A Discussion on a New Concept of Open Sets in Simple Extended Topological Spaces

R. Sujeetha

PG Student, Department of Mathematics, Nirmala College for Women, Coimbatore, India sujeearg0310@gmail.com

Abstract: The purpose of this article is to introduce, and study the newly proposed concept of B^+C open set in simple extension topology. In this article we discuss some of the properties of B^+C open set, and obtain certain characterization and preserving theorems of B^+C -interior and B^+C -closure.

Keywords: *b*⁺open set,*B*⁺C-open set

1. Introduction

The class of generalized open sets in a topologicalspaceis calledb-open sets was introduced by Andrijevic [1]. H. Z. Ibrahim [2] introduced the concept of a BC-open set. In 1968, Velicko [10] introduced the concept of θ -open. Di Maio and Noiri [11] introduced the concept of semi- θ -open. R. H. Yunis[12] introduced the concept of properties of θ semi open sets. In 1963, Levine [5] introduced the concept of simple extension of a topology $\tau(B) = \{(B \cap O) \cup$ $0'/0, 0' \in \tau$. F. Nirmala Irudayam [3] introduced the concept of b^+ -open sets in extended topological spaces. The class of b^+ -open sets is contained in the class of semi-pre⁺open sets and contains all semi⁺open and pre⁺open sets. Joseph and Kwack [9] introduced the concept of θ -semi open sets using semi-open sets. It is well-known that a space X is called T₁if for, each pair of distinct points x, y of X there exists a pair of open sets, one containing x but not y and the other containing y but not x, as well as is T_1 if and only if for any point $x \in X$, the singleton set $\{x\}$ is closed. In this article, (X,τ) stand for topological spaces with no separation axioms assumed unless otherwise stated.

2. Preliminaries

Definition 2.1

A subset A of a space X is called b^+ open if $A \subseteq$ Int(Cl⁺(A)UCl⁺Int(A)). The family of all b^+ open subsets of a simple extended topological space (X, τ^+) is denoted by $B^+O(X, \tau^+)$ or (Briefly. $B^+O(X)$).

Lemma: 2.2

For a subset A of a space (X,τ) , the following conditions are equivalent:

1) A∈RO(X).

2) A $\in \tau \cap SC(X)$.

- 3) A $\in \alpha O(X) \cap SC(X)$.
- 4) $A \in PO(X) \cap SC(X)$.

Definition: 2.3

A subset A of a space X is called **\theta-semi-open** if for each x ϵ A, there exist a semi-open set G such that each $x \epsilon G \subset Cl(G) \subset A$.

Definition: 2.4

A subset A of a space X is called **semi-** θ **-open** if for each x \in A,there exist a semi-open set G such that each $x\in G \subset SCl(G) \subset A$.

Definition: 2.5

A subset A of a space X is called θ -open if for each x ϵ A, there exist an open set G such that each x ϵ G \subset Cl(G) \subset A.

Theorem: 2.6

If X is s^{**}-normal, then $S\theta O(X) = \theta O(X) = \theta SO(X)$.

We recall that a topological space X is said to be extremely disconnected, if Cl(G) is open for every open set G of X.

Definition: 2.7

A space X is called locally indiscrete if every open subset of X is closed.

Theorem: 2.8

A space X is extremely disconnected if and only if $\delta O(X) = \theta SO(X)$.

Theorem: 2.9

A space X is extremely disconnected if and only if RO(X) = RC(X).

3. On B⁺C-Open set

This section introduces a new class of b^+ -open sets namely B^+ C-open sets in simple extended topological spaces and various properties of this novel set are studied.

Definition: 3.1

A subset A of a space (X, τ^+) is called B^+C open, if for each $x \in A \in B^+O(X)$, there exists a closed set F such that $x \in F \subset A$.

The family of all B^+C open subsets is denoted by $B^+CO(X)$ of a simple extended topological space (X, τ^+) .

Theorem: 3.2

A subset A of a space X is B^+C open, if and only if A is b^+ open and it is a union of closed sets in (X, τ^+) .ie) $A=\cup F_{\alpha}$.

