A Discussion on a New Concept of Open Sets in Simple Extended Topological Spaces

R. Sujeetha

PG Student, Department of Mathematics, Nirmala College for Women, Coimbatore, India *sujeearg0310@gmail.com*

Abstract: The purpose of this article is to introduce, and study the newly proposed concept of B^+C open set in simple extension *topology. In this article we discuss some of the properties of B⁺C open set, and obtain certain characterization and preserving theorems of* B^+C -interior and B^+C -closure.

Keywords: b^+ open set, B^+ C-open set

1. Introduction

The class of generalized open sets in a topologicalspaceis calledb-open sets was introduced by Andrijevic [1]. H. Z. Ibrahim [2] introduced the concept ofa BC-open set. In 1968, Velicko [10] introduced the concept of θ -open. Di Maio and Noiri $[11]$ introduced the concept of semi- θ -open. R. H. Yunis^[12] introduced the concept of properties of θ semi open sets. In 1963, Levine [5] introduced the concept of simple extension of a topology $\tau(B) = \{(B \cap 0) \cup$ O′/O,O′∈ τ. F. Nirmala Irudayam [3] introduced the concept of $b⁺$ -open sets in extended topological spaces. The class of $b⁺$ -open sets is contained in the class of semi-pre $⁺$ open sets</sup> and contains all semi⁺open and pre⁺open sets. Joseph and Kwack [9] introduced the concept of θ -semi open sets using semi-open sets. It is well-known that a space X is called T_1 if for, each pair of distinct points x, y of X there exists a pair of open sets, one containing x but not y and the other containing y but not x, as well as is T_1 if and only if for any point $x \in X$, the singleton set $\{x\}$ is closed. In this article, (X,τ) stand for topological spaces with no separation axioms assumed unless otherwise stated.

2. Preliminaries

Definition 2.1

A subset A of a space X is called b^+ open if A \subseteq Int($Cl^+(A) UCl^+$ Int(A)). The family of all b^+ open subsets of a simple extended topological space (X, τ^+) is denoted by $B^+O(X,\tau^+)$ or (Briefly. $B^+O(X)$).

Lemma: 2.2

For a subset A of a space (X, τ) , the following conditions are equivalent:

- 1) $A\in RO(X)$.
- 2) $A \in \tau \cap SC(X)$.
- 3) A $\in \alpha O(X) \cap SC(X)$.
- 4) A \in PO(X) \cap SC(X).

Definition: 2.3

A subset A of a space X is called θ -semi-open if for each x∈A, there exist a semi-open set G such that each $x \in G$ ⊂ $Cl(G) \subset A$.

Definition: 2.4

A subset A of a space X is called **semi-** θ **-open** if for each x ϵ A,there exist a semi-open set G such that each $x \in G \subset \text{SCI}(G) \subset A$.

Definition: 2.5

A subset A of a space X is called θ -open if for each x∈A, there exist an open set G such that each $x \in G$ $Cl(G) \subset A$.

Theorem: 2.6

If X is s^{**}-normal, then $\mathcal{S}\theta O(X) = \theta O(X) = \theta SO(X)$.

We recall that a topological space X is said to be extremely disconnected, if Cl(G) is open for every open set G of X.

Definition: 2.7

A space X is called locally indiscrete if every open subset of X is closed.

Theorem: 2.8

A space X is extremely disconnected if and only if $\delta O(X) = \theta SO(X)$.

Theorem: 2.9

A space X is extremely disconnected if and only if $RO(X) =$ $RC(X)$.

3. On B⁺C-Open set

This section introduces a new class of $b⁺$ -open sets namely $B⁺C$ -open sets in simple extended topological spaces and various properties of this novel set are studied.

Definition: 3.1

A subset A of a space (X, τ^+) is called B^+ Copen, if for each $x \in A \in B^+O(X)$, there exists a closed set F such that $x \in F \subset A$.

The family of all B^+ Copen subsets is denoted by $B^+CO(X)$ of a simple extended topological space (X, τ^+) .

