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Abstract: Land subsidence in mining areas caused by underground resource exploitation poses a serious threat to surface stability and 

ecological security. Accurate prediction of land subsidence is crucial for disaster prevention and mitigation in mining areas. This study 

integrates SBAS-InSAR technology with various predictive models to analyze and forecast surface subsidence in mining areas. First, 

SBAS-InSAR technology is used to process Sentinel-1 data from 2018 to 2023, extracting time-series deformation data in the study area. 

Then, based on the key influencing factors of land subsidence, a comparative analysis of multiple models, including SVR, PSO-SVR, and 

HOLT, is conducted to assess their performance in subsidence prediction. The results show that the PSO-SVR model, optimized with 

particle swarm optimization, demonstrates superior accuracy and reliability compared to the other models. This provides a robust 

approach for monitoring and predicting land subsidence in mining areas, offering technical support for risk management and sustainable 

resource development.  
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1. Introduction 
 

Land subsidence caused by underground resource 

exploitation is a common geological disaster in mining areas. 

It not only affects surface stability but also poses a significant 

threat to ecological safety and the normal operation of 

infrastructure. Accurate prediction of land subsidence is of 

great importance for disaster prevention, mitigation, and the 

sustainable development of mining areas. 

 

In recent years, remote sensing technology has provided new 

tools and methods for monitoring land subsidence. Among 

these, SBAS-InSAR (Small Baseline Subset Interferometric 

Synthetic Aperture Radar) technology has gained attention for 

its ability to monitor large-scale surface deformation with 

high accuracy and temporal resolution. SBAS-InSAR can 

effectively capture subsidence information over time and has 

been widely applied in mining areas. However, the accuracy 

and reliability of subsidence predictions still depend on the 

performance of predictive models and the integration of key 

influencing factors. 

 

A mining-induced subsidence area refers to a geological 

impact zone formed as a result of mineral resource extraction 

activities. Surface deformation in this area is primarily caused 

by the extraction of underground coal seams or mineral 

deposits, leading to the release of strata stress, the formation 

of underground voids, and subsequent surface subsidence and 

deformation. Characteristics of mining-induced subsidence 

areas include significant spatial and temporal heterogeneity in 

surface deformation, which exhibits cumulative or abrupt 

patterns depending on the depth, extent, and duration of 

mining activities. Since these areas are influenced by both 

natural conditions (e.g., geological structures, rainfall) and 

human activities (e.g., mining methods, land use), the 

occurrence of surface subsidence is often complex and diverse. 

Accurate monitoring and scientific modeling are required for 

effective prediction and management. 

 

Existing predictive models, such as statistical methods, 

machine learning approaches, and time-series models, have 

demonstrated certain advantages in subsidence prediction. 

However, these models also have limitations in dealing with 

complex geological conditions and nonlinear relationships 

among influencing factors. To address these challenges, this 

study integrates SBAS-InSAR technology with multiple 

predictive models, including SVR (Support Vector 

Regression), PSO-SVR (Particle Swarm Optimization 

Support Vector Regression), and HOLT (Holt’s Exponential 

Smoothing), to analyze and predict land subsidence in mining 

areas. By comparing the performance of these models, this 

study aims to provide an accurate and efficient method for 

subsidence prediction, offering a reference for disaster 

prevention and management in mining areas. 

 

2. Overview of the Study Area 
 

The study area is located in Baishui County, Shaanxi Province, 

which is part of the Loess Plateau and features significant 

mining activity with complex geological conditions. The 

terrain is primarily hilly, with the typical characteristics of the 

Loess Plateau, including thick loess deposits and steep slopes. 

Land subsidence is a common phenomenon in this area due to 

extensive underground coal mining. 

 

The region experiences a semi-arid continental climate, with 

an annual average precipitation of approximately 500 mm, 

most of which is concentrated during the summer months. The 

geological structure is dominated by thick loess layers 

interspersed with sedimentary rock formations, which are 

highly prone to deformation under external factors such as 

mining activities or heavy rainfall infiltration. 