That is $A=\cup F_{\alpha}$ where A is b^+ open set, and F_{α} is closed sets in (X, τ^+) for each α .

Proof:

The proof is obvious from the definition.

Remark: 3.3

Every B^+C open subset of a space (X, τ^+) is b^+ open.

Remark: 3.4

The converse of the above remark need not be true, as shown in the following example,

Example:3.5

Consider X= {1, 2, 3} with the topology $\tau = \{\varphi, X, \{1\}, \{2\}, \{1,2\}\}\$ $\tau^{C} = \{\varphi, X, \{2,3\}, \{1,3\}, \{3\}\}\$ B ={3}, $\tau^{+}(B) = \{(B \cap O) \cup O'/O, O' \in \tau\}$

Then the family of closed sets are: $\{ \phi, X, \{1\}, \{2\}, \{2,3\}, \{1,3\}, \{2,3\} \}$

Hence from the definitions we find the following families: B⁺O(X)= { ϕ , X, {1}, {2}, {1,2}, {1,3}, {2,3}} and B⁺CO(X)= { ϕ , X, {1,3}, {2,3}}

Theorem:3.6

Let $\{A_{\alpha}: \alpha \in \Delta\}$ be a collection of B^+C open sets in a simple extended topological space (X, τ^+) , then $\cup \{A_{\alpha}: \alpha \in \Delta\}$ is B^+C open.

Proof:

Let A_{α} be a B^+C open set for each α , then A_{α} is b^+ open. Hence $\cup \{A_{\alpha}: a\epsilon\Delta\}$ is b^+ open. Let $x\epsilon \cup \{A_{\alpha}: a\epsilon\Delta\}$, there exist $\alpha\epsilon\Delta$ such that $x \in A_{\alpha}$. Since A_{α} is b^+ open for each α , there exists a closed set F. Such that $x\epsilon F \subset A_{\alpha} \subset \cup \{A_{\alpha}: \alpha\epsilon\Delta\}$. So $x\epsilon F \subset \cup \{A_{\alpha}: \alpha\epsilon\Delta\}$. Therefore, $\cup \{A_{\alpha}: \alpha\epsilon\Delta\}$ is B^+C open set.

Theorem:3.7

If the family of $allb^+$ open sets of a space X is a topology on X, then the family of B^+C open sets is also a topology on X.

Proof:

Clearly $\varphi, X \in B^+CO(X)$ and by Theorem 3.6 the union of any family of B^+C open sets is B^+C open.

To complete the proof it is enough to show that the finite intersection of B^+C open sets is B^+C open set.

Let A and B be two B^+C open sets then A and B are b^+ open sets.

Since $B^+O(X)$ is a topology on X, so $A \cap B$ is b^+ open.

Let $x \in A \cap B$, then $x \in A$ and $x \in B$, so there exists F and E such that $x \in F \subset A$ and $x \in E \subset B$ this implies that $x \in F \cap E \subset A \cap B$.

Since intersection of closed sets is closed, $F \cap E$ is closed set.

Thus $A \cap B$ is B^+C open set.

This completes the proof.

Theorem:3.8

The set A is B^+C open in the simple extended topological space (X, τ^+) , if and only if for each $x \in A$, there exists a B^+C open set B such that $x \in B \subset A$.

Proof:

Assume that A is B^+C open set.

Then for each $x \in A$, put A=B is B^+C open set containing X such that $x \in B \subset A$.

Conversely, suppose that for each $x \in A$, there exists a B^+C open set B such that $x \in B \subset A$

Thus $A = \bigcup B_x$ where $B_x \in B^+CO(X)$ for each x,therefore A is B^+C open set

In the following theorem, the family of b^+ -open sets is identical to the family of B^+C open sets.

Theorem:3.9

If a space (X, τ^+) is T_1 -space, then the families $B^+O(X) = B^+CO(X)$.