Theorem: 3.2

A subset A of a space X is B^+C open, if and only if A isb⁺open and it is a union of closed sets in (X, τ^+) .ie) $A=U F_\alpha$.

That is A= $\cup F_{\alpha}$ where A is b^{+} open set, and F_{α} is closed sets in (X, τ^+) for each α .

Proof:

The proof is obvious from the definition.

Remark: 3.3

Every B^+C open subset of a space (X, τ^+) is b^+ open.

Remark: 3.4

The converse of the above remark need not be true, as shown inthe following example,

Example:3.5

Consider $X = \{1, 2, 3\}$ with the topology $\tau = {\varphi, X, {1}, {2}, {1,2}}$ τ^C={ φ, X, {2,3}, {1,3}, {3}} B = {3}, $\tau^+(B) =$ {(B \cap 0) \cup 0'/0. 0' $\epsilon \tau$ }

Then the family of closed sets are: $\{ \varphi, X, \{1\}, \{2\}, \{2,3\}, \{1,3\}, \{2,3\} \}$

Hence from the definitions we find the following families: B⁺O(X)= { φ, X,{1},{2},{1,2},{1,3},{2,3}} and B⁺CO(X)= { φ , X, {1,3}, {2,3} }

Theorem:3.6

Let $\{A_{\alpha}: \alpha \in \Delta\}$ be a collection of B^+ Copen sets in a simple extended topological space (X, τ^+) , then \cup { A_α : $\alpha \in \Delta$ } is B^+ Copen.

Proof:

Let A_{α} be a B^+C open set for each α , then A_{α} is b^+ open. Hence \cup { A_{α} : $a \in \Delta$ } is b^+ open. Let $x \in \bigcup \{A_\alpha : \alpha \in \Delta\}$, there exist $\alpha \in \Delta$ such that $x \in A_\alpha$. Since A_{α} is b^{+} open for each α , there exists a closed set F. Such that $x \in F \subset A_\alpha \subset \cup \{A_\alpha : \alpha \in \Delta\}.$ So $x \in F \subset \cup \{A_\alpha : \alpha \in \Delta\}.$ Therefore, \cup { A_{α} : $\alpha \in \Delta$ } is $B^{+}C$ open set.

Theorem:3.7

If the family of all b^+ open sets of a space X is a topology on X, then the family of B^+C open sets is also a topology on X.

Proof:

Clearly φ , $X \in B^+CO(X)$ and by Theorem 3.6 the union of any family of B^+C open sets is B^+C open.

To complete the proof it is enough to show that the finite intersection of B^+C open sets is B^+C open set.

Let A and B be two B^+C open sets then A and B are b^+ open sets.

Since $B^+O(X)$ is a topology on X, so $A \cap B$ is b^+ open.

Let $x \in A \cap B$, then $x \in A$ and $x \in B$, so there exists F and E such that $x \in F \subset A$ and $x \in E \subset B$ this implies that $x \in F \cap A$ $E \subset A \cap B$.

Since intersection of closed sets is closed, $F \cap E$ is closed set.

Thus $A \cap B$ is B^+ Copen set.

This completes the proof.

Theorem:3.8

The set A is $B⁺C$ open in the simple extended topological space (X, τ^+) , if and only if for each $x \in A$, there exists a B^+ Copen set B such that $x \in B \subset A$.

Proof:

Assume that A is B^+ Copen set.

Then for each $x \in A$, put A=B is B^+C open set containing X such that $x \in B \subset A$.

Conversely, suppose that for each $x \in A$, there exists a B^+C open set B such that $x \in B \subset A$

Thus $A = \cup B_x$ where $B_x \in B^+CO(X)$ for each x, therefore A is B^+C open set

In the following theorem, the family of $b⁺$ -open sets is identical to the family of $B⁺C$ open sets.

Theorem:3.9

If a space (X, τ^+) is T₁-space, then the families $B^+O(X)$ = $B+CO(X)$.

Proof:

Let A be any subset of a space (X, τ^+) and $A \in B^+O(X)$. If $A = \varphi$, then $A \in B^+CO(X)$. If $A \neq \varphi$, then for each $x \in A$. Since spaceX is T_1 , then every singleton in (X, τ^+) is closed set.

