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Abstract: Mango leaf disease segmentation is an essential foundation for accurate disease diagnosis and intelligent grading. The size 

and shape of mango leaf diseases vary significantly at different times, making it difficult for mainstream semantic segmentation methods 

to segment disease areas accurately. Therefore, this paper proposes a method called MAU-Net for fine segmentation of mango leaf 

diseases over the whole period. The MAU-Net is based on the traditional Unet architecture, integrates the Self-Aligning Attention Feature 

Fusion (SAFF) module and the Multiscale Feature Enhancement (MFE) module, and designs a new loss function DF_Loss. Specifically, 

the designed SAFF module changes the traditional Unet's skip-connection approach by fusing the global and local two-branch attention 

mechanisms. It enhances the attention to crucial leaf and disease features at different levels and thus retains richer semantic information 

about mango leaf diseases. The designed MFE module aims to solve the problem of complex multi-scale disease segmentation in different 

periods of mango leaves by introducing different scales of cavity convolution to enhance the extraction of disease features at different 

scales. The designed DF_Loss combines the idea of the similarity measure in Dice Loss and the advantages of the attentional conditioning 

mechanism in Focal Loss with an additional conditioning factor. It allows the model to focus more on pixels that are difficult to categorize 

during the learning process, thus improving the segmentation accuracy. MAU-Net achieved 99.21%, 84.33%, 97.1%, and 96.94% of leaf 

IoU, disease IoU, F1, and mPA metrics on the mango leaf disease dataset. It improved 0.36%, 4.88%, 3.9%, and 1.91% over UNet, and 

5.59%, 0.19%, 1.6%, and 2.26% over DeepLabv3+, respectively. Therefore, the present study may provide an accurate method for 

segmenting mango leaf spots over the whole period and provide a sufficient basis for the accurate analysis of mango leaf diseases. 
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1. Introduction 
 

Mango is a plant of the genus named Sucky fruit in the 

Lacertidae family, an important cash crop in the tropics and 

subtropics. It is famous for its sweet flesh and high nutritional 

value and is known as the “king of tropical fruits” [1]. 

Mangoes are now a significant source of income for tropical 

countries in Asia, Africa, Central America, and the Caribbean 

[2]. According to the Food and Agriculture Organization of 

the United Nations (FAO), China is currently the world’s 

second-largest producer of mangoes, second only to India. 

The annual production is about 4,351,593 tons, accounting for 

11.2% of the world’s mango production [3]. Mango, a tropical 

fruit tree, is not only delicious in terms of its fruits for direct 

consumption, but its leaves also harbor a wealth of medicinal 

value. The ethanol extract of mango leaves has analgesic, 

anti-inflammatory, and antibacterial properties [4]. However, 

diseases such as mango leaf spot and anthracnose often 

threaten its growth process. These diseases can seriously 

affect the health of mango trees, leading to yellowing of the 

leaves and, in severe cases, even a total loss of leaves [5]. 

Failure to recognize and manage the disease effectively and 

promptly can trigger the widespread spread of the disease. 

Mango yield and quality may suffer a significant blow, thus 

causing severe economic losses to the fruit growers [6]. 

However, traditional spraying methods often fail to accurately 

consider the actual severity of the disease. This practice may 

lead to the underuse of pesticides in some areas and 

ineffective disease control. Inaccurate application of 

agrochemicals may pollute the environment and prevent 

effective disease prevention and treatment [7][8]. In the 

practicalities of agricultural production, growers usually 

identify the type of spot and determine the severity of the 

disease manually. However, this manual discrimination 

method is not only a considerable workload and 

time-consuming but also susceptible to subjective perceptual 

bias, leading to erroneous diagnosis [9]. Computer vision 

technology plays a crucial role in pest and disease 

identification. Through methods such as image processing 

and semantic segmentation, growers are empowered to 

accurately assess disease severity and guide the rational use of 

agrochemicals. This improves crop yields and reduces 

environmental loads. 

 

In recent years, with the rapid development of computer 

vision technology, the research on crop disease recognition 

through computer vision has attracted much attention. 

Merchant et al. [10] utilized digital image processing 

techniques to extract multiple dimensional features such as 

RGB values and leaf texture of mango leaves. These feature 

data were then fed into an unsupervised machine-learning 

model that was analyzed by clustering to separate and identify 

different disease features. Eko Prasetyo et al. [11] used a color 

space transformation strategy to convert the image from RGB 

color space to HSV color space and combined the luminance 

dimensions, blue and red, to achieve a detailed segmentation 

of mango leaf disease using a thresholding method. In 

addition, Gina S. Tumang [12] introduced a combined 

multiple SVM and GLCM image processing method for 

identifying specific diseases such as anthracnose, fruit moth, 

and sooty mold. The method successfully located and 
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segmented the disease areas by analyzing the statistical 

properties of the images, such as contrast, kurtosis, skewness, 

and entropy. Researchers have proposed a variety of methods 

for mango leaf and disease segmentation based on traditional 

image processing techniques. However, these methods often 

involve complex preprocessing steps, which limits their 

ability to be applied in real-world scenarios. In addition, since 

these algorithms are usually designed for specific types of 

diseases, they often need more flexibility and generalization 

ability to adapt to multiple disease scenarios when dealing 

with diverse lesion features. 

 

With the rapid advancement of deep learning technology, it 

exhibits high accuracy and powerful migration capabilities. It 

has attracted an increasing number of research scholars into 

mango disease segmentation. It achieves significant progress 

in mango leaf disease segmentation and recognition. D. Lita 

Pansy et al. [13] used Logistic U-net to segment mango leaves. 