 

The mining activities in the area have altered the subsurface 

structure, creating voids that lead to surface instability and 

increased the risk of land subsidence. These conditions 
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necessitate effective monitoring and predictive modeling to 

mitigate potential hazards and ensure the safety of local 

infrastructure and communities. 

  
(a) Study Area and Sentinel-1 Data Coverage (b) Detailed Study Area in Baishui County 

Figure 1: Research Area and Data Extent Maps 

3. Research Methods 
 

This study integrates multiple data processing and analysis 

methods to improve the accuracy and reliability of land 

subsidence prediction. High-precision surface deformation 

data were obtained using SBAS-InSAR technology, and the 

data were processed to remove outliers and perform 

interpolation, ensuring completeness and accuracy. To further 

analyze the influencing factors of land subsidence, an 

information entropy model was employed to identify the most 

significant factors. Subsequently, gray relational analysis and 

principal component analysis were utilized to reduce the 

dimensionality of the influencing factors, thereby minimizing 

data redundancy and enhancing computational efficiency. 

Based on this, the processed data were input into the 

PSO-SVR model, where particle swarm optimization was 

applied to optimize the parameters of the support vector 

regression model. This approach enabled accurate prediction 

of land subsidence, ensuring optimal data quality and 

computational performance of the predictive model. 

 

3.1 Data Preprocessing 

 

3.1.1 Abnormal data removal 

 

Gross error refers to abnormal errors or outliers in InSAR data 

processing, which may be caused by atmospheric delay, orbit 

error and surface scattering change [8]. Gross error detection 

and elimination are carried out by setting sliding window. 

Gross error is defined as the observed value of the local 

conversion median absolute deviation (SMAD) that is more 

than three times the difference from the local median in the 

sliding window [9], and the SMAD calculation method is 

shown in Equation 1. 

𝑆𝑀𝐴𝐷 = 𝐶 ⋅ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑆𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆)|), 𝐶
= −1/(𝑠𝑞𝑟𝑡(2) ⋅ 𝑒𝑟𝑓𝑐𝑖𝑛𝑣(3/2)) 

(1) 

3.1.2 Gaussian interpolation 

 

In time series forecasting, insufficient data may lead to 

overfitting of the model. Compared with sufficient data, 

insufficient data may also lead to overfitting of the model to 

the existing data [10], thus reducing the generalization ability 

of the model and reducing the reliability of the predicted 

shape variables in practical applications. Insufficient data may 

also lead to difficulty in feature extraction and information 

loss in the extraction process [11]. 

 

The Gaussian interpolation algorithm approximates the time 

series deformation data as Gaussian distribution by 

combining prior information, and uses the maximum 

amplitude of the shape variable and the sub-maximum value 

corresponding to the left and right of the distance unit for 

interpolation operation processing [12]. Let the probability 

density function of the Gaussian distribution be: 

 𝑓(𝑡) =
1

√2𝜋𝜎2
𝑒𝑥𝑝( −

(𝑡−𝑡0)2

2𝜎2 )  (2) 

Where, t0 represents the mean of the Gaussian distribution 

and σ2 represents the variance of the Gaussian distribution. 

 

3.2 Information Content Model 

 

The information content model is a statistical prediction 

method derived from the information content, which can 

better reflect the contribution rate of different classification 

intervals of various impact factors to the land surface 

settlement [13]. The information content can quantitatively 

represent the characteristics of land subsidence prone places, 

and the prediction points can be selected by comprehensive 

use of the information analysis results and the SBAS-InSAR 

processing results [14]. The calculation formula of the 

information content model is shown in equation (3). 

 I = ln
Ni N⁄

Si S⁄
   (3) 

Where: I information amount of serious surface deformation 

in section i of factor A; Ni represents the number of grids with 

severe surface deformation in the i section of the influence 

factor A. N represents the total number of grids with severe 

surface deformation in the study area. Si represents the 
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number of grids in the i interval of the influence factor A; S 

represents the total number of grids in the study area. 