Proof:

Let A be any subset of a space (X, τ^+) and $A \in B^+O(X)$. If $A = \varphi$, then $A \in B^+CO(X)$. If $A \neq \varphi$, then for each $x \in A$. Since spaceX is T₁, then every singleton in (X, τ^+) is closed set.

Hence $x \in \{x\} \subset A$ and $A \in B^+ CO(X)$. Thus $B^+O(X) \in B^+CO(X)$, but $B^+CO(X) \subset B^+O(X)$ Therefore $B^+O(X) = B^+CO(X)$.

Definition: 3.10

- 1) Let A be a subset of a simple extension topological space(X, τ^+) is called θ^+ open set if for each $x \in X$, there exists an open set G such that $x \in G \subset (Cl^+(G)) \subset A$.
- 2) Let A be a subset of a simple extension topological space (X, τ^+) is said to be θ^+ semi open set if there exists a θ^+ open set U of X such that $U \subset A \subset Cl^+(U)$.
- 3) Let A be a subset of a simple extension topological space (X, τ^+) called δ^+ open set, if for each $x \in A$, there exists an open set G such that $x \in G \subset Int(Cl^+(G)) \subset A$.
- 4) In simple extension topological space (X, τ⁺) to be s+**-normal if and only if for every semi⁺closed set F and every semi⁺open set G containing F, there exist an open set H such that F⊂ H ⊂ Cl⁺(H)) ⊂ G.
- 5) Let A be a subset of a topological space (X, τ^+) is **Regular⁺-Open** if A=Int($Cl^+(A)$).
- 6) Let A be a subset of a topological space (X, τ^+) is **Regular⁺-Closed** if $A=Cl^+(Int(A))$.

Theorem:3.11

Every θ^+ -semi open set of a space (X, τ^+) is B^+C open set.

Proof:

Let A be a θ^+ -semi open set in (X, τ^+) , then for each $x \in A$, there exists a semiopen set G. Such that $x \in G \subset Cl^+(G) \subset A$, so $\cup \{x\} \in \cup G \cup Cl^+(G) \subset A$ for each $X \in A$ implies that $A = \cup Cl^+(G)$, which is semi-open set and $A = \cup Cl^+(G)$ is a union of closed sets, by Theorem 3.2, A is B^+C open set. The following corollaries are the direct implications from the definition 3.10-(5) and (6).

Corollary:3.12

1) Every θ^+ -open set is B^+C open.

2) Every regular⁺-closure is B^+C open set.

Theorem:3.13

If a simple extended topological space (X, τ^+) is locally indiscrete, then $S^+O(X) \subset B^+CO(X)$.

Proof:

Let A be any subset of a space X $A \in S^+O(X)$, if $A = \varphi$ then $A \in B^+CO(X)$, If $A \neq \varphi$, then $A \subset Cl^+Int(A)$. Since X is locally indiscrete, thenInt(A) is closed HenceInt(A) $\subset A$, this implies that for each $x \in A$, $x \in x(Int(A) \subset A)$. Therefore, A is B^+C open set. Hence $S^+O(X) \subset B^+CO(X)$.

Remark: 3.14

Every open set in (X, τ^+) is semi⁺-open, it follows that if a simple extended topological space (X, τ^+) is T_1 or locally indiscrete, then $\tau^+ \subset B^+CO(X)$.

Theorem: 3.15

Let (X, τ^+) be a simple extended topological space, if X is regular, then $\tau^+ \subset B^+CO(X)$.

Proof:

Let A be any subset of a simple extended topological space (X, τ^+) .

Consider A be an open, if $A=\varphi$, then $A \in B^+CO(X)$.

If $A \neq \varphi$, since X is regular, so for each $x \in A \subset X$, there exists an open set G such that

 $x \in G \subset Cl^+(G) \subset A.$ Thus we have $x \in Cl^+(G) \subset A.$ Since $A \in \tau^+$ and hence $A \in B^+O(X)$, Therefore $\tau^+ \subset B^+CO(X).$

Theorem 3.16

Let (X, τ^+) be an extremely disconnected space and if $A \in \delta^+ O(X)$, then $A \in B^+ CO(X)$.

