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Abstract: In practice, the estimation of source localization based on matched field processing is significantly affected by environmental 

parameters, leading to the so-called mismatch problem. This paper models the sound source depth estimation problem as a classification 

issue in machine learning and discusses how the random forest method can be used to solve the depth estimation problem of sound sources. 

The paper uses the SWELLEX-96 sea trial environmental parameters and the Kraken model to generate ocean waveguide data received by 

a vertical line array at different depths of the sound source. After normalizing and extracting features from the generated ocean 

waveguide data, the random forest (RF) method is applied to estimate the depth of the sound source. The results indicate that the RF 

method is feasible for estimating the depth of sound sources.  
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1. Introduction 
 

Source depth localization is a challenging issue in underwater 

acoustics, as the complex marine waveguide environment 

significantly impacts the depth localization of sound sources. 

Matched field processing (MFP) is a mainstream method for 

addressing underwater sound source localization, which 

involves correlating the replicated field signals obtained from 

sound propagation models with array reception data to 

estimate the position of underwater sound sources [1-2]. 

However, due to the complexity and variability of the marine 

environment, it is difficult to completely and accurately 

obtain all the parameters of sound field models. When the 

model used is mismatched with the actual environment, the 

accuracy of the sound source location estimation significantly 

decreases. To reduce the mismatch sensitivity of the MFP 

method, scholars represented by Frichter [3] have begun to 

consider incorporating both array reception data and source 

position information into the estimation metrics to enhance 

the robustness of the MFP method. In recent years, an 

increasing number of scholars have been studying how to 

extract more valuable information from data [4-6].  

 

Therefore, we aim to find a method for estimating the depth of 

sound sources that does not overly rely on acoustic field 

models. Considering the relationship between the data 

received by arrays and the position of sound sources, a 

specific implementation involves effectively extracting 

features from the array data and then using the relationship 

between this data and the depth information of sound sources 

to construct a classifier model, thereby transforming the 

problem of estimating sound source depth into a classification 

problem [7-11]. The random forest algorithm, known for its 

ability to handle high-dimensional data and its robustness 

against noise and outliers, remains highly applicable in the 

processing of underwater acoustic data. The following 

discussion focuses on the application of the random forest 

method in estimating the depth of sound sources. 

 

2. The Problem of Source Depth Estimation 
 

 

 

2.1 Data Preprocessing 

 

In the marine waveguide propagation model, the sound 

pressure formula is: 

 𝑝(𝑓) = 𝑆(𝑓)𝑔(𝑓, 𝑟) + 𝜀 (1) 

In the formula, 𝑝(𝑓) obtained by processing the array element 

reception data through a discrete Fourier transform, 𝑆(𝑓) 
represents the spectral data of the sound source, 𝑔(𝑓, 𝑟) is the 

Green's function containing information about the distance 

between the sound source and the receiving array element, 

and 𝜀 is the noise interference term.  

 

For a vertical array with N elements, the received complex 

sound pressure is given by: (𝑓) = [𝑝1(𝑓), 𝑝2(𝑓),⋯ , 𝑝𝑁(𝑓)]
𝑇. 

The formula for normalization is as follows,  

 �̅�(𝑓) =
𝑝(𝑓)

√∑ |𝑝𝑖(𝑓)|
2𝑁

𝑖=1
 (2) 

Solve for the covariance matrix (SCM) from the normalized 

sound pressure data, and calculate the average for L snapshots 

as follows:  

 𝑆𝐶𝑀(𝑓) =
1

𝐿
∑ 𝑃�̅�
𝐿
𝑗=1 (𝑓)𝑃�̅�

𝐻
(𝑓) (3) 

To improve computational efficiency, take the eigenvectors of 

the covariance matrix as features, concatenated into a 

1 × (𝑁 × 𝑁)  size data input into RF. Assuming the depth 

range of the sound source is (Rmin to Rmax), the depth is divided 

equidistantly into Q categories, with the depth division 

interval is:  

 𝑅 =
𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

𝑄
 (4) 

The label for the k-th sample is:  

 𝑙𝑎𝑏𝑒𝑙𝑘 =
𝑅𝑘−𝑅𝑚𝑖𝑛

𝛥𝑅
 (5) 

Thus, a dataset consisting of feature data and labels under 

different sound source depths can be obtained. The complete 

preprocessing workflow is shown in Figure 1. 
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Figure 1: The complete preprocessing workflow 

2.2 Random Forest Model Training 

 

The essence of the training process for a random forest model 

involves the iterative calling of decision trees, with 

array-received data and sound source depth, after feature 

extraction, serving as inputs to the random forest model, as 

shown in Figure 2. This paper obtains a new dataset through 

random sampling of the original dataset, and the label with the 

highest proportion in the decision tree voting results is 

selected as the final prediction outcome. The trained model 

can predict the depth of sound sources from the array-received 

data in the test set. 

 
Figure 2: Random Forest training model. 

2.3 Evaluation Metrics 

 

Using the trained random forest model to predict test set data, 

this paper evaluates the model's predictions using three 

metrics: Accuracy, Mean Squared Error (MSE), and Mean 

Absolute Percentage Error (MAPE). 

 

Accuracy 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛

𝑚
∙ 100 (6) 

In this formula, mmm is the total number of samples in the test 

set, and nnn is the number of samples where the model's 

predictions match the actual values. This metric measures the 

accuracy of the model's predictions; the higher the value, the 

more accurate the model's predictions. 