Then, the leaves were subjected to MD-FCM clustering to 

cluster diseased leaves and pests separately. Finally, 

LFD-BOA was utilized to retrieve pest and disease 

characteristics for further classification. However, they only 

segmented the leaves of mangoes and did not achieve accurate 

segmentation of the pests. Saleem et al. [14] segmented the 

diseased portion by considering the vein pattern of the leaf. 

This method of leaf vein segmentation segments the vein 

pattern of the leaf. Then, the features are extracted and fused 

using a typical correlation analysis (CCA) based method. The 

segmentation results work for the following classification step 

and are unacceptable for segmenting the diseased part. 

Consideration of early-stage diseases of mango leaves needs 

to be included. Chouhan et al. [15] used the Radial Basis 

Function Neural Network (RBFNN) to extract lesion regions 

from mango leaf images and achieved good extraction results 

for anthracnose in mango leaves. Vinay Gautam et al. [16] by 

segmenting the diseases into regions of interest and feeding 

them into a stack of various deep neural networks. Then, 

machine learning was used to recognize various mango foliar 

diseases, such as powdery mildew and anthracnose. Pham et 

al. [17] used an artificial neural network (ANN) approach to 

detect early-stage diseases on plant leaves with small spots 

that can only be detected with higher-resolution images. After 

a preprocessing step using a contrast enhancement method, 

the infected spots were segmented, and the results of the ANN 

outperformed those of the CNN using a simpler network 

structure. The algorithm is effective, though, for early disease 

of mango leaves. However, it still lacks in segmentation 

results for many spots. 

 

Significant progress has been made with these methods in the 

mango leaf disease image segmentation research field. 

Satisfactory segmentation results can be achieved with 

distinctive features for intermediate to advanced disease 

stages. However, in the early mango leaf disease stage, the 

above models encountered challenges in segmenting such 

early, small-targeted diseases due to tiny and unrecognizable 

lesion features. In addition, timely identification of 

early-stage diseases is critical for effectively controlling 

disease spread, rapidly implementing control measures, and 

ensuring mango yield and quality. To solve the above 

problems, we propose a full-period mango leaf disease 

segmentation algorithm named MAU-Net in this paper, which  

 

can detect early minor target diseases and various mid- and 

late-stage diseases. The main contributions of this paper are as 

follows: 

 

1) To solve the problem of early tiny lesion feature 

information loss in deep convolutional networks. In this study, 

the SAFF attention mechanism is designed to fuse global and 

local attention to improve the jump connection of Unet. SAFF 

automatically learns the attention coefficients of different 

levels of features and strengthens the weights of crucial 

mango leaf disease features. Thus, it realizes delicate feature 

fusion and effectively prevents the loss of small disease 

information. 

 

2) Because the characteristics of mango leaf diseases in 

different periods exhibit significant scale differences, the 

MFE module was designed in this study. The MFE aims to 

capture the characteristics of full-cycle diseases more 

effectively. The MFE module can capture the leaf disease 

information of each period in detail by concurrently 

performing multiple cavity convolution operations at different 

scales. This multi-scale analysis strategy significantly 

improves the model's accuracy in segmenting the disease 

across different periods. 

 

3) Aiming at the problem of unbalanced mango leaf disease 

samples, this paper proposes a loss function DF_Loss based 

on dynamic weight adjustment. Compared with the traditional 

cross-entropy loss function, DF_Loss can dynamically adjust 

its weight in model training according to the different sample 

categories. By reducing the weights of easy-to-recognize 

samples, the model pays more attention to pixels that are 

difficult to classify during the learning process, effectively 

improving the segmentation accuracy of leaf and disease 

regions. 

 

2. Material and Methods 
 

2.1 Dataset 

 

The dataset used in this study was obtained from Shri Mata 

Vaishno Devi University [18]. As shown in Figure 1, this 

dataset covers examples of several types of mango leaf 

diseases, including healthy leaves, rust, leaf spot, and 

anthracnose. In order to improve the accuracy of model 

training, we used Labelme software to finely label the 

diseases in these images under the guidance of experts in 

agriculture. The corresponding labeled files were created by 

carefully outlining the edges of each leaf and the diseased 

areas. The labeled images' pixel values representing the 

background, leaf, and disease are explicitly assigned as 0, 1, 

and 2, respectively. The labeling process is shown in Figure 2. 

 

This study uses data enhancement and image preprocessing 

techniques to improve the model's performance, robustness, 

adaptability, and accuracy in a variable test environment. The 

dataset was extended to 1384 images through data 

enhancement operations. In order to facilitate training and 

evaluation, the dataset is divided into training, testing, and 

validation sets in the ratio of 7:2:1 in this study to enhance the 

generalization ability of the model in different data instances. 

The specific division of the dataset is shown in Table 1. 
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Healthy Leaf Anthracnose RustLeaf Spot
 

Figure 1: Examples of partial images from a plant leaf dataset 

Original Label Visualization

(a) (b) (c)  
Figure 2: Labeling flowchart. (a)Original. (b)Label. (c) Visualization 

Table 1: Statistics on the number and size of data sets 
 Original image Expanded  Training  Test  Validation 

Quantity  173 1384  969  277  138 

Size  6000×4000 1200×800 1200×800 1200×800 1200×800 

 

2.2 U-Net 

 

During the segmentation of mango leaf diseases, leaves, and 

diseases must be finely segmented. Annotation of mango leaf 

disease images is difficult and time-consuming with the 

presence of a small number of samples. UNet can get accurate 

segmentation even on small sample datasets. Olaf 

Ronneberger et al. [19] proposed the UNet network model in 

2015. It is a deep-learning model designed for image 

segmentation tasks. As shown in Figure 3, UNet achieves 

accurate segmentation of images by fusing global contextual 

information with local detail information. The model uses an 

encoderdecoder architecture, which makes it perform well in 

the field of image segmentation. 

