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Abstract: China's carbon emissions trading market is in the ascendant. As the country with the largest carbon emissions in the world, 

China is actively taking measures to deal with global climate change. China has put forward the long-term goal of reaching the peak of 

carbon emissions by 2030, achieving carbon neutralization by 2060 and shouldering important international social responsibilities. The 

construction and development of carbon emissions trading market is a key link in achieving the goal of carbon peak and carbon 

neutralization. The research on the influencing factors of China's regional carbon emissions trading price and the development of 

regional green finance can provide decision support for achieving the goal of carbon peak and carbon neutralization in China. Starting 

from the four latitudes of domestic and foreign economies, domestic and foreign energy prices, international carbon prices, and 

international major currencies and RMB exchange rate, this paper selects 13 independent variables to explore their impact on the 

dependent variable Shenzhen carbon trading average price. First of all, this paper uses lasso for regression modeling, and selects the λ that 

minimizes the mse into the model. Five features of the model are screened out. Among the remaining characteristics, the CSI 300 index 

has a greater positive effect on the Shenzhen carbon trading price, while the SSE 50 has a greater reverse effect on the Shenzhen carbon 

trading price. Secondly, in order to avoid using lasso to compress the model coefficients too small, this paper uses the elastic network 

model to fit the data, the fitting result is actually the ridge regression model, and the prediction mean square error of the test set is greater 

than that of lasso modeling. Finally, considering all the characteristics comprehensively, this paper uses the random forest algorithm to 

model the data, and the characteristics that make a great contribution to the carbon trading price in Shenzhen are EU emission quota and 

Guangdong carbon trading price. and the mean square error of the test set modeled by random forest algorithm is the smallest of the three 

models, and the prediction effect is the best.  

 

Keywords: Carbon trading price, Lasso, Elastic network, Random forest.  

 

1. Introduction 
 

1.1 Research Background and Significance 

 

Carbon dioxide is a type of carbon oxide, typically a colorless, 

odorless gas at normal temperature and pressure. It is a key 

component of the atmosphere and a common greenhouse gas. 

Greenhouse gases absorb long-wave radiation reflected from 

the Earth's surface and re-emit it, warming the planet, a 

phenomenon known as the "greenhouse effect." As the global 

economy develops, the impact of the greenhouse effect has 

become increasingly evident, making energy conservation, 

emissions reduction, and carbon emission control a crucial 

issue for both China and the world. By 2021, China's annual 

carbon dioxide emissions had reached 10.52 billion tons, 

ranking first in global total emissions. Compared to the 78.58 

million tons in the early years of the country's founding, 

China's annual carbon dioxide emissions have increased more 

than 133 times. Energy conservation and emissions reduction 

have thus become a significant issue for China's development. 

Since the "11th Five-Year Plan" period, China has actively 

pursued energy conservation and emissions reduction, 

gradually achieving its reduction targets. In 2005, China set 

clear energy-saving and consumption-reduction targets in the 

"11th Five-Year Plan," and in September 2020, during the 

75th session of the United Nations General Assembly, China 

formally announced its carbon neutrality and peak carbon 

dioxide emissions goals [1]. The Chinese government stated 

that it would implement more stringent policies and measures 

to reach peak carbon emissions before 2030, reduce per capita 

carbon emissions by 60%-65% by 2030, and achieve carbon 

neutrality by 2060 [2]. 

 

Carbon trading refers to the trading of greenhouse gas 

emission rights. The Kyoto Protocol, established in December 

1997 in Kyoto, Japan, set requirements to reduce six types of 

greenhouse gases, with carbon dioxide being the most 

significant. Unlike traditional energy-saving and 

emissions-reduction measures, the Kyoto Protocol introduced 

a market-based mechanism and defined carbon dioxide 

emission rights as commodities. Only those possessing carbon 

emission rights can emit the corresponding amount of carbon 

dioxide, guiding industrial production toward energy-saving, 

low-carbon, and efficient development, thus reducing 

greenhouse gas emissions and mitigating the global warming 

caused by the greenhouse effect. 

