficient loading strategy. By adopting lazy

loading or dynamic imports, the main application can request

and load these micro - frontends on - demand, ensuring that

users experience faster initial access times and that resources

are consumed more judiciously. This approach exemplifies a

modern architectural pattern that leverages the flexibility and

scalability of micro - frontends within a cohesive ecosystem.

Micro Frontends with Vue Libraries

We can push our project as a node module with this

commandnpm push app1We can import these libraries with

dynamic imports as below.

• Example Vue file (https: //gist. github.

com/bbachi/3ce447fd98cd99ed0a385ad5ebb84801#file -

example - vue)

In this architectural framework, the issue of communication

between different components is effectively mitigated

because all the individual libraries, once transformed into

micro - frontends, are integrated into the same overarching

project or application. This consolidation ensures that despite

being developed as separate entities, the micro - frontends can

interact seamlessly within the unified environment of the

main application. The shared context and common runtime

allow for straightforward data exchange and coordination

between the components, facilitating a cohesive and

synchronized operation. This approach not only simplifies the

communication strategy but also enhances the application's

maintainability and scalability by leveraging the modular

nature of micro - frontends while maintaining a unified

communication channel.

6) Monorepos

The monorepo strategy in software development is an

approach where multiple interconnected projects are housed

within a single repository. This methodology streamlines the

management of shared code, eliminating the need to distribute

common functionalities across separate repositories as

libraries or modules for subsequent inclusion.

As depicted in the diagram below, a monorepo encompasses

all projects along with their shared code. This configuration

simplifies the development process by negating the

requirement to externalize reusable code into distinct

libraries. Instead, both the individual projects and the code

they share reside within the same repository, facilitating

easier access, modification, and maintenance of shared

resources. This co - location of projects and shared code in a

monorepo enhances collaboration among teams, ensures

consistency across projects, and streamlines the build and

deployment processes, thereby offering a cohesive and

efficient framework for managing large - scale software

developments.

Micro Frontends with Monorepos

In a monorepo setup, a notable challenge arises in that every

developer is required to clone the entire repository, even if

their work only pertains to a few directories or components

within it. This comprehensive checkout can lead to

inefficiencies, particularly for those who only need access to

a small segment of the repository for their tasks. Additionally,

configuring build and deployment pipelines presents

complexities under this model, given that all projects reside

within a single repository. The intertwined nature of multiple

projects in one repository complicates the task of setting up

distinct pipelines tailored to each project's specific build and

deployment requirements. Developers must meticulously

define and manage these pipelines to ensure they accurately

reflect the needs of each project while navigating the shared

environment of the monorepo. This intricacy underscores the

necessity for careful planning and execution in the adoption

and management of a monorepo strategy, balancing its

benefits with the operational challenges it introduces.

7) Customized Orchestrator

In this architectural approach, plain JavaScript files are

utilized as orchestrators to manage the workflow of various

micro - projects within the ecosystem. These orchestrator

scripts are responsible for coordinating the overall operation,

ensuring that each micro - project functions as part of a

cohesive whole, despite being deployed independently. This

independence of deployment allows for flexibility and

scalability, as updates and modifications can be made to

individual components without affecting the entirety of the

system.

The orchestrator's role extends to dynamically loading each

project in response to specific URL requests. This means that

the orchestrator determines which micro - project to serve

based on the user's navigation, seamlessly integrating

disparate projects into a unified user experience. This

mechanism not only enhances the responsiveness and

efficiency of the application but also allows for a modular

structure where components can be developed, tested, and

deployed in isolation, yet operate harmoniously within the

larger application framework.

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-2, February 2025

15

https://www.ijsr.net/
https://gist.github.com/bbachi/3ce447fd98cd99ed0a385ad5ebb84801#file-example-vue
https://gist.github.com/bbachi/3ce447fd98cd99ed0a385ad5ebb84801#file-example-vue
https://gist.github.com/bbachi/3ce447fd98cd99ed0a385ad5ebb84801#file-example-vue

Micro Frontends with Customized Orchestrator

In the orchestrator, identified in this context as some_system.

js, it's possible to establish a global namespace along with

specific objects dedicated to facilitating communication

across the entire application ecosystem. This setup creates a

universally accessible communication layer, whereby these

globally defined objects become the medium through which

data is transmitted and shared among the various projects

within the system. This approach effectively allows for the

creation of a centralized communication hub, enabling

disparate projects to interact with one another by sending and

receiving data through the global objects. Such a mechanism

is crucial for ensuring that, despite the physical separation and

independent operation of individual projects, there remains a

cohesive and unified method for data exchange and

interaction across the application. This strategy not only

simplifies the process of inter - application communication

but also promotes a modular architecture where components

can remain loosely coupled yet functionally integrated.

2. Summary

• Use of Iframes: Embeds separate applications within a

parent document, allowing for isolation but causing

refresh with each application switch.

• Webpack Module Federation: Shares dependencies

dynamically among various builds at runtime, enabling

applications to be both independent and interconnected.

• Monorepo Strategy: Houses all projects and shared

code in a single repository, simplifying code sharing but

complicating pipeline configuration and requiring

comprehensive checkout by developers.

• Orchestration with Plain JavaScript: Employs

JavaScript files to manage and coordinate the workflow

of micro - projects, with each project deployed

independently and loaded dynamically based on URL

navigation.

• Global Namespace for Communication: Establishes a

global namespace in the orchestrator for inter -

application communication, allowing data to be

exchanged seamlessly among all projects.

• Utilization of NGINX for Routing: Leverages NGINX

as a web server or reverse proxy to serve static content

and route to appropriate micro - applications based on the

context path, facilitating modularization.

• Vue Libraries as Node Modules: Packages each micro

- frontend as a Vue. js library into a node module,

enabling easy sharing and reuse across projects through

a private repository.

• Dynamic Imports and Lazy Loading: Enhances

performance by dynamically importing or lazily loading

micro - frontends as needed, reducing initial load times

and resource consumption.

3. Conclusion

In conclusion, the exploration of various approaches to

implementing micro frontends reveals a diverse landscape of

strategies, each with its unique strengths and challenges.

From the isolation and integration capabilities of using

Iframes and Webpack Module Federation to the centralized

management and code sharing offered by the Monorepo

Strategy, developers are equipped with a toolkit for crafting

scalable and maintainable web applications. The

orchestration of micro - projects through plain JavaScript and

the facilitation of seamless inter - application communication

via a global namespace underscore the importance of efficient

coordination and data exchange. Meanwhile, leveraging

NGINX for routing and packaging Vue libraries as node

modules demonstrates the flexibility and modularity

achievable in micro frontend architectures. The adoption of

dynamic imports and lazy loading further enhances

application performance, showcasing the potential for

optimizing load times and resource utilization. Collectively,

these approaches embody the evolving paradigm of web

development, highlighting the potential for creating robust,

modular, and user - centric web applications through the

strategic implementation of micro frontends.

References

[1] JavaScript Documentation https: //developer. mozilla.

org/en -

US/docs/Learn/Getting_started_with_the_web/JavaScri

pt_basics

[2] Module Federation https: //webpack. js.

org/concepts/module - federation/

[3] Iframes https: //developer. mozilla. org/en -

US/docs/Web/HTML/Element/iframe

[4] VueJS Documentation https: //vuejs.

org/guide/introduction. html

[5] Web Components https: //developer. mozilla. org/en -

US/docs/Web/API/Web_components

 Journal of Research in Science and Engineering (JRSE)
 ISSN: 1656-1996 Volume-7, Issue-2, February 2025

16

https://www.ijsr.net/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html