 

Mean Squared Error (MSE) 

 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑅𝑖 − �̂�𝑖)

2𝑚
𝑖=1  (7) 

In this formula, 𝑅𝑖  represents the true depth of the sound 

source, and �̂�𝑖 represents the predicted depth by the model. 

This metric intuitively describes the difference between the 

model's predictions and the actual values on a magnitude 

scale.  

 

Mean Absolute Percentage Error (MAPE) 

 𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

�̂�𝑖−𝑅𝑖

𝑅𝑖
|𝑚

𝑖=1 ∙ 100 (8) 

3. Simulation-test Results 
 

This paper uses environmental condition parameters from the 

SwellEx-96 sea trial experiment to simulate acoustic data 

using the Kraken model. As shown in Figure 3, the sea surface 

is modeled as an absolute soft boundary, and the seabed is 

modeled as a three-layer structure consisting of a sediment 

layer, a mudstone layer, and a half-space. The sediment layer 

has a thickness of 23.5 m and a density of 1.76 g/cm³, with 

sound speeds at the top and bottom of the layer being 1572 

m/s and 1593 m/s, respectively. The mudstone layer has a 

thickness of 800 m and a density of 2.06 g/cm³, with sound 

speeds at the top and bottom of the layer being 1881 m/s and 

3245 m/s, respectively. In the third layer half-space, the 

density is 2.66 g/cm³ and the sound speed is 5200 m/s. In the 

three-layer space modeled at the seabed, the compressional 

attenuations are 0.2, 0.06, and 0.02 dB/kmHz, respectively. 

 
Figure 3: Basic experimental environment.  

The receiving array is a 21-element uniform vertical line array, 

deployed at depths ranging from 94m to 212m, with an 

element spacing of 5.6m. In the simulation, the transmitting 

sound source is set at a frequency of 150Hz, with a horizontal 

distance of 3Km from the receiving array. During the 90s 

observation period, the horizontal distance between the sound 

source and the receiving array remains constant, with the 

sound source moving vertically up and down at a constant 

speed of 2m/s. The sound source's trajectory is as follows: 

initially, the sound source starts at a depth of 8m and moves 

downward at a constant speed, descending to 60m at 27s. 

Then, from 28s to 44s, it ascends from 60m to 30m at a 

constant speed. Next, from 45s to 71s, it descends from 30m 

to 80m. Finally, from 72s to 90s, it ascends from 80m to 40m.  

 

To construct the training data for the random forest model, the 

vertical distance range of the sound source is from 6m to 

100m, divided into 48 categories, with each category spaced 

2m apart. Based on the above marine environmental 

parameters and transmission and reception settings, the 

Kraken model is used to simulate ocean waveguide data at 

different depths of the sound source. The simulated 

array-received data is preprocessed and concatenated into a 

1×441 vector, which is then input into the random forest 

model for training. Afterwards, the trained model is used to 

estimate the depth of the sound source from the array-received 

data in the test set.  
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(a) Depth predictions by RF on test data with SNR of 3dB (b) Confusion matrix for test data 

Figure 4: Simulation -test results

The specific results are shown in Figure 4. Figure 4(a) 

compares the predicted depths from the random forest model 

with the actual depths in the test data at a 3dB signal-to-noise 

ratio, and Figure 4(b) shows the confusion matrix of the 

classification results for the test data at a 3dB signal-to-noise 

ratio. At a 3dB signal-to-noise ratio, the accuracy of the 

random forest model's predictions reached 95.556%, with a 

mean squared error of 0.843m, and a mean absolute 

percentage error of 0.19%. From the confusion matrix of the 

classification results, it is evident that the predictions 

generally align with the actual values, and even in cases of 

misclassification, the predicted results are close to the true 

values, demonstrating the feasibility of the random forest 

model in the problem of sound source depth localization.  

 

Table 1. presents the prediction results of the random forest 

model at different signal-to-noise ratios. The random forest 

model provides accurate depth estimations of the sound 

source at higher signal-to-noise ratios, with its estimation 

capability improving as the signal-to-noise ratio increases. 

This is because at low signal-to-noise ratios, the strong 

interference from noise makes it difficult for the model to 

establish a connection between array data and sound source 

depth, leading to biases in the model's depth estimations of the 

sound source. 

Table 1: Prediction results by RF on test data with different 

SNR 
Model SNR(dB) Accuracy(%) MSE(m) 

RF 5 100 0 

RF 3 95.556 0.843 

RF 0 82.222 1.838 

RF -5 51.111 3.211 

4. Conclusion 
 

In applying the random forest model to the problem of 

estimating the depth of sound sources, this study uses machine 

learning methods to correlate ocean waveguide data received 

by arrays with the depth of the sound sources, transforming 

the matching issue into a classification problem and resolving 

the mismatch issues that arise with matched field models 

when environmental parameters are unknown. This paper 

uses ocean waveguide data generated with reference to the 

SWELLEX-96 sea trial environmental parameters to train the 

random forest model, which is then employed for estimating 

the depth of sound sources. Experimental results show that the 

random forest model's capability to estimate the depth of 

sound sources improves with increasing signal-to-noise ratio, 

providing accurate depth estimations at higher signal-to-noise 

ratios, confirming the feasibility of the random forest model 

for estimating the depth of sound sources. 
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