Hence $x \in \{x\} \subset A$ and $A \in B^+ CO(X)$. Thus $B^+O(X) \in B^+CO(X)$, but $B^+CO(X) \subset B^+O(X)$ Therefore $B^+O(X) = B^+CO(X)$.

Definition: 3.10

- 1) Let A be a subset of a simple extension topological space(X, τ^+) is called θ^+ **- open set** if for each $x \in$ X,there exists an open set G such that $x \in G$ ⊂ $(Cl^+(G)) \subset A$.
- 2) Let A be a subset of a simple extension topological space(X, τ^+) is said to be θ^+ - **semi open set** if there exists a θ^+ - open set U of X such that U⊂ A ⊂ $Cl^+(U)$.
- 3) Let A be a subset of a simple extension topological space (X, τ^+) called δ^+ **- open set**, if for each $x \in A$, there exists an open set G such that $x \in G$ Int($Cl^+(G)$) ⊂ A.
- 4) In simple extension topological space (X, τ^+) to be **s+**-normal** if and only if for every semi⁺closed set F and every semi⁺open set G containing F, there exist an open set H such that $F ⊂ H ⊂ Cl^+(H)) ⊂ G$.
- 5) Let A be a subset of a topological space (X, τ^+) is **Regular⁺-Open** if $A=Int(Cl^+(A))$.
- 6) Let A be a subset of a topological space (X, τ^+) is **Regular⁺-Closed** if $A=Cl^+(Int(A))$.

Theorem:3.11

Every θ^+ -semi open set of a space (X, τ^+) is B^+ Copen set.

Proof:

Let A be a θ^+ -semi open set in (X, τ^+) , then for each $x \in A$, there exists a semiopen set G. Such that $x \in G \subset Cl^+(G)$ *A*, so \cup {*x*} ∈ \cup *G* \cup *Cl*⁺(*G*) ⊂ *A* for each *X* ∈ *A*implies that $A = \cup Cl^+(G)$, which is semi-open set and $A =$ \cup $Cl^+(G)$ is a union of closed sets, by Theorem 3.2, A is $B⁺C$ open set.

The following corollaries are the direct implications from the definition $3.10-(5)$ and (6) .

Corollary:3.12

1) Every θ^+ -open set is B^+ Copen.

2) Every regular⁺-closure is B^+C open set.

Theorem:3.13

If a simple extended topological space (X, τ^+) is locally indiscrete, then $S^+O(X) \subset B^+CO(X)$.

Proof:

Let A be any subset of a space X $A \epsilon S^+ O(X)$, if $A = \varphi$ then $A \epsilon B^+ CO(X)$, IfA $\neq \varphi$, then $A \subset Cl^+$ Int(A). Since X is locally indiscrete, then $Int(A)$ is closed HenceInt(A) $\subset A$, this implies that for eachx ϵA , x ϵx (Int $(A) \subset A$). Therefore, A is B^+C open set. Hence $S^+O(X) \subset B^+CO(X)$.

Remark: 3.14

Every open set in (X, τ^+) is semi⁺-open, it follows that if a simple extended topological space (X, τ^+) is T_1 or locally indiscrete, then $\tau^+ \subset B^+ CO(X)$.

Theorem: 3.15

Let (X, τ^+) be a simple extended topological space, if X is regular, then $\tau^+ \subset B^+ \mathcal{CO}(X)$.

Proof:

Let A be any subset of a simple extended topological space (X, τ^{+}) .

Consider A be an open, if $A = \varphi$, then $A \in B^+ CO(X)$.

If $A \neq \varphi$, since X is regular, so for each $x \in A \subset X$, there exists an open set G such that

 $x \in G \subset Cl^+(G) \subset A$. Thus we have $x \in Cl^+(G) \subset A$. Since $A \in \tau^+$ and hence $A \in B^+O(X)$, Therefore $\tau^+ \subset B^+CO(X)$.