 

3.3 Grey Correlation Analysis 

 

Grey correlation analysis uses grey correlation degree to 

quantitatively describe the closeness of the connection 

between various factors [15]. In this study, grey correlation 

analysis was used to initially screen the factors closely related 

to the land surface settlement. (1) Determine the reference 

sequence, k=1,2,...,n and comparison sequence, k=1,2,... n, 

i=1,2,...,m, where n corresponds to the number of time periods, 

and m is the number of corresponding columns of the 

comparison sequence. (2) Dimensionless processing, in order 

to reduce the error caused by dimensionality, the data is 

processed by means of averaging; (3) Calculate the grey 

correlation coefficient. The maximum and minimum of the 

absolute difference between the reference sequence and the 

comparison sequence are solved, and the grey correlation 

coefficient is calculated according to equation (3). (4) 

Calculate the grey correlation degree. 

 𝜀𝑖(𝑘) =
min

i
min

k
|𝑌(𝑘)−𝑋𝑖(𝑘)|+𝜌max

i
max

k
|𝑌(𝑘)−𝑋𝑖(𝑘)|

|𝑌(𝑘)−𝑋𝑖(𝑘)|+𝜌max
i

max
k

|𝑌(𝑘)−𝑋𝑖(𝑘)|
   (4) 

3.4 Principal Component Analysis 

 

Principal component analysis is a commonly used data 

analysis and processing method, which uses orthogonal 

transformation to transform a set of related data into a set of 

data that is linearly independent in all dimensions to achieve 

the purpose of extracting principal components [16]. In this 

study, the partial correlation coefficient between the 

influencing factors was calculated using the KMO test method 

[17], and after determining that the correlation between the 

influencing factors was strong, the principal component 

analysis method was used for data dimensionality reduction. 

(1) In order to avoid the influence caused by dimension, the 

original data is standardized to obtain A new matrix A; (2) 

Calculate the covariance matrix C of matrix A, the 

eigenvalues of matrix C and the corresponding eigenvectors; 

(3) The original feature is projected onto the selected feature 

vector to obtain the new K-dimensional feature after 

dimensionality reduction; (4) Select all principal components 

whose cumulative contribution rate is greater than 90% and 

calculate the principal component expression. 

 

Place table titles above the tables. 

 

3.5Holt Model 

 

Holt model is a kind of time series prediction model, which is 

often used to predict time series data with trend changes. It is 

an extension of exponential smoothing model. The Holt 

model processes the level and trend of data through two 

smoothing equations, and is suitable for time series with 

obvious trend [18]. 

 𝑆𝑡 = 𝛼𝑋𝑡  + (1－𝛼)(𝑆𝑡－1 + 𝑇𝑡－1)   (5) 

 𝑇𝑡 = 𝛾(𝑆𝑡－𝑆𝑡－1 
) + (1－𝛾)𝑇𝑡－1   (6) 

 𝑋𝑡+𝑚 = 𝑆𝑡 + 𝑚𝑇𝑡   (7) 

In the formula, St and ST-1 respectively represent the 

estimation of the trend of the t period or the T-1 period using 

the data of the pre-T period and the pre-T-1 period, Tt and 

TT-1 respectively represent the estimation of the trend 

increment using the data of the pre-T period or the pre-T-1 

period, α and γ are smoothing parameters, 0≤α≤ 1,0 ≤γ≤1, Xt 

is the actual observed value of the t period. Xt +m is the 

predicted value of the t+m period, and m is the number of 

predicted extrapolations. 

 

3.6 PSO-SVR Model 

 

The prediction accuracy of SVR model is affected by penalty 

coefficient (C) and kernel function parameter (g), and the 

prediction results are different with different hyperparameter 

Settings [19]. 

 

In order to improve the prediction accuracy, modeling 

efficiency and generalization ability of SVR model, many 

scholars at home and abroad have studied the parameter 

optimization of SVR model, but no universally recognized 

and unified optimization method has been established so far. 

Common optimization methods include grid search, genetic 

algorithm, particle swarm optimization, etc. [20-23]. particle 

swarm optimization (PSO) has the advantages of fast 

convergence speed, high computational efficiency, and 

effective solution of local optimal solutions [24-26], so this 

study uses PSO algorithm for hyperparameter optimization. 