Proof:

Let $A \in \delta^+ O(X)$. If $A = \varphi$, then $A \in B^+ CO(X)$. If $A \neq \varphi$, since a space X is extremely disconnected. Then $\delta^+ O(X) = \theta^+ SO(X)$ Hence $A \in \theta^+ SO(X)$. But $\theta^+ SO(X) \subset B^+ CO(X)$ Therefore, $A \in B^+ CO(X)$

Theorem: 3.17

Let (X, τ^+) be an extremelydisconnected space, if $A \in R^+ O(X)$, then $A \in B^+ CO(X)$.

Proof:

The above theorem can be proved easily using theorem 3.26, and the conditional that D = 2 + 2 (II)

 $R^+ \mathcal{O}(X) \subset \delta^+ \mathcal{O}(X)$

Theorem:3.18

Let (X,τ^+) be an s^{+**}-normal space. If $A \in S^+ \theta O(X)$, then $A \in B^+ CO(X)$.

Proof:

Let $A \in S^+ \theta O(X)$. If $A = \varphi$, then $A \in B^+ CO(X)$. If $A \neq \varphi$, since space X is s^{+**} -normal, $S^+ \theta O(X) = \theta^+ SO(X)$. Hence $A \in \theta S^+ O(X)$. But $\theta^+ SO(X) \in B^+ CO(X)$. Therefore, $A \in B^+ CO(X)$.

Theorem: 3.19

For any subset A of a simple extended topological space (X, τ^+) and $B^+O(X) = S^+\theta(X)$. The following conditions are equivalent: i) A is regular⁺closed. ii) A is closed and B⁺Copen. iii) A is closed and b⁺open. iv) A is α -closed and b⁺open. v) A is pre-closed and b⁺open.

Definition:3.20

A subset B of a space X is called B^+C closed, if X/B is B^+C open. The family of all B^+C -closed subsets of a simple extended topological space(X, τ^+) is denoted by $B^+CC(X, \tau^+)$ or (Briefly, $B^+CC(X)$).

Theorem:3.21

A subset B of a space X is B^+C -closed, if and only if B is a b^+ -closed set, and it is an intersection of open sets.

Proof: Proof is straight forward.

Theorem:3.22

Let $\{b^+_{\alpha}: \alpha \in \Delta\}$ be a collection of B^+C -closed sets in a topological space (X, τ^+) . Then $\cap \{b_{\alpha}: \alpha \in \Delta\}$ is B^+C -closed.

Proof: The proof is analogous to theorem 3.6 The union of two B^+C -closed sets need not be B^+C closed as is shown by the following counterexample,

Example: 3.23

In Example 3.5, the family of B^+C closed subset of X is $B^+CC(X) = \{\varphi, X, \{1\}, \{2\}\}$. Here $\{A\}\in B^+CC(X)$ and $\{B\}\in B^+CC(X)$, but $\{1\}\cup \{2\} = \{1,2\}\notin B^+CC(X)$. All of the following results are true by using complement.

Result: 3.24

If a space (X, τ^+) is T_1 , then $B^+CC(X) = B^+C(X)$.

Result: 3.25

For any subset B of a space (X, τ^+) . If $B \in \theta^+ SC(X)$, then $B \in B^+ CC(X)$.

Corollary: 3.26

Each θ^+ -closed set is B^+C closed.

Corollary: 3.27

Each regular⁺open set is B^+C closed.

Remark: 3.28

If a simple extended topological space (X, τ^+) is locally indiscrete, then $S^+C(X) \subset B^+CC(X)$.

Corollary: 3.29

Let (X, τ^+) be a simple extended topological space, if X is regular or locally indiscrete, then the family of closed sets is a subset of the family of B^+C -closed sets.

Corollary: 3.30

Let (X, τ^+) be any extremely disconnected space. If $B \in \delta^+ C(X)$, then $B \in B^+ CC(X)$.