 

UNet is a well-designed image segmentation network that 

skillfully fuses global contextual information with local 

detailed features through its encoder-decoder structure and 

hopping connection mechanism. However, the UNet model 

also has some things that could be improved. Its 

jump-connection mechanism may lead to too much difference 

in feature information between different layers. It will lead to 

the problem of mismatch between the extracted features and 

the actual features during feature fusion. In addition, the 

single convolutional structure of UNet shows some 

limitations in extracting multi-scale target features. During 

the training process, the UNet algorithm uses the 

cross-entropy loss function to measure the difference between 

the generated segmentation results and the actual labels. The 

cross-entropy loss function can effectively measure the 

classification error between different pixel classes, thus 

accurately guiding the model optimization. Due to the 

effectiveness of this loss function, UNet can produce accurate 

segmentation results even on small sample datasets. However, 

the cross-entropy loss function also has shortcomings. For the 

case of significant differences in target features and large 

differences in the amount of data between different targets, 

the cross-entropy loss function needs to learn better for 

features with small amounts of data. To address the above 

problems, this study makes targeted improvements and 

proposes a novel MAU-Net network architecture. 

Connected channel

Conv+Batch Normalisation+Relu

Pooling Upsampling Softmax

Input

RGB Image

Output

Segmentation

Encode Decode

 
Figure 3: The network structure of Unet 
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2.3 Design for MAU-Net 

 

To overcome the limitations of the traditional UNet model in 

capturing multi-scale disease features and fusion of features in 

different levels, a novel MAU-Net network architecture is 

proposed in this study. As shown in Figure 4, the SAFF 

module assigns attentional weights to feature information by 

combining global and local attentional mechanisms, and these 

weights are subsequently applied to the fusion process of the 

feature map. SAFF significantly enhances the network's 

ability to focus on disease-related features at different levels, 

facilitating effective information transfer and feature fusion. 

In order to enhance the model's ability to extract features of 

objects at different scales, we have specially designed the 

MFE module. The module focuses on capturing rich 

multi-scale contextual information and effectively improves 

the model's overall performance through multi-scale feature 

enhancement. To address the problem of the number of 

disease samples in the mango leaf disease dataset being much 

less than the number of healthy leaf samples, we designed the 

DF_Loss function in the training process. DF_Loss aims to 

solve the sample imbalance problem to enhance the learning 

weights for disease features. By allowing the model to focus 

more on disease categories that are difficult to recognize, 

DF_Loss helps the model to adapt better and learn the disease 

characteristics of mango leaves. 

 

Specifically, the image size of the input network is 

512×512×3. The downsampling operation through a series of 

3×3 and 1×1 convolutions in the encoder stage yields the 

feature maps of the five layers E1, E2, E3, E4, and E5, 

respectively. These five feature maps are 512 × 512 × 64, 256 

× 256 × 128, 128 × 128 × 256, 64 × 64 × 512, and 32 × 32 × 

512 in size. In the decoder stage, the feature maps of the four 

layers E1, E2, E3, and E4 are fed into the MFE module for a 

multi-scale feature enhancement to obtain E1', E2', E3', and 

E4' respectively. The learning of multi-scale features by the 

network is enhanced by augmenting the semantic information 

of different scale features in each level. Then, E5 is 

up-sampled by a factor of 2 and then input with E4' into the 

SAFF module for feature fusion to obtain D4 (64×64×512). 

The SAFF module is used to reduce the difference of semantic 

information in different layers to prevent the loss of target 

feature information that cannot be easily recognized. By 

performing the above decoding operation with different layers 

of feature maps, the final feature map size of 512×512×64 is 

obtained as D1. Finally, the acceptable segmentation result is 

produced by two depth separable convolutions. 

Encoder

Decoder

Input

Output

C
o

n
v
（

1
×

1
）

(512,512,64) (256,256,128) (128,128,256) (64,64,512)

(32,32,512)

(512,512,64)

(256,256,128)
(128,128,256) (64,64,512)

Conv,BN,ReLU

MFE

SAFF

Skip Connection

Concatenation

AdaptiveAvgPool

MaxPooling

Global attention

Local attention

sigmoid

SAFF
Conv1×1

Rate=6

Rate=12

Pooling1×1

concat Conv1×1

MFE

 
Figure 4: The network structure diagram of MAU-Net 
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2.3.1 Self-balancing attention feature fusion 

 

In UNet network architectures, feature fusion during hopping 

connectivity is often challenged by a mismatch between scale 

and semantics, and these discrepancies can adversely affect 

network performance. In mango leaf disease feature 

extraction, this mismatched variability can cause the loss of 

small disease feature information of mango leaves. To 

overcome these challenges, the study proposes an improved 

SAFF attention module based on the Multiscale Channel 

Attention Mechanism (MS-CAM) [20]. In the encoding phase, 

the generated features often contain too much detail and noise, 

which may interfere with the model's judgment ability. In 

addition, while the decoding phase generates feature-rich 

semantic information, they may carry redundant or 

contradictory detail data. The SAFF Attention Module 

efficiently integrates feature information from different layers 

in a UNet network in a skip connection. By fine-tuning and 

optimizing the original simple design of the skip connection, 

it is ensured that the most relevant information about the 

disease characteristics is passed between the network layers. 

In turn, the key features are effectively fused to significantly 

improve network performance. 

 

As shown in Figure 5, the SAFF module is divided into two 

branches: global attention and local attention. The global 

attention branch uses a global average pooling technique to 

discriminate attention from global features, while the local 

attention branch extracts channel attention from local features 

by two 1×1 convolutions. This strategic design allows the 

network to selectively focus on the feature information at each 

level, thus improving the model's perceptual ability and 

overall performance. 