The PSO algorithm determines the fitness function by 

initializing the number of particles and the initial position and 

velocity of each particle. At the same time, in order to avoid 

the occurrence of local optimal solutions, nonlinear 

decreasing inertia weights and compression factors are used to 

search from global to local, and the local and global optimal 

locations of particles are iteratively updated constantly, the 

optimal locations in the entire particle swarm are evaluated 

and selected, and the optimal penalty coefficient (C) and 

kernel function parameter (g) are found [26]. 

 

4. Surface Subsidence Analysis Based on 

SBAS-InSAR 
 

This study utilized SBAS-InSAR technology to process 70 

scenes of synthetic aperture radar (SAR) images. 

 

(1) The orbital information of the single-look complex (SLC) 

images was corrected using precise orbit data, and the original 

SAR images were cropped to extract the study area; (2) Based 

on the criteria of a spatial baseline within 2% of the critical 

baseline and a temporal baseline of 120 days, 117 

interferometric pairs were constructed (as shown in Figure 2); 

(3) The SAR image from February 4, 2018, was selected as 

the master image according to the temporal baseline and 

minimum principles. All slave images were coregistered to 

the master image. Complex interferograms were generated by 

conjugate multiplying the complex images of each 

interferometric pair, and flat-earth and topographic phases 

were removed using precise orbital data and external DEMs; 

(4) The minimum cost flow method was used for phase 

unwrapping; (5) SBAS inversion estimation and geocoding 

were performed to obtain time-series deformation maps along 

the line of sight (LOS) in the WGS84 coordinate system; (6) 

Gross error detection and removal were conducted using a 

sliding window approach. The filtered data were then 

interpolated using Gaussian interpolation to generate the 
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deformation velocity raster of the study area.  

 

The surface deformation velocity results of the study area are 

shown in Figure 3. Significant spatial differences in ground 

subsidence can be observed across the study area, primarily 

concentrated in coal mining regions. In particular, the contrast 

in deformation rates between active mining areas and ceased 

mining areas reveals the impact of different mining activities 

on surface stability. High subsidence velocity areas are 

mainly concentrated near the Xigu Xinxing Coal Mine and the 

Pubaixigu Coal Mine, indicating that mining activities in 

these areas have caused significant ground subsidence. These 

high subsidence rates are closely associated with 

mining-induced zones beneath the surface, likely caused by 

underground voids formed after coal seam extraction and the 

release of strata stress. Moderate subsidence velocity areas are 

mostly distributed along the edges of mining zones or in 

regions affected by mining activities. This suggests that 

mining activities have an impact on surrounding areas, 

although the degree of ground subsidence is relatively minor. 

 

In ceased mining areas, subsidence rates are generally low, 

indicating that the trend of ground subsidence has mitigated 

after mining activities ceased. However, in areas where 

mining activities continue, particularly along the boundary 

regions of the Xigu Xinxing Coal Mine, subsidence rates 

remain high, suggesting that ongoing mining activities are 

still exacerbating surface subsidence. 

 
Figure 2: The temporal baseline chart 

 
Figure 3: Distribution Map of Land Subsidence Deformation Rate and Coal Mining Status in Mining Area 
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5. Other Recommendations 
 

5.1 Selection of Feature Points Based on the Information 

Entropy Model 

 

In analyzing the influencing factors of surface deformation in 

the study area, a variety of factors were considered, primarily 

categorized into natural geological factors and human activity 

factors. Natural geological factors include lithology, terrain 

relief, groundwater level changes, and distance to rivers, 

which mainly reflect the natural driving forces of geological 

conditions and the hydrological environment on surface 

deformation. Human activity factors include land use type, 

distance to roads, and the distribution of mining areas, which 

represent the impact of human development activities on 

surface stability. Among these factors, this study ultimately 

selected annual precipitation, land use type, distance to roads, 

lithology, and terrain relief as the primary research variables. 