Corollary:3.31

Let (X, τ^+) be an extremely disconnected space. If $B \in R^+C(X)$, then $B \in B^+CC(X)$.

Corollary:3.32

Let (X, τ^+) be a s^{+**}-normal space. If $B \in S^+ \theta C(X)$, then $B \in B^+ CC(X)$.

Theorem:3.33

For any subset B of a space(X, τ^+) and $S^+C(X)=B^+C(X)$. The following conditions are equivalent: i) b⁺ is regular⁺open. ii) b⁺ is open and B^+C -closed. iii) b⁺ is open and b⁺-closed. iv) b⁺ is α -open and b⁺-closed. v) b⁺ is preopen and b⁺-closed.

4. Some Properties of *B*+ C Open Sets

This section is devoted to the study of B^+C -neighborhood, B^+C -interior, B^+C -closure of B^+C derived set via the newly coined B^+C -open sets.

Definition:4.1

Let (X, τ^+) be a simple extended topological space and $x \in X$, then a subset N of x is said to be aB^+C -neighborhood of x, if there exists a B^+C -open set U in X such that $x \in \cup \subset N$.

Theorem:4.2

In a simple extended topological space(X, τ^+), a subset A of X is B^+C -open, if and only if it is a B^+C -neighbourhood of each of its points.

Proof:

Let $A \subset X$ be a B^+C -open set,

since for everyx $\in A$, $x \in A \subset A$ and A is B^+C -open, this shows that A is a B^+C - neighbourhood of each of its points.

Conversely, suppose that A is a B^+C -neighbourhood of each of its points.

Then for each $x \in A$, there exists $b^+x \in B^+CO(X)$ such that $b^+x \subset A$.

Then A= \cup { b_x : $x \in A$ }.

Since each b^+x is B^+C -open.

It follows that A is B^+C -open set.

Theorem: 4.3

For any two subsets A, B of a simple extended topological space (X, τ^+) and $A \subset B$, if A is a B^+C neighbourhood of a pointx ϵX , then B is also B^+C -neighbourhood of the same point x.

Proof:

Let A be a B^+C - neighbourhood of $x \in X$ and $A \subset B$ then by Definition 3.1. There exists a B^+C -open set U such that $x \in U \subset A \subset B$. This implies that B is also a B^+C neighbourhood of x.

Remark: 4.4

Every B^+C neighborhood of a point is ab^+ neighbourhood, This follows from the fact that every B^+C open set is b^+ -open.

Definition: 4.5

Let A be a subset of a topological space (X, τ^+) , a point κX is said to be B^+C -interior point of A, if there exist a B^+C -open set U such that $\kappa \cup \subset A$. The set of all B^+C -interior points of A is called B^+C interior of A and is denoted by B^+C Int(A)

Some properties of the B^+C -interior of a set are investigated in the following theorem.

Theorem:4.6

For subsets A, B of a space X, the following statements hold, i) B^+C Int(A)is the union of all B^+C -open sets which are contained in A. ii) B^+C Int(A) is B^+C -open set in X. iii) A is B^+C -open if and only if $A = B^+C$ Int(A). iv) B^+C Int(B^+C Int(A)) = B^+C Int(A). v) B^+C Int(B^+C Int(A)) = B^+C Int(A). v) B^+C Int(Φ) = Φ and B^+C Int(A). vi) B^+C Int(Φ) = Φ , then B^+C Int(X) = X. vi) B^+C Int(A) $\subset A$. vii) If $A \cap B = \Phi$, then B^+C Int(A) $\subset B^+C$ Int(B). ix) B^+C Int(A) $\cup B^+C$ Int(B) $\subset B^+C$ Int(A $\cup B$). x) B^+C Int($A \cap B$) $\subset B^+C$ Int(A) $\cap B^+C$ Int(B).

Proof:

Let $x \in X$ and $x \in B^+C$ Int(A), then by Definition 4.5 There exists a B^+C -open set U such that $x \in \cup \subset A \subset B$ implies that $x \in \cup \subset B$. Thus $x \in B^+C$ Int(B). The other parts of the theorem can be proved easily.