Theorem 3.16

Let(X, τ^+) be an extremely disconnected space and if *A* ∈ $\delta^+O(X)$, then *A* ∈ *B*⁺ $CO(X)$.

Proof:

Let $A \in \delta^+O(X)$. If A= φ , then $A \in B^+CO(X)$. If $A \neq \varphi$, since a space X is extremely disconnected. Then $\delta^+O(X) = \theta^+SO(X)$ Hence $A \in \theta^+SO(X)$. But $\theta^+SO(X) \subset B^+CO(X)$ Therefore, $A \epsilon B^+ CO(X)$

Theorem: 3.17

Let (X, τ^+) be an extremelydisconnected space, if $A \epsilon R^+ O(X)$, then $A \epsilon B^+ CO(X)$.

Proof:

Theabove theorem can be proved easily using theorem 3.26, and the conditional that

 $R^+O(X) \subset \delta^+O(X)$

Theorem:3.18

Let (X,τ^+) be an s^{+**}-normal space. If $A\epsilon S^+\theta O(X)$, then $A \epsilon B^+ CO(X)$.

Proof:

Let $A\epsilon S^+\theta O(X)$. If $A = \varphi$, then $A \in B^+CO(X)$. If $A \neq \varphi$, since space X is s^{+**}-normal, $S^+ \theta O(X) =$ $\theta^+ SO(X)$. Hence $A\epsilon\theta S^+O(X)$. But $\theta^+SO(X)\in B^+CO(X)$. Therefore, $A \epsilon B^+ CO(X)$.

Theorem: 3.19

For any subset A of a simple extended topological space (X, τ^+) and $B^+O(X) = S^+O(X)$. The following conditions are equivalent: i) A is regular⁺closed. ii) A is closed and $B⁺Copen$. iii) A is closed and $b⁺$ open. iv) A is α -closed and b^+ open. v) A is pre-closed and b⁺open.

Definition:3.20

A subset B of a space X is called B^+C closed, if X/B is $B⁺C$ open. The family of all $B⁺C$ -closed subsets of a simple extended topological space(X, τ^+) is denoted by $B^+CC(X, \tau^+)$ or (Briefly, $B^+CC(X)$).

Theorem:3.21

A subset B of a space X is $B⁺C$ -closed, if and only if B is a $b⁺$ -closed set, and it is an intersection of open sets.

Proof: Proof is straight forward.

Theorem:3.22

Let $\{b^+_{\alpha}: \alpha \in \Delta\}$ be a collection of B^+C -closed sets in a topological space (X, τ^+) . Then \cap { b_{α} : $\alpha \in \Delta$ } is B^+C -closed.

Proof: The proof is analogous to theorem 3.6 The union of two B^+C -closed sets need not be B^+C closed as is shown by the following counterexample,

Example: 3.23

In Example 3.5, the family of B^+C closed subset of X is $B^{+}CC(X) = {\varphi, X, {1}, {2}}$. Here ${A} \in B^{+}CC(X)$ and {B} $\in B^+CC(X)$, but {1}∪ {2} = {1,2} ∉ B⁺CC(X). All of the following results are true by using complement.

Result: 3.24

If a space (X, τ^+) is T_1 , then $B^+CC(X) = B^+C(X)$.

Result: 3.25

For any subset B of a space (X, τ^+) . If $B \epsilon \theta^+ SC(X)$, then $B \epsilon B^+ CC(X)$.

Corollary: 3.26

Each θ^+ -closed set is B^+C closed.

Corollary: 3.27

Each regular⁺open set is B^+C closed.

Remark: 3.28

If a simple extended topological space (X, τ^+) is locally indiscrete, then $S^+C(X) \subset B^+CC(X)$.

Corollary: 3.29

Let (X, τ^+) be a simple extended topological space, if X is regular or locally indiscrete, then the family of closed sets is a subset of the family of B^+C -closed sets.

Corollary: 3.30

Let (X, τ^+) be any extremelydisconnectedspace. If $B \in$ $\delta^+C(X)$, then $B \in B^+CC(X).$

Corollary:3.31

Let (X, τ^+) be an extremely disconnected space. If $B \in$ $R^+C(X)$, then $B \in B^+CC(X)$.