Pooling

Conv1×1

Conv1×1

Conv1×1

Conv1×1 BN

BN

BN、ReLU

BN、ReLU

X

Y

Sigmoid

Z

X1

Y1

Z1

Global attention

Local attention

 
Figure 5: The module structure diagram of SAFF 

In particular, the stitching operation is first performed on 

features X and Y to get the feature map Z. The feature map X1 

is obtained by global average pooling and two 1×1 

convolution operations in the global attention branch. The 

local attention branch then generates the feature map Y1 by 

two pointwise convolution operations. The X1 and Y1 feature 

maps are spliced to generate Z1. Finally, Z1 is passed through 

a sigmoid function to obtain the attention coefficient ω. The 

coefficients ω are used to weight the input features X and Y 

for fusion. 

 

The formula for the SAFF attention mechanism is as follows: 

 𝑋1 = 𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑣(𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋 ⊕ 𝑌))) (1) 

 𝑌1 = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣(𝑋 ⊕ 𝑌)) (2) 

 𝜔 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋1 ⊕𝑌1) (3) 

 SAFF(𝑋, 𝑌) = 𝜔 ⊗ 𝑋 + (1 − 𝜔)⊗ 𝑌 (4) 

where X and Y denote the features of different layers, 

respectively, and ω denotes the learnable attention 

coefficients, where the fusion weights ω and 1 - ω are 

composed of real numbers between 0 and 1. 

 

SAFF addresses the lack of accuracy and robustness in 

semantic segmentation tasks by reducing different degrees of 

semantic gaps in the feature fusion process. It achieves the 

effect of improving computational efficiency. It provides an 

effective strategy for solving the feature fusion problem in 

Unet networks and lays a solid foundation for improving the 

model’s performance. 

 

2.3.2 Multi-scale feature enhancement module 

 

The size of the spots of mango leaf disease varies significantly 

in different stages of development. In semantic segmentation, 

traditional UNet models rely on single-scale convolutional 

operations to extract features. However, the segmentation 

accuracy could be better when using a single-scale 

convolution for learning training of multi-scale disease 

features. The feature information of large-scale diseases will 

cover the minor target diseases. To address the above 

problems, we designed an MFE module to improve the 

model's accuracy for full-period multiscale mango leaf 

disease segmentation by using a parallel structure of null 

convolution without three expansion rates. The structure of 

the MFE module is shown in Figure 6. 

 

By introducing dilated convolution in the Deeplab algorithm 

[21]. Dilated convolution can efficiently extract multi-scale 

feature information without changing the size of the feature 

map. When different expansion coefficients are set, their 

receptive fields are different. The larger the expansion 

coefficient setting is, the better its feature extraction effect on 

the target comparison is. However, cavity convolution with a 

single expansion coefficient is set to lose critical information 

for extracting small target features when dealing with 

multi-scale targets. The principle of cavity convolution is 

shown in Figure 7. 
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Figure 6: The module structure diagram of MFE 

(Rate = 3)

3×3 Kernel

Dilated Convolution

(Rate = 2)

3×3 Kernel

Dilated Convolution

(Rate = 1)

3×3 Kernel

Dilated Convolution

 
Figure 7: Convolution blocks of different expansion rate sizes 

Specifically, the MFE module enhances the feature 

representation with three sizes of dilation convolution 

operations and pyramid pooling operations to improve the 

perceptual capabilities of the model. The dilation convolution 

operation increases the size of the receptive field by 

introducing different expansion rates to capture contextual 

information at different scales. The small scale convolutional 

kernel is mainly responsible for extracting the lesion region, 

while the large scale convolutional kernel is mainly used to 

enhance the diversity of features. This approach enables the 

network to better adapt to the different scales of the lesions in 

the image. The pyramid pooling operation, on the other hand, 

performs feature pooling by using pooling kernels of different 

sizes to obtain feature representations at different scales.  

 

As shown in Figure 6, the MFE module contains four 

branches. The first branch is a 1×1 convolution operation. It 

can not only be used to adjust the number of channels of input 

features, but also able to preserve small target mango leaf 

disease features. The second and third branches are two 3×3 

dilation convolution operations with expansion rates of 6 and 

12, respectively. These two branches capture more 

connections between pixels by enlarging the size of the 

receptive field to obtain information about the disease 

characteristics of mango leaves at different scales. The fourth 

branch first goes through a pooling layer and then a 1×1 

convolutional layer. Finally it goes through a 2-fold bilinear 

upsampling operation to get a feature map of the same size as 

the input features. The input features go into four branches 

respectively, and the high dimensional feature information is 

obtained after the splicing operation. After the dimensionality 

reduction operation of 1×1 convolutional layer, it is reduced 

to the same number of channels as the input features. Finally, 

the obtained enhanced features contain richer contextual 

information and stronger perceptual ability, which helps to 

improve the accuracy of multi-scale disease feature 

segmentation in mango leaves. The formula for the MFE 

module is as follows: 

 𝑇1 = 𝐶𝑜𝑛𝑣1×1(𝑥) (5) 

 𝑇2 = 𝐶𝑜𝑛𝑣3×3,𝑟=6(𝑥) (6) 

 𝑇3 = 𝐶𝑜𝑛𝑣3×3,𝑟=12(𝑥) (7) 

 𝑇4 = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝐶𝑜𝑛𝑣1×1(𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑥))) (8) 

 𝑇 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑇1, 𝑇2, 𝑇3, 𝑇4) (9) 

The MFE module enhances the extraction of multi-scale 

features through parallel multi-branch convolutional 

operations. Make the model have stronger generalization 

ability when dealing with multi-scale features. This in turn 

improves the model's segmentation of multi-scale targets. 