Theorem:4.7.

For a subset A of a simple extended topological space(X, τ^+), then B⁺C Int(A) \subset b⁺Int(A).

Proof:

This follows immediately since all B^+C -open set is b^+ -open.

Definition: 4.8.

Let A be a subset of a space X. A point $x \in X$ is said to be B^+C -limit point of A, if for each B^+C open set U containing $x, U \cap (A \setminus \{x\}) \neq \varphi$. Then the set of all B^+C -limit points of

A is called a B^+C -derived set of A, and is denoted by $B^+CD(A)$.

Theorem:4.9.

Let A be a subset of X, if for each closed set F of X containing x such that

 $F \cap (A \setminus \{x\}) \neq \varphi$, then a point $x \in X$ is B^+C -limit point of A.

Proof:

Let U be any B^+C -open set containing x. Then for each $x \in U \in B^+O(X)$, there exists a closed set F such that $x \in F \subset U$. By hypothesis, we have $F \cap (A \setminus \{x\}) \neq \varphi$.

Hence $U \cap (A \setminus \{x\}) \neq \varphi$.

Therefore, a point $x \in X$ is B^+C -limit point of A.

Some properties of B^+C -derived set are stated in the following theorem,

Theorem:4.10.

Let A and B be subsets of a space X. Then we have the following properties: i) $B^+CD(\phi) = \phi$ ii) If $X \in B^+CD(A)$, then $x \in B^+CD(A \setminus \{X\})$. iii) If $A \subset B$, then $B^+CD(A) \subset B^+CD(B)$. iv) $B^+CD(A) \cup B^+CD(B) \subset B^+CD(A \cup B)$ v) $B^+CD(A \cap B) \subset B^+CD(A) \cap B^+CD(B)$ vi) $B^+CD(B^+CD(A)) \setminus A B^+CD(A)$. vii) $B^+CD(A \cup B^+CD(A) \subset (A \cup B^+CD(A))$

Proof: We only prove vi), vii), and the other resultscan be proved obviously. vi)If $x \in B^+C D(B^+CD(A)\setminus A)$.

U is a B⁺C-open set containing x. U \cap (B⁺CD(A)\{x}) $\neq \phi$. Let $y \in U \cap (B^+CD(A) \setminus \{x\})$

Since $y \in B^+CD(A)$ and $y \in U, U \cap (A) \setminus \{y\} \neq \phi$. Let $z \in U \cap (A) \setminus \{y\}$. Then, $z \neq x$ for $Z \in A$ and $x \notin A$. Hence $U \cap (A) \setminus \{x\} \neq \phi$. Therefore, $x \in B^+CD(A)$. vii) Let $x \in B^+CD(A \cup B^+CD(A))$. If $x \in A$ the result is obvious.

Let $x \in B^+CD(A \cup B^+CD(A) \setminus A)$.

Then for B^+ Copen set U containing $x, U \cap (A \cup B^+CD(A)) \setminus \{x\}) \neq \phi$.

Thus, $U \cap (A \setminus \{x\}) \neq \varphi$ or $U \cap (B^+CD(A) \setminus \{x\}) \neq \varphi$. Now, it follows similarly from i) that $U \cap (A \setminus \{x\}) \neq \varphi$. Hence, $x \in B^+CD(A)$. Therefore, in any $case(B^+CD(A) \cup B^+CD(A)) \subset A \cup B^+CD(A)$.

Corollary:4.11.

For a subset A of a simple extended topological space (X, τ^+) , then $b^+D(A) \subset B^+CD(A)$

Proof:

It is sufficient to recall that every B^+C -open set is b^+ open.

Definition:4.12

For any subset A in a simple extended topological space (X, τ^+) , the B^+C -closure of A, denoted by $B^+CCl^+(A)$, is defined by the intersection of all B^+C -closed sets containing A.

Theorem:4.13

A subset A of a simple extended topological space (X, τ^+) is B^+C -closed if and only if it contains the set of its B^+C limit points.