Precipitation serves as a critical external factor that reduces 

the mechanical properties of rock and soil, leading to 

deformation. Land use type reveals the diverse impacts of 

different human activities on the surface. Distance to roads 

reflects the dynamic influence of traffic loads on the surface. 

Lithology determines the bearing capacity and stability of soil 

layers, while terrain relief helps identify deformation risks in 

high-slope areas. The selection of these factors is based on a 

comprehensive consideration of natural and human driving 

mechanisms, ensuring the precision and comprehensiveness 

of the predictive model. 

 

Land use type, terrain relief, distance to roads, lithology, and 

rainfall are the primary factors influencing surface 

deformation. Land use type is categorized into grassland, 

cropland, forest, water bodies, bare land, and artificial 

surfaces, reflecting the varied impacts of human activities on 

surface stability. Lithology illustrates the stability differences 

of various rock and soil materials under geological stress, with 

these two factors classified according to the categories in the 

collected data. Terrain relief is used to evaluate the impact of 

geomorphological features on subsidence, distance to roads is 

analyzed through buffer zones to reveal the compressive 

effects of traffic loads on the surface, and rainfall reflects the 

spatiotemporal correlation between precipitation and 

subsidence. These four factors are classified using the natural 

breaks method. The categorization and selection of these 

factors comprehensively consider the dual driving 

mechanisms of natural conditions and human activities on 

surface deformation. 

 

Based on the classification of the five identified influencing 

factors, the spatial distribution of severe surface subsidence 

was statistically analyzed using Equation (3).  

Table 1: Calculation Results of Information Content for 

Static Influencing Factors 

Impact factor 
The impact factor classification 

information 
The amount of 
impact factor 

Topographic 

relief 

452.40-537.61 0.10 

537.61-614.96 0.31 

614.96-668.70 0.36 

668.70-721.14 0.21 

721.14-788 -0.06 

Land use type 

Grassland 0.11 

Arable land 0.47 

Water body -0.23 

Woodland 0.01 

Artificial surface -0.15 

Bare ground 0.04 

Distance 

from road 

<50m 0.02 

50-100m 0.08 

100-200m 0.16 

>200m 0.54 

The stratum 

lithology 

The carboniferous Taiyuan Formation 
shale, sandstone and limestone with coal 

seam 

-0.13 

Permian Shihezi Formation shale and 
quartz sandstone with coal seam 

0.06 

Sandstone and sandy shale of Permian 

Shiqianfeng Formation 
0.02 

Quaternary Holocene subsandy soil, silty 
soil, sand gravel 

0.01 

Quaternary Pleistocene loess 0.82 

Quaternary Pleistocene loess-like subclay 

and sand-gravel strata 
-0.01 

Ordovician Majiagou Series upper thin 
layer limestone and chert limestone 

-5.68 

Quaternary Pleistocene loess and 

paleosoil layer 
0.08 

Unidentified geologic body -1.87 

Rainfall 

4679.7-4786.9 0.06 

4786.9-4861.3 0.13 

4961.3-4925.4 0.18 

4925.4-4994.5 0.15 

4994.5-5120.8 0.21 

The larger the information entropy, the higher the likelihood 

of severe land subsidence in the area. According to Table 1, 

surface subsidence in the study area is more commonly 

observed in locations where annual rainfall ranges from 

4994.5 to 5120.8 mm, terrain relief is between 614.96 and 

668.70, the land use type is cropland, the distance to roads 

is >200 m, and the lithology is Quaternary loess of the 

Pleistocene series. Combining the terrain characteristics of 

areas prone to land subsidence and the surface deformation 

results obtained using SBAS-InSAR technology, Feature 

Point 1 and Feature Point 2 were selected from coherent 

points in the study area for prediction. Their specific locations 

are shown in Figure 4. 

 

5.2 Influencing Factor Correlation and Principal 

Component Analysis 

 

A gray relational analysis was conducted on the five proposed 

influencing factors and the subsidence volume. The average 

gray relational degree between the five influencing factors 

and the cumulative subsidence volume of coherent points in 

the study area was calculated, as shown in Table 2. The results 

indicate that terrain relief, land use type, distance to roads, and 

lithology all have a gray relational degree greater than 0.6 

with the surface subsidence volume. Therefore, these four 

influencing factors are closely related to the subsidence 

volume and were selected as the key influencing factors for 

further analysis. 