 

2.3.3 DF_Loss function 

 

In the dataset of mango leaf diseases, there is a challenge of 

imbalance in the number of pixels. Figure 8 presents statistical 

data on the percentage of pixels in each category in the mango 
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leaf disease dataset. The disease category only accounts for 

0.47% of the overall dataset, and its pixel number is much less 

than that of healthy leaves. Facing this situation of uneven 

sample distribution, the traditional cross-entropy loss function 

is often difficult to cope with it efficiently. When there are 

significant quantitative differences between categories, the 

model tends to predict those categories that are numerically 

superior. This usually leads to a decrease in the model's 

performance in the identification of diseased areas and fails to 

achieve accurate segmentation. To address the impact of 

unbalanced data on the model segmentation performance, a 

DF_Loss that incorporates Dice Loss and Focal Loss is 

proposed. It allows the model to focus more on pixels that are 

difficult to categorize during the learning process, thus 

improving the segmentation accuracy for mango leaf diseases. 

 
Figure 8: Pixel ratios for each category in the dataset, with 

only 0.47% of diseases, 20.87% of leaf parts and 78.66% of 

backgrounds 

DF_Loss enhances the learning weights for 

difficult-to-categorize samples during training by integrating 

the attention regulation mechanism and balancing factor of 

Focal Loss. DF_Loss not only motivates the model to target 

the features of a few categories more accurately, but also 

significantly enhances the model's ability to identify and 

classify rare categories when dealing with unbalanced data. 

DF_Loss is compatible with the idea of similarity measure in 

Dice Loss. This strategy maps the degree of pixel-level match 

between predicted and actual segmentation results more 

realistically than the traditional cross-entropy loss function. 

The introduction of this metric allows DF_Loss to show 

excellent adaptability in segmentation tasks, especially when 

rare categories are present in the dataset. When confronted 

with the challenge of sample imbalance, the traditional 

cross-entropy loss function tends to bias the model in favor of 

the majority category prediction. However, DF_Loss 

effectively corrects this bias by incorporating the Focal Loss 

strategy. It empowers the model with greater ability to focus 

on sample categories that are less numerous and difficult to 

categorize. During the training process, DF_Loss 

demonstrated excellent learning ability to capture and learn 

information from all categories in a balanced manner, thus 

significantly improving the overall performance of the model. 

 

The formula for calculating CE losses is as follows: 

 𝐶𝐸𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ (𝑌𝑖𝑗 𝑙𝑜𝑔(𝑋𝑖𝑗))

𝑁
𝑗

𝑁
𝑖  (10) 

where N is the number of samples and Yij is the unique code of 

the actual label indicating the probability that the ith sample 

belongs to the jth category. Xij is the probability that the ith 

sample belongs to the jth category as predicted by the model. 

The formula for the Dice loss is as follows: 

 Dice𝐿𝑜𝑠𝑠 = 1 −
2×∑ 𝑝𝑖×𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
2+∑ 𝑔𝑖

2𝑁
𝑖

𝑁
𝑖

 (11) 

where pi denotes the pixel value in the predicted segmentation 

result, gi denotes the pixel value in the actual segmentation 

result, and N is the pixel sum. 

 

The formula for the Focal loss is as follows: 

 FocalLoss = −𝛼 × (1 − 𝑝𝑡)
𝛽 × 𝑙𝑜𝑔(𝑝𝑡) (12) 

where pt denotes the probability of a pixel in the predicted 

segmentation result, α is a balancing factor, and β is a tuning 

parameter. 

 

Specifically, this paper uses Dice Loss as the basic loss 

function to measure the segmentation accuracy of the model 

at pixel level. Meanwhile, Focal Loss is introduced as a 

weighting term to increase the model's focus on a few 

categories. The DF_Loss function is calculated as follows: 

 DF_𝐿𝑜𝑠𝑠 = 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 + 𝜆 × 𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠 (13) 

where λ is a balancing parameter that adjusts the weights of 

the Dice loss and the Focal loss. 

 

The DF_Loss loss function incorporates the ideas of both 

Dice Loss and Focal Loss loss functions. During the training 

process, it gives the model a greater ability to focus on sample 

categories that are less numerous and difficult to classify. It 

can improve the model's ability to segment mango leaf 

diseases during the task of mango leaf disease segmentation. 

 

3. Result 
 

The hardware configuration of the experimental environment 

in this study is as follows: Intel(R) Core (TM) i9-10900k, 64 

G RAM, NVIDIA® GeForce RTX4080ti, 64-bit Windows 

operating system. The model is built by the Pytorch 

framework; the version of PyTorch is 1.10.0. After several 

trials, the hyperparameters are set as follows: the optimizer is 

Adamw, the momentum is 0.9, the weight decay is 1e-2, the 

batch size is 4, the initial learning rate is 1e-4, the minimum 

learning rate is 1e-7, the learning rate decay strategy is cos, 

the decay rate is 0.1, and the epoch is 100. We divided the 

mango leaf disease dataset into training set, testing set and 

validation set according to the ratio of 7:2:1 for 

cross-validation in the training stage. 