Proof:

Assume that A is B^+C -closed

If possible that x is a B^+C -limit point of A which belongs toX\A, then X\A is B^+C -open set containing the B^+C -limit point of A, therefore $A \cap X \setminus A \neq \varphi$. which is a contradiction.

conversely, assume that A contains the set of its B^+C limit points.

For each $x \in X \setminus A$, there exists a B^+C -open set U containing X such that $A \cap U = \varphi$, that is $x \in U \subset X \setminus A$ by Theorem 3.8, X Ais B^+C -open set

that is $x \in U \subset X \setminus A$ by Theorem 3.8, $X \setminus A$ is B^+C -open set Hence A is B^+C -closed set.

Theorem:4.14.

Let A be a subset of a space (X, τ^+) , then B⁺CCl⁺(A)=AB⁺CD(A).

Proof:

Since $B^+CD(A) \subset B^+CCl^+(A)$ and $A \subset B^+CCl^+(A)$. Then $A \cup B^+CD(A) \subset B^+CCl^+(A)$, on the other hand, to prove that $B^+CCl^+(A) \subset A \cup B^+CD(A)$. sinceB⁺CCl⁺(A) is the smallest B⁺C-closed set containing Α, so it is enough to prove that $A \cup B^+CD(A)$ is B^+C -closed. Let $x \notin A \cup B^+CD(A)$. This implies that $\notin A$ and $x \notin B^+CD(A)$. B⁺C-open Since $x \notin B^+CD(A)$, there exists а set G(x) of x which contains no point of A other than x butx∉A. So G(x) contains no point of A, which implies $G(x) \subset X \setminus A$. Again, G(x) is a B⁺C-open set of each of its points. But as G(x) does not contain any point of A, nopoint of G(x) can be a B⁺C-limit point of A. Therefore, no point of G(x) can belong to $B^+CD(A)$. This implies that $G(x) \subset X \setminus B^+CD(A)$. Hence, it follows that $x \in G(x) \subset X \setminus A \cap X \setminus B^+CD(A) \subset$ $X(A \cup B^+CD(A))$ Therefore, $A \cup B^+CD(A)$ is B^+C -closed. Hence $B^+CCl^+(A) \subset A \cup B^+CD(A)$. Thus $B^+CCl^+(A) = A \cup B^+CD(A)$.

Corollary:4.15.

Let A be a set in a space (X, τ^+) . A point $x \in U$ is in the B⁺C-closure of A if and only if $A \cap U \neq \phi$, for every B⁺C-open set U containing x.

Proof:

Let $\notin B^+CCl^+(A)$. Then $x\notin \cap F$, where F is B^+C -closed with $A \subset F$. So $x \in X \setminus \cap F$ and $X \setminus \cap F$ is a B^+C -open set containing x. Hence $(X \setminus \cap F) \cap A \subset (X \setminus \cap F) \cap (\cap F) = \varphi$. Conversely, suppose that there exists a B^+C -open set containing x with $A \cap U = \varphi$. Then $A \subset X \setminus U$ and $X \setminus U$ is a B^+C -closed.

Hence $x \notin B^+CCl^+(A)$.

Theorem:4.16

Let A be any subset of a space (X, τ^+). If A $\cup U \neq \varphi$ for every closed set F of X containing x, then the point x is in the B⁺C-closure of A.

Proof:

Suppose that U be any B^+C -open set containing x, then by Definition 3.1, there exists a closed set F.

Such that $x \in F \subset U$, so by hypothesis, $A \cap F \neq \varphi$ implies $A \cap U \neq \varphi$ for every B^+C open set U containing x.

Therefore $x \in B^+CCl^+(A)$.

Here we introduce some properties of B^+C -closure of the sets.

Theorem:4.17

For subsets A, B of a space (X, τ^+) , the following statements are true.