Table 2: Factor Association and Correlation Table 

Influencing 

Factors 

Terrain 

Relief 

Land 
Use 

Type 

Distance 

to Roads 
Lithology 

Annual 
Average 

Rainfall 

Gray 
Relational 

Degree 

0.6559 0.7593 0.7165 0.6314 0.3428 

KMO 0.8536 0.8769 0.8242 0.8397 0.5113 

Among the various factors influencing surface deformation, 

key influencing factors were identified through gray relational 

analysis and KMO testing, and their relational degrees and 
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correlations were calculated, as shown in Table 2. Terrain 

relief, land use type, distance to roads, and lithology all have 

relatively high gray relational degrees with surface subsidence, 

indicating a close relationship between these factors and 

surface subsidence. To further analyze the classification of 

different influencing factors, Figure 5 illustrates the specific 

spatial distribution of each factor. 

 
Figure 4: Location Map of feature points 

 
Figure 5: Figure of Influencing Factors Classification: (a) Land Use Type; (b) Terrain Relief; (c) Lithology; (d) Distance from 

Roads 
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The KMO test method was used to examine the correlation 

among the four influencing factors, and the KMO test value 

was found to be greater than 0.8, indicating a strong 

correlation among the four factors, making them suitable for 

factor analysis. However, directly inputting these factors into 

the prediction model may lead to overfitting. Principal 

Component Analysis (PCA) is a commonly used data 

dimensionality reduction method that transforms original 

variables into linearly independent principal components 

through linear transformations, thereby reducing data 

dimensions and avoiding multicollinearity issues. 

 

In this study, PCA was applied to the four high gray relational 

degree factors: terrain relief, land use type, distance to roads, 

and lithology. First, the data were standardized to eliminate 

dimensional differences. Then, the covariance matrix was 

calculated, and eigenvalues and eigenvectors were extracted. 

Finally, three principal components with a cumulative 

variance contribution rate greater than 90% were selected (see 

Equation 8).These three principal components 

comprehensively reflect the main influencing factors of land 

subsidence in mining areas from the perspectives of terrain 

characteristics, human activities, and geological structures. 

The first principal component reveals the natural driving 

effects of geomorphological conditions on subsidence; the 

second principal component emphasizes the accelerating 

effects of human activities on surface deformation; and the 

third principal component focuses on the mechanical response 

characteristics of rock and soil materials. The extraction and 

application of these three principal components not only 

simplify the dimensionality of the factors but also provide a 

clear theoretical basis for land subsidence prediction. 

 

𝑦1 = −0.27𝑥1 − 0.41𝑥2 + 0.46𝑥3 + 0.52𝑥4

𝑦2 = 0.46𝑥1 − 0.54𝑥2 − 0.04𝑥3 + 0.13𝑥4

𝑦3 = 0.38𝑥1 + 0.24𝑥2 + 0.73𝑥3 − 0.18𝑥4

 (8) 

6. Multi-Model Comparison for Subsidence 

Trend Prediction 
 

6.1 Data Preprocessing 

 

This study used the particle swarm optimization (PSO) 

algorithm to optimize the penalty coefficient (C) and kernel 

function parameter (g) of the SVR model, constructing a 

PSO-SVR prediction model. The LOS subsidence data of 

Feature Point 1 and Feature Point 2 from Figure 4, along with 

the three principal components (Equation 8), were used as 

datasets. The datasets were divided into a training set (90%) 

and a test set (10%). The root mean square error (RMSE) 

between the test set and the predicted values was used as the 

fitness function. The optimization range for the penalty 

coefficient (C) and kernel function parameter (g) was set to 

[0,100] and [0,1], respectively. The identified 

hyperparameters were input into the PSO-SVR model for 

prediction, and the results are shown in Figure 6. 