 

3.1 Evaluation Indicators 

 

We chose the following three evaluation metrics to measure 

the segmentation effectiveness of the model: intersection over 

union (IoU), mean pixel accuracy (mPA), and overall 

accuracy F1. In the segmentation task, IoU represents the ratio 

of the intersection and union between the prediction results of 

a category and the actual values of that category.PA 

represents the ratio of all correctly predicted pixels to all 

pixels. F1 Accuracy represents the accuracy of all targets 

detected by the semantic segmentation algorithm. IoU, mPA 

and F1 are calculated as follows: 
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 IoU =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (14) 

 𝑃𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (15) 

 𝑚𝑃𝐴 =
𝑠𝑢𝑚(𝑃𝐴𝑖)

𝑚
 (16) 

where TP denotes the true case, i.e., the number of pixels 

where both the prediction result and the true label are positive 

cases. TN denotes the number of pixels where both the 

prediction result and the true label are negative cases. FP 

denotes the number of pixels where the prediction result is 

positive but the true label is negative. FN denotes the number 

of pixels where the prediction result is negative but the true 

label is positive. 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (17) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (18) 

 𝐹1 = 2 ÷ (
1

𝑃
+

1

𝑅
) (19) 

 

where P denotes the inspection accuracy rate and R denotes 

the inspection completeness rate. F1 The accuracy rate takes 

values ranging from 0 to 1, with higher values indicating a 

better output from the model. 

 

3.2 Experimental Analysis of Comparative Loss Functions 

 

The segmentation results of the UNet algorithm using the 

DF_Loss loss function are shown in Figure 9, where the 

network model is rapidly fitted and the loss values are 

significantly reduced in the first 30 iteration cycles. In the 

subsequent 70 iteration cycles, the loss value remains 

basically smooth which indicates that the training of the 

model has been optimized and the loss function of the model 

has converged. There is a small fluctuation in the fiftieth 

training cycle. The reason for this is that the experiment used 

freeze training for the first fifty rounds and thaw training for 

the last fifty rounds. It is normal to have fluctuations at the 

beginning of thawing. 

 
 

(a) (b) 

Figure 9: Plot of loss values for DF_Loss training 

During the experiments, four different loss functions are used 

in the paper: CE loss, Dice Loss, Focal Loss, and DF_Loss 

function. The performance of these loss functions in practical 

applications is analyzed in detail below. The resultant data 

using the individual loss functions are shown in Table 2. To 

begin with, the experiment is benchmarked against 

cross-entropy loss with a disease IoU of 79.45%. However, it 

did not perform optimally for our disease segmentation task. 

Compared to cross-entropy, Dice loss has a 0.43% 

improvement in disease IoU to 79.88%. The results show that 

Dice loss has better adaptation to the dataset and model of the 

present study. It is relatively insensitive to the initial state of 

the model and the quality of the data, showing strong 

generalization ability. The model with the Focal loss function 

improved the disease IoU by 0.8 percentage points to 80.25% 

compared to the model with the crossentropy loss function. 

The main reason for this is due to the strong ability of Focal 

loss to regulate the problem of positive and negative sample 

imbalance, which successfully improves the focus of the 

model on diseases. The result suggests that Focal loss can 

show significant advantages when there is a category 

imbalance problem. Finally, the Unet model with DF Loss  

 

achieves 81.85% in disease IoU, which is 2.4 percentage 

points higher than the baseline model, and this improvement 

outperforms the model with Dice and Focal losses. 

Meanwhile, the F1 score of the Unet model with DF Loss also 

reached 0.945, which is an improvement of 1.3 percentage 

points compared to the cross-entropy model before 

improvement. The results show that DF Loss achieves 

significant improvement in handling unbalanced data. It 

effectively combines the advantages of Dice and Focal losses 

and successfully solves the category imbalance problem while 

focusing on pixel-level information. The innovative loss 

function provides new ideas and directions for solving the 

problem of segmentation of unbalanced data. 

Table 2: Results of segmentation accuracy of models using 

different loss functions on a test set of mango leaf diseases 

Methods 
IoU/% 

F1/% mPA/% 
leaf Disease 

Unet 98.85 79.45 93.2 95.03 

UNet+Dice_loss 99.05 79.88 93.8 95.31 

UNet+Focal_loss 99.10 80.25 94.1 95.66 

UNet+DF_loss 99.12 81.85 94.5 95.64 

3.3 Ablation Experiments 

 

In order to verify the validity of the MAU-Net model, ablation 

experiments were conducted on the MFE and SAFF modules 
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of the MAU-Net model. The Mango Leaf Disease dataset was 

used in the experiments and DF_Loss was used as the loss 

function for the Unet network, which was used as the baseline 

model for the ablation experiments. The experimental results 

are shown in Table 3. We can find that each part contributes to 

the final performance. We introduced only the MFE feature 

enhancement module, which improved the performance over 

the baseline model by 0.04% and 0.49% for leaf and disease 

IoU, respectively. The combined F1 score improves 

performance by 1.8%. We believe that by introducing the 

MFE module, the model is more robust in extracting and 

recognizing disease features and more accurate in segmenting 

leaf and disease edge information. We introduced only the 

SAFF module, who improved performance over the baseline 

model by 0.05% and 0.91% for leaf and disease IoUs, 

respectively. the F1 score composite score improved by 2.0 %. 

This suggests that the application of the SAFF module helps 

the model to better balance the feature information of 

different layers, thus improving the accuracy of segmentation. 

In addition, when the MFE module and SAFF module were 

introduced, it increased the performance over the baseline 

model by 0.09% and 2.48% for leaf and disease IoUs, 

respectively. The F1 score composite score increased by 2.6%. 

These results show that the MFE and SAFF mechanisms 

provide proof for improving the performance of mango leaf 

disease segmentation and achieving better feature 

representation learning. 

Table 3: The results of segmentation accuracy for different 

test models. 