- 1) The B^+C -closure of A is the intersection of all B^+C closed sets containing A.
- 2) $A \subset B^+CCl^+(A)$.
- 3) $B^+CCl^+(A)$ is B^+C -closed set in X.
- 4) A is B^+C -closed set if and only if $A = B^+CCl^+(A)$.
- 5) $B^{+}CCl^{+}(B^{+}CCl^{+}(A)) = B^{+}CCl^{+}(A).$
- 6) $B^+CCl^+(\phi) = \phi$ and $B^+CCl^+(X) = X$.
- 7) If $A \subset B$, then $B^+CCl^+(A) \subset B^+CCl^+(B)$.
- 8) If $B^+CCl^+(A) \cap B^+CCl^+(B) = \phi$, then $AB = \phi$.
- 9) $B^+CCl^+(A) \cup B^+CCl^+(B) \subset B^+CCl^+(A \cup B).$
- 10) $B^+CCl^+(A \cap B) \subset B^+CCl^+(A) \cap B^+CCl^+(B).$

Proof: Obvious.

Theorem:4.18

For any subset A of a topological space (X,τ^+) . The following statements are true.

- 1) $X \setminus B^+ CCl^+(A) = B^+ CInt(X \setminus A)$
- 2) $X \setminus B^+CInt(A) = B^+CCl^+(X \setminus A)$
- 3) $B^{+}CCl^{+}(A) = X \setminus B^{+}CInt(X \setminus A)$
- 4) $B^{+}CInt(A) = X \setminus B^{+}CCl^{+}(X \setminus A)$

Proof:

We only prove i), the other parts can be proved similarly. For any point $x \in X$, $x \in X \setminus B^+CCl^+(A)$ implies that $x \notin B^+CCl^+(A)$.

Then for each $G \in B^+CO(X)$ containing $x, A \cap G = \varphi$. Then $x \in G \subset X \setminus A$, thus $x \in B^+CInt(X \setminus A)$.

References

[1] D. Andrijevic, "On b-open sets", Mathmaticki. vesnik,59-64,48(1996).

- [2] H.Z.Ibrahim, "Bc-open sets in topological spaces", Advances in Pure Math., 3, 34-40, (2013).
- [3] F.Nirmalairudayam, "Bc-open sets in extended topological spaces", IJAR 2(9),436-442,2016.
- [4] A.S,Majid, "On some topological spaces by using bopen sets", M.S.C. Thesis University of AL-Qadissiya, college of mathematics and computer science, 2011.
- [5] N.Levine, "Semi-Open sets and Semi-Continuity in Topological Spaces," American Mathematical Monthly, Vol.70.No.I.1963, pp.36-41.doi:10.2307/2312781.
- [6] N.V.Velicko."H-closed Topological Spaces." American Mathematical society.Vol.38.No.2,1968,pp.103-118.
- [7] R. H. Yunis, "Properties of θ-Semi-open sets."Zanco Journal Of Pure and applied sciences, Vol. 19, No.1,2007, pp. 116-122.
- [8] N.K. Ahmed, "On Some Types of Separation Axioms,"M.Bc.Thesis,Salahaddin University ,Arbil,1990.
- [9] J. E. Joseph and M. H. Kwack, "On S-Closed Spaces,"Bulletin of the American mathematical Society, Vol. 80, No.2,1980,pp.341-348.
- [10] N.V. Velicko, "H-Closed Topological Spaces,"American Mathematical Society, Vol. 78, No. 2, 1968, pp. 103-118
- [11] G. Di Maio and T.Noiri, "On s-Closed Spaces." Indian Journal of Pure and Applied Mathematics, Vol.18, No.3.1987, pp.226-233.
- [12] R. H. Yunis, "Properties of θ -Semi-open sets."Zanco Journal Of Pure and applied sciences, Vol. 19, No.1,2007, pp. 116-122.
- [13] M. H. stone, "Applications of the Theory of Boolean Rings to Topology,"Transactions of the American mathematical Society, Vol. 41, No.3,1937,pp.375-481. doi:10.1090/S0002-9947-1937-1501905-7.
- [14] S. G.Crossley and S. K. Hildebrand, "semi-Closure," Texas Journal of Science, Vol. 22, No.2-3,1971, pp.99-112.