 
Figure 6: The prediction results of different model for each deformation points 

As shown in Figure 6, land subsidence in the mining area 

exhibits a cumulative trend that increases progressively over 

time, with deformation magnitude continuously intensifying 

and showing no signs of stabilization. Additionally, the 

subsidence rate accelerates in the later stages, reflecting the 

gradual transmission of subsurface strata instability to the 

surface in the mining area. 

 

When seasonal ground deformation rebound phenomena 

occur due to rainfall variations, the SVR model shows weak 

predictive capability for these phenomena. The prediction 

curve for Feature Point 2 indicates that the model's 

performance improves when the subsidence trend is relatively 

consistent. The Holt model demonstrates relatively stable 

performance, closely aligning with the actual subsidence  

 

 

trend throughout the time period. However, it shows slight 

deviations at the initial and final stages, with its performance 

potentially inversely related to the prediction period length. 

The PSO-SVR model exhibits a high degree of fit with the 

actual values, particularly at the initial and final stages, where 

its prediction accuracy surpasses that of the Holt and SVR 

models, with smaller errors. During the rapid decline phase of 

the subsidence rate at Feature Point 2, the PSO-SVR model 

captures the changes more accurately than the Holt and SVR 

models. 

 

The PSO-SVR model demonstrates high predictive accuracy 

and stability in both simulations, particularly under complex 

nonlinear trends. It exhibits superior capability in capturing 

subsidence variations, highlighting its advantages in such 

scenarios. 
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6.2 Multi-model Accuracy Analysis 

 

As shown in Figure 6, the prediction results of the PSO-SVR 

model are closer to the deformation data obtained using 

SBAS-InSAR technology. The mean squared error (MSE), 

root mean squared error (RMSE), mean absolute error (MAE), 

and coefficient of determination (R²) between the test set and 

the two groups of prediction results were calculated, and the 

results are presented in Figure 7. 

 

In terms of error metrics, the PSO-SVR model exhibits the 

smallest errors. Across the two figures, the PSO-SVR model 

outperforms the SVR and Holt models with lower values in 

MSE, RMSE, and MAE, indicating that the predictions made 

by the PSO-SVR model are more accurate. Regarding 

goodness of fit, the PSO-SVR model also surpasses the other 

two models, demonstrating its superior ability to fit ground 

subsidence data and capture more precise trends. 

 

Comparatively, the PSO-SVR model achieves better 

performance than the Holt model across all error evaluation 

metrics, resulting in more accurate predictions. These results 

confirm the reliability of the PSO-SVR model in predicting 

surface subsidence in mining areas. The model effectively 

avoids overfitting issues, enhancing its generalization ability 

and predictive performance.

 
Figure 7: Comparison of Prediction Performance Metrics across Different Models 

7. Conclusion 
 

In this study, three time-series prediction models, namely 

SVR, Holt, and PSO-SVR, were used. Based on 

SBAS-InSAR surface deformation data, time-series 

prediction of progressive and abrupt surface deformation in 

the mining areas of Leiya Township and Xigu Town in 

southeastern Baishui County was conducted. The following 

conclusions were drawn: 

 

(1) By removing outliers and applying Gaussian interpolation, 

high-precision deformation data were obtained using 

SBAS-InSAR technology. This provides a reference for 

monitoring deformation in mining areas and establishes a 

reliable dataset for subsequent prediction efforts. 

 

(2) The spatial distribution of severe surface subsidence areas 

was statistically analyzed using the information entropy 

model, allowing for an understanding of the terrain 

characteristics in regions prone to surface subsidence. 

Influencing factors closely related to surface deformation 

were analyzed through gray relational analysis and principal 

component analysis. 

 

(3) Surface subsidence was predicted using the PSO-SVR 

model, along with SVR and Holt models. The results show 

that the prediction accuracy of the PSO-SVR model is 

superior to that of the SVR and Holt models, with the 

PSO-SVR model achieving the smallest error when compared 

to the test set. Additionally, it demonstrated greater sensitivity 

to changes in trends. Therefore, the PSO-SVR model proves 

to have strong practicality in predicting surface subsidence in 

mining areas. 
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