Corollary:3.32

Let (X, τ^+) be a s^{+**}-normal space. If $B \epsilon S^+ \theta C(X)$, then $B \in B^+CC(X)$.

Theorem:3.33

For any subset B of a space(X , τ^+) and $S^+C(X)=B^+C(X)$. The following conditions are equivalent: i) b⁺ is regular⁺open. ii) b^+ is open and B^+C -closed. iii) b^+ is open and b^+ -closed. iv) b^+ is α -open and b^+ -closed. v) b^+ is preopen and b^+ -closed.

4. Some Properties of *B+* **C Open Sets**

This section is devoted to the study of $B⁺C$ -neighborhood, B^+C -interior, B^+C -closure of B^+C derived set via the newly coined $B⁺C$ -open sets.

Definition:4.1

Let (X, τ^+) be a simple extended topological space and $x \in X$, then a subset N of x is said to be aB^+C -neighborhood of x, if there exists a B^+C -open set U in X such that $x \in \cup \subset N$.

Theorem:4.2

In a simple extended topological space(X, τ^+), a subset A of X is B^+C -open, if and only if it is a B^+C -neighbourhood of each of its points.

Proof:

Let $A \subset X$ be a B^+C -open set,

since for everyx ϵA , x $\epsilon A \subset A$ and A is B^+C -open, this shows that A is a $B⁺C$ - neighbourhood of each of its points.

Conversely, suppose that A is a $B+C$ -neighbourhood of each of its points.

Then for each $x \in A$, there exists $b^+x \in B^+CO(X)$ such that $b^+x \subset A$.

Then $A=U$ $\{b_x : x \in A\}$.

Since each b^+x is B^+C -open.

It follows that A is B^+C -open set.

Theorem: 4.3

For any two subsets A, B of a simple extended topological space (X, τ^+) and $A \subset B$, if A is a B^+ Cneighbourhood of a pointx ϵX , then B is also B^+C -neighbourhood of the same point x.

Proof:

Let A be a B^+C - neighbourhood ofx ϵ Xand $A \subset B$ then by Definition 3.1. There exists a B^+C -open set U such thatx $\epsilon \cup \subset A \subset B$. This implies that B is also a $B⁺C$ neighbourhood of x.

Remark: 4.**4**

Every B^+C neighborhood of a point is ab ab^+ neighbourhood, This follows from the fact that every B^+C open set is b^+ -open.

Definition: 4.5

Let A be a subset of a topological space (X, τ^+) , a pointx ϵX is said to be B^+C -interior point of A, if there exist a B^+C -open set U such thatx $\epsilon \cup \subset A$. The set of all B^+C interior points of A is called $B⁺C$ interior of A and is denoted $byB⁺CInt(A)$

Some properties of the $B⁺C$ -interior of a set are investigated in the following theorem.

Theorem:4.6

For subsets A, B of a space X, the following statements hold, i) B^+C Int(A) is the union of all B^+C -open sets which are contained in A. ii) $B⁺C Int(A)$ is $B⁺C$ -open set in X. iii)A is $B⁺C$ -open if and only if $A = B⁺C Int(A)$. iv) B^+C Int(B^+C Int(A)) = B^+C Int(A). v)B⁺C Int(ϕ) = ϕ andB⁺CInt(X) = X. vi) B^+C Int(A) \subset A. vii) IfA ⊂ B, thenB⁺C Int(A) ⊂ B⁺C Int(B). viii) If $A \cap B = \phi$, then B⁺C Int(A) $\subset B$ ⁺C Int(B). $ix)B⁺C Int(A) \cup B⁺C Int(B) \subset B⁺C Int(A \cup B)$. $x)B^{+}C \text{ Int}(A \cap B) \subset B^{+}C \text{ Int}(A) \cap B^{+}C \text{ Int}(B).$

Proof:

Let $x \in X$ and $x \in B^+C$ Int(A), then by Definition 4.5 There exists a B^+C -open set U such that x∈∪⊂ A ⊂ *B* implies that $x \in U \subset B$. Thus $x \in B^+C$ Int(B). The other parts of the theorem can be proved easily.