Methods 
IoU/% 

F1/% mPA/% 
leaf Disease 

Biseline  99.12 81.85 94.5 95.64 

Biseline+MFE  99.16 82.36 96.3 96.15 

Biseline+SAFF  99.17 82.76 96.5 96.21 

MAU-Net 99.21 84.33 97.1 96.94 

In addition, as shown in Figure 10(c), the prediction results of 

the baseline model are not clearly segmented for the edge 

detail information of leaf diseases, and there are cases of 

false-negative misclassification of small spots. As shown in 

Figure 10(d), the model prediction results after the 

introduction of the SAFF module are more accurate in terms 

of disease edge information. However, there is also a false 

negative misclassification, which is due to the limitation of a 

single-size convolutional kernel to extract features, resulting 

in insufficient semantic information extraction. The 

introduction of the SAFF module for feature fusion weakens 

the background information in the shallow features. It can 

lead to irreversible loss of semantic information causing 

errors in some pixel predictions. Figure 10(e) shows the 

model prediction results of introducing the MFE module, and 

the edge information is clearer compared to the other model 

prediction results. Figure 10(f) shows the prediction results 

made by the method proposed in this paper. It can be seen that 

the segmented disease and leaf edge information are close to 

the real information. And it can accurately segment the void. 

 

The experimental results show that by introducing the feature 

enhancement module of MFE, the model's ability to perceive 

diseases at different scales can be enhanced. It also enhances 

various types of features during extraction, which effectively 

avoids the overfitting phenomenon caused by the excessive 

depth of the network. The SAFF module can help the network 

select the feature information of the diseases in different 

layers to be fused in the process of feature fusion. The module 

can ignore the features of less impact on the current task. The 

allows the model to focus more on processing those features 

that are useful for the segmentation task. In summary, by 

introducing the MFE feature enhancement module and the 

SAFF feature fusion module, the performance of the model in 

extracting target features in the image semantic segmentation 

task has been significantly improved. It provides a new 

effective way to solve the leaf disease segmentation problem 

and provides useful insights for research in related fields. 

( a ) ( b ) ( c )

( d ) ( e ) ( f )
 

Figure 10: Comparison of segmentation results from ablation experiments, where (a) is the original image, (b) is the labeled 

image, (c) is the baseline model Unet with the DF_Loss loss function replaced, (d) is the addition of the SAFF module, and (e) 

is the addition of the MFE module. (f) is our proposed MAU-net. The red boxes show locations that differ from the actual 

labeling 
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3.4 Comparison of Different Models 

 

In this subsection, MAU-Net is compared with popular 

deep-learning semantic segmentation models to demonstrate 

the advantages of the MAU-Net model. These models are 

DeepLabv3+ [22], SENet [23], FCN [24], Swin-Unet [25], 

PSPNet [26] and ENet [27]. DeepLabv3+ employs an 

ungauged spatial pyramid pooling (ASPP) technique which 

effectively enhances the sensory field and mitigates the 

problem of information loss due to pooling. FCN replaces the 

fully connected layer with a fully convolutional layer which 

allows the network to accept input images of arbitrary size and 

output a dense feature map of corresponding size. SENet 

introduces an attention mechanism that focuses on enhancing 

the model’s attention to important features. By introducing 

the Squeeze-and-Excitation block, SENet can adaptively 

adjust the weights of each channel to highlight attention to the 

important parts of the feature map. Swin-Unet enables the 

model to better capture the global contextual information of 

the image by introducing the Transformer block. PSPNet uses 

the Pyramid Pooling block to effectively utilize contextual 

information. ENet reduces model complexity while 

maintaining high performance by using lightweight designs 

such as 1x1 convolution and depth-separable convolution. All 

models are placed in the same experimental environment as 

MAU-Net and are trained on the mango leaf disease image 

dataset. The segmentation accuracies of different models are 

shown in Table 4. 

 

As shown in Table 4, MAU-Net performed best on the mango 

leaf disease dataset. On the IoU of disease segmentation, its 

segmentation accuracy was improved by 5.59%, 27.62%, 

11.32%, 25.39%, 27.56% and 12.57% compared to 

DeepLabv3, FCN, ENet, Swin-Unet, PSPNet and SENet 

models, respectively. In the IoU of blade segmentation 

improved by 0.19%, 1.83%, 0.38%, 2.64%, 0.67%, and 

0.44%, respectively. In F1 composite scores were improved 

by 1.6%, 5.9%, 2.4%, 3.6%, 6.1%, and 3.1%, respectively. In 

mPA accuracy improved by 2.26%, 6.1%, 3.27%, 4.07%, 

6.51%, and 3.98%, respectively. 

Table 4: The results of segmentation accuracy of different 

models on the test set of mango leaf diseases. 

Methods 
IoU/% 

F1/% mPA/% 
leaf Disease 

Deeplabv3-Plus 99.02 78.74 95.3 94.68 

FCN 97.38 56.61 91 90.84 

ENet 98.83 73.01 94.5 93.67 

Swin-UNet 96.57 68.94 93.3 92.87 

PSPNet 98.54 56.81 90.8 90.43 

SENet 98.77 71.76 93.8 92.96 

MAU-Net 99.21 84.33 97.1 96.94 

3.5 Visualization of Mango Diseased Leaf Segmentation 

Results 

 

To validate the segmentation performance of MAU-Net for 

mango leaf disease, all models were compared using two sets 

of mango leaf disease test images. The resultant images were 

predicted by segmentation, with black as the background, 

gray as the leaf, and white as the disease. Differentiation using 

the above colors allows for a more precise comparison of the 

segmentation results of each method. 

 

Figure 11 demonstrates the segmentation results of each 

model under the test set of mango anthracnose leaves. FCN 

segmented both leaves and spots poorly. FCN extracted an 

incomplete leaf area and missed some small spots. Deeplabv+ 

segmented leaves and spots better than the other models, 

which had background misclassification and directly added 

small voids to the spots. SENet is not accurate enough in 

segmenting the edges of the spots, and multiple individual 

spots are split directly into one spot. Net needs to be more 

precise in extracting the leaf area and miss small spots. 