Theorem:4.7.

For a subset A of a simple extended topological space(X, τ^+), then B^+C Int(A) $\subset b^+$ Int(A).

Proof:

This follows immediately since all $B⁺C$ -open set is $b⁺$ -open.

Definition: 4.8.

Let A be a subset of a space X. A point $x \in X$ is said to be $B⁺C$ -limit point of A, if for each $B⁺C$ open set U containing x, U \cap (A\{x}) $\neq \varphi$. Then the set of all B^+C -limit points of A is called a B^+C -derived set of A, and is denoted by $B^+CD(A)$.

Theorem:4.9.

Let A be a subset of X, if for each closed set F of X containing x such that

 $F \cap (A \setminus \{x\}) \neq \varphi$, then a point $x \in X$ is B^+C -limit point of A.

Proof:

Let U be any B^+C -open set containing x. Then for each $x \in U \in B^+O(X)$, there exists a closed set F such that $x \in F \subset U$. By hypothesis, we have $F \cap (A \setminus \{x\}) \neq \varphi$.

Hence $U \cap (A \setminus \{x\}) \neq \varphi$.

Therefore, a pointx∈ X is B^+C -limit point of A.

Some properties of B^+C -derived set are stated in the following theorem,

Theorem:4.10.

Let A and B be subsets of a space X. Then we have the following properties: i) $B^+CD(\varphi) = \varphi$ ii) IfX∈ B⁺CD(A), thenx∈ B⁺CD(A\{X}). iii) If $A \subset B$, then B⁺CD(A) ⊂ B⁺CD(B). iv) $B^+CD(A) \cup B^+CD(B) \subset B^+CD(A \cup B)$ v) $B^+CD(A \cap B) \subset B^+CD(A) \cap B^+CD(B)$ vi) $B^+CD(B^+CD(A))\A B^+CD(A)$. vii)B⁺CD(A∪ B⁺CD(A) ⊂ (A∪ B⁺CD(A))

Proof: We only prove vi), vii), and the other resultscan be proved obviously. vi)If $x \in B^+C D(B^+CD(A)\backslash A)$.

U is a $B⁺C$ -open set containing x. U \cap (B⁺CD(A)\{x}) $\neq \varphi$. Let y \in U \cap (B⁺CD(A)\{x})

Since $y \in B^+CD(A)$ and $y \in U$, $U \cap (A) \setminus \{y\} \neq \varphi$. Letz∈ U \cap (A)\{y}). Then, $z \neq x$ for Z∈A and $x \notin A$. Hence $U \cap (A) \setminus \{x\} \neq \varphi$. Therefore, $x \in B^+CD(A)$. vii) Let $x \in B^+CD(A \cup B^+CD(A))$. If $x \in A$ the result is obvious.

Let $x \in B^+CD(A \cup B^+CD(A)\backslash A)$.

Then for B⁺Copen set U containing x, U ∩ (A ∪ $B^+CD(A))\setminus\{x\} \neq \varphi$.

Thus, $U \cap (A \setminus \{x\}) \neq \varphi$ or $U \cap (B^+CD(A) \setminus \{x\}) \neq \varphi$. Now, it follows similarly from i) that $U \cap (A \setminus \{x\}) \neq \varphi$. Hence, $x \in B^+CD(A)$. Therefore, in $\text{+CD}(A) \cup B\text{+CD}(A)$ $\subset A \cup$ $B^+CD(A)$.

Corollary:4.11.

For a subset A of a simple extended topological space (X, τ^+) , then $b^+D(A) \subset B^+CD(A)$

Proof:

It is sufficient to recall that every B^+C -open set is b^+ open.

Definition:4.12

For any subset A in a simple extended topological space (X, τ^+) , the B^+C -closure of A, denoted by $B^+CCl^+(A)$, is defined by the intersection of all $B⁺C$ -closed sets containing A.

Theorem:4.13

A subset A of a simple extended topological space (X, τ^+) is $B⁺C$ -closed if and only if it contains the set of its $B⁺C$ limit points.

Proof:

Assume that A is B^+C -closed

If possible that x is a $B⁺C$ -limit point of A which belongs toX\A, then X\A is B^+C -open set containing the B^+C -limit point of A, therefore A∩ $X \setminus A \neq \varphi$.

which is a contradiction.

conversely, assume that A contains the set of its $B⁺C$ limit points.

For each $x \in X \backslash A$, there exists a B^+C -open set U containing X such that A∩ $U = \varphi$,

that is $x \in U$ ⊂ X\A by Theorem 3.8, X\Ais B^+C -open set Hence A is B^+C -closed set.

Theorem:4.14.

Let A be a subset of a space $(X, \tau^{+}),$ then $B^+CCl^+(A) = AB^+CD(A)$.

Proof:

Since $B^+CD(A) \subset B^+CCl^+(A)$ and $A \subset B^+CCl^+(A)$. Then A∪ $B^+CD(A) \subset B^+CCl^+(A)$, on the other hand, to prove that $B^+CCl^+(A) \subset A \, UB^+CD(A)$. $since B⁺CCl⁺(A)$ is the smallest B⁺C-closed set containing A, so it is enough to prove that $AU B+CD(A)$ is $B+C$ -closed. Let $x \notin A \cup B^+CD(A)$. This implies thatx∉Aandx∉ B⁺CD(A). Sincex∉ $B^+CD(A)$, there exists a B $B⁺C-open$ set $G(x)$ of x which contains no point of A other than x butx∉A. So $G(x)$ contains no point of A, which implies $G(x) \subset X \backslash A$. Again, $G(x)$ is a B⁺C-open set of each of its points. But as $G(x)$ does not contain any point of A, nopoint of $G(x)$ can be a B⁺C-limit point of A. Therefore, no point of $G(x)$ can belong to $B^+CD(A)$. This implies that $G(x) \subset X \ B^+CD(A)$. Hence, it follows that $x \in G(x) \subset X \backslash A \cap X \backslash B^+CD(A) \subset$ $X(A \cup B^+CD(A))$ Therefore, $A \cup B^+CD(A)$ is B^+C -closed. Hence $B^+CCl^+(A) \subset A \cup B^+CD(A)$. ThusB⁺CCl⁺(A)= A ∪ B⁺CD(A).

Corollary:4.15.

Let A be a set in a space (X, τ^+) . A point $x \in U$ is in the B ⁺C-closure of A if and only if A∩ U $\neq \varphi$, for every B⁺C-open set U containing x.

Proof:

Letx∉ $B^+CCl^+(A)$. Thenx∉∩ F, where F is B⁺C-closed with $A \subset F$. So $x \in X \cap F$ and $X \cap F$ is a B⁺C-open set containing x. Hence(X\∩ F) ∩ A⊂ (X\∩ F) ∩ (∩ F) = φ . Conversely, suppose that there exists a $B⁺C$ -open set containing x with $A \cap U = \varphi$.

Then $A \subset X \setminus U$ and $X \setminus U$ is a B⁺C-closed. Hence $x \notin B^+CCl^+(A)$.

Theorem:4.16

Let A be any subset of a space (X, τ^+). If A $\cap U \neq \varphi$ for every closed set F of X containing x, then the point x is in the B^+C -closure of A.

Proof:

Suppose that U be any B^+C -open set containing x, then by Definition 3.1, there exists a closed set F.

Such that $x \in F \subset U$, so by hypothesis,A∩ $F \neq \varphi$ implies A∩ $U \neq \varphi$ for every B^+C open set U containing x.

Therefore $x \in B^+CCl^+(A)$.

Here we introduce some properties of B^+C -closure of the sets.

Theorem:4.17

For subsets A, B of a space (X, τ^+) , the following statements are true.