PSPNet has better segmentation of leaves, but PSPNet misses 

many small spots. Swin-Unet has a relatively complete 

segmentation of leaves but has poorer completeness in 

segmenting spots, and some spots are missed. It can be seen 

that MAU-Net has better leaf and disease segmentation than 

Deeplabv3+. The tiny spots missed by other methods can also 

be extracted clearly, and segmentation is the finest for leaf 

edges. 

(c)(a) (b)

(d) (e) (f)

(g) (h) (i)
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(c)(a) (b)

(d) (e) (f)

(g) (h) (i)
 

Figure 11: Segmentation results of each model under the test set of mango anthracnose leaves, where the red boxes show 

locations that differ from the actual labeling. (a)Original. (b)Label. (c)MAU-Net. (d)FCN. (e)Deeplabv3+. (f)SENet. (g)Enet. 

(h)PSPNet. (i)Swin-Unet. 

Figure 12 shows the segmentation results of each model under 

the test set of mango leaf spot disease leaves. FCN segmented 

both leaves and spots poorly, with a large number of 

misclassifications. Deeplabv+ had omissions of small spots 

and segmented disconnected spots as one spot. The SENet 

model had misclassifications of small disease targets. ENet 

missed some small spots, and extracting prominent target 

diseases needs to be completed. PSPNet omitted small spots 

and extracted large targets of broken diseases incompletely. 

Swin-Unet was used to extract small spots. PSPNet has 

incomplete extraction of small lesions. Swin-Unet splits 

disjoint lesions into one lesion. In contrast, MAU-Net can 

extract the area of lesions more accurately and can segment 

each lesion precisely. 

(a) (b) (c)

(d)

(h)

(e) (f)

(g) (i)  
Figure 12: Segmentation results for each model under the test set of mango leaf spot disease leaves, where the red boxes show 

locations that differ from the actual labeling. (a)Original. (b)Label. (c)MAU-Net. (d)FCN. (e)Deeplabv3+. (f)SENet. (g)Enet. 

(h)PSPNet. (i)Swin-Unet. 

In order to compare the differences in the segmentation 

performance of different models more comprehensively, the 

segmentation results of different models are compared. It can 

be seen from Figure 13 that, compared with MAU-Net, the 

other models have poorer segmentation results due to the 

differences in the structure of the feature extraction and the 

different ways of jump connections. For example, the pyramid 

pooling and spatial pyramid structure of PSPNet and 

DeepLabv3+ enlarges the perceptual area but tends to miss 

minor points in downsampling. Swin-Unet uses self-attention 

for global modeling and a jump-connected encoder-decoder 

structure but cannot encode absolute locations. Therefore, it 

cannot accurately recover disease location information during 

up-sampling, which leads to poor segmentation results. By 

comprehensive comparison, the segmentation effect of 

MAU-Net is superior to other methods. 
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Figure 13: Segmentation results of different models for mango leaf disease image dataset. 
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4. Discussion 
 

The MAU-Net model proposed in this study is an innovative 

improvement of the classic U-Net architecture, integrating the 

MFE and SAFF modules explicitly designed to segment 

mango leaves and their diseases. MAU-Net demonstrates 

superior accuracy and segmentation performance compared to 

current leading segmentation models. Ablation experiments 

further validate the impact of different modules and loss 

functions on MAU-Net's segmentation performance. The 

study investigated the feasibility of applying MAU-Net to 

segment the disease of mango leaves over a total period. The 

robust feature representation capability of MAU-Net in 

capturing complex features of target leaves and complex 

diseases is demonstrated. While the study focused on mango 

leaf segmentation, the core principles and technical 

framework of MAU-Net exhibit generalizability, suggesting 

potential applicability to other crop leaves. To enhance 

MAU-Net's practical versatility, future work will expand 

datasets to include diseased leaves from diverse crop varieties 

and natural outdoor scenes, refining its generalization 

capabilities. However, potential limitations may arise when 

applying MAU-Net to other crop leaf categories, given 

variations in morphology, texture, and disease characteristics. 

Thus, future studies extending MAU-Net to different crops 

will require thorough research and understanding of the 

specific crop leaf and disease characteristics. This involves 

necessary optimizations and adjustments to ensure the 

method's accuracy and robustness in diverse agricultural 

contexts. 

 

5. Conclusion 
 

In this paper, a new segmentation network, MAU-Net, is 

proposed. MAU-Net solves the problem of difficulty in 

recognizing small targets and low accuracy in segmenting 

mango leaf disease images. First, the SAFF module is 

proposed to solve the problem of the large gap between 

semantic features at different levels of features in the process 

of skip connection. This module refines the fusion process 

using reliable weights from global and local attention 

mechanisms. Secondly, the MFE module was proposed to 

solve the problem of low accuracy of disease segmentation for 

small targets with significant differences in the characteristics 

of mango leaf diseases in various periods. This module 

facilitates multi-scale feature extraction and enhancement by 

capturing contextual information at different scales, thereby 

improving the model's ability to recognize objects of different 

sizes. Finally, the study designed the DF_Loss loss function to 

replace the original cross-entropy loss function to solve the 

problem of imbalance between positive and negative samples 

in the mango leaf disease dataset. This design enables the 

model to learn disease features better, especially when the 

number of samples is limited. Experimental results show that 

MAU-Net performs best on the mango leaf disease dataset 

compared to mainstream semantic segmentation methods. 

This indicates that MAU-Net has excellent potential for broad 

application in mango leaf disease segmentation. It is also a 

significant reference value for the design of full-period 

disease segmentation models for other plants. Future research 

will optimize the model to adapt to different crop disease 

leaves. 
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