- 1) The B^+C -closure of A is the intersection of all $B⁺C$ closed sets containing A.
- 2) A⊂ $B⁺CCl⁺(A)$.
- 3) $B^+CCl^+(A)$ is B^+C -closed set in X.
- 4) A is B^+C -closed set if and only if $A = B^+CCl^+(A)$.
- 5) $B^+CCl^+(B^+CCl^+(A)) = B^+CCl^+(A)$.
- 6) $B^+CCl^+(\phi) = \phi$ and $B^+CCl^+(X)=X$.
- 7) If $A \subset B$, then $B^+CCl^+(A) \subset B^+CCl^+(B)$.
- 8) If $B^+CCl^+(A) \cap B^+CCl^+(B) = \phi$, then $AB = \phi$.
- 9) $B^+CCl^+(A) \cup B^+CCl^+(B) \subset B^+CCl^+(A \cup B)$.
- 10) $B^+CCl^+(A ∩ B) ⊂ B^+CCl^+(A) ∩ B^+CCl^+(B)$.

Proof: Obvious.

Theorem:4.18

For any subset A of a topological space (X, τ^+) . The following statements are true.

- 1) $X\setminus B^+CCl^+(A) = B^+CInt(X\setminus A)$
- 2) $X\setminus B^+CInt(A) = B^+CCl^+(X\setminus A)$
- 3) $B^+CCl^+(A) = X\B^+CInt(X\A)$
- 4) $B^+CInt(A)=X\setminus B^+CCl^+(X\setminus A)$

Proof:

We only prove i), the other parts can be proved similarly. For any point $x \in X$, $x \in X \setminus B^+ CCl^+ (A)$ implies that $x \notin \mathbb{C}$ $B^+CCl^+(A)$.

Then for each $G \in B^+CO(X)$ containing x, $A \cap G = \varphi$. Thenx $\in G \subset X \backslash A$, thusx $\in B^+\text{Clnt}(X \backslash A)$.

References

[1] D. Andrijevic, "On b-open sets", Mathmaticki. vesnik,59-64,48(1996).

- [2] H.Z.Ibrahim, "Bc-open sets in topological spaces",Advances in Pure Math.,3,34-40,(2013).
- [3] F.Nirmalairudayam, "Bc-open sets in extended topological spaces", IJAR 2(9),436-442,2016.
- [4] A.S,Majid, "On some topological spaces by using bopen sets",M.S.C. Thesis University of AL-Qadissiya,college of mathematics and computer science,2011.
- [5] N.Levine,"Semi-Open sets and Semi-Continuity in Topological Spaces,"American Mathematical Monthly,Vol.70.No.I.1963,pp.36- 41.doi:10.2307/2312781.
- [6] N.V.Velicko."H-closed Topological Spaces." American Mathematical society.Vol.38.No.2,1968,pp.103-118.
- [7] R. H. Yunis, "Properties of θ -Semi-open sets."Zanco Journal Of Pure and applied sciences,Vol. 19, No.1,2007,pp. 116-122.
- [8] N.K. Ahmed, "On Some Types of Separation Axioms,"M.Bc.Thesis,Salahaddin University ,Arbil,1990.
- [9] J. E. Joseph and M. H. Kwack, "On S-Closed Spaces,"Bulletin of the American mathematical Society, Vol. 80, No.2,1980,pp.341-348.
- [10] N.V. Velicko, "H-Closed Topological Spaces,"American Mathematical Society, Vol. 78, No. 2, 1968,pp. 103-118
- [11] G. Di Maio and T. Noiri, "On s-Closed Spaces." Indian Journal of Pure and Applied Mathematics,Vol.18,No.3.1987,pp.226-233.
- [12] R. H. Yunis, "Properties of θ -Semi-open sets."Zanco Journal Of Pure and applied sciences,Vol. 19, No.1,2007,pp. 116-122.
- [13] M. H. stone, "Applications of the Theory of Boolean Rings to Topology,"Transactions of the American mathematical Society, Vol. 41, No.3,1937,pp.375-481. doi:10.1090/S0002-9947-1937-1501905-7.
- [14] S. G.Crossley and S. K. Hildebrand, "semi-Closure,"Texas Journal of Science,Vol. 22,No.2- 3,1971,pp.99-112.