 

China's energy-saving and emissions-reduction policies have 

gradually shifted from a government-mandated enforcement 

mechanism to a market-oriented mechanism based on carbon 

trading rights. In 2011, the Chinese government approved 

pilot carbon trading programs in Beijing, Shanghai, Tianjin, 

Chongqing, Shenzhen, Guangdong, and Hubei to explore 

market-driven emissions reduction mechanisms. In 

November 2015, China's President proposed the 

establishment of a nationwide carbon emissions trading 

market at the Paris Climate Conference, a step with long-term 

significance for addressing China's climate change challenges. 

In October 2016, the State Council issued the "13th Five-Year 

Plan for Controlling Greenhouse Gas Emissions," which 

outlined plans to begin establishing a national carbon trading 

market in 2017. On December 19, 2017, China officially 

launched its carbon market, initiating carbon trading in the 

power sector and gradually expanding it to other industries 

and products [3]. 

 

To establish a nationwide carbon trading market-based 

emissions reduction mechanism, it is essential to learn from 

the experiences of the carbon trading pilot programs. From the 

near-term goal of reaching peak carbon emissions by 2030 to 
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the long-term goal of achieving carbon neutrality by 2060, 

China has only 30 years to achieve carbon neutrality, which is 

half the buffer time compared to advanced countries that 

typically need around 50 years. However, the internal 

development of the carbon trading market is still in its early 

stages [4], and its price regulation mechanisms are not yet 

fully developed. The fluctuation of carbon trading prices is 

influenced by many factors, and such fluctuations can affect 

enterprises' participation in carbon trading, which in turn 

hinders the fair allocation of carbon trading rights and 

ultimately impacts the sustainable development of the 

domestic carbon market. Therefore, exploring the factors 

influencing carbon trading prices is of great importance. 

 

China's carbon trading market-based mechanism is still in its 

early stages, and the current approved carbon trading pilot 

programs play a crucial role in the future establishment of a 

national carbon trading market. Research on carbon trading 

prices and their influencing factors is of great theoretical and 

practical significance for stabilizing the carbon trading market 

and guiding the development of a market-oriented mechanism 

in a positive direction. 

 

Firstly, since China's carbon trading market-based mechanism 

is still in its infancy, there is a scarcity of related research, and 

even fewer studies focus on the factors influencing carbon 

trading prices. Therefore, this paper aims to fill this gap. 

Moreover, previous domestic research in this area has mostly 

been limited to analyzing domestic factors. This study not 

only incorporates domestic factors that may affect carbon 

trading prices but also considers international energy and 

economic factors, providing a more comprehensive 

understanding of the variables influencing carbon trading 

prices. 

 

Investigating the factors related to carbon trading prices will 

help promote the healthy development of the market-oriented 

carbon trading mechanism, build corporate confidence in the 

carbon trading market, and provide important guidance for the 

future realization of a nationwide carbon trading market. 

 

1.2 Related Work 

 

Both domestic and international studies have conducted 

in-depth discussions on the international pricing mechanisms 

of carbon emission rights and the related influencing factors, 

with certain results already being established. D. Sokalakis et 

al. (2009) considered the impact of various factors on the EU 

ETS EUA prices [5]. Bunn and Fuzzi primarily analyzed the 

role of energy in determining EU ETS EUA prices and 

concluded that natural gas significantly influences carbon 

trading prices [6]. Alberola and Chevalier (2008) found that 

the EU carbon allowance prices are not only related to the 

prices of energy sources like natural gas but also to changes in 

temperature [7]. Regarding research methods, Kanen (2006) 

studied the variation in carbon trading prices from the 

perspective of supply and demand balance in the carbon 

trading market [8]. Some scholars have also used big data and 

data analysis models, such as linear regression models, VAR 

models, and autoregressive models, to analyze carbon prices 

[9]. 

 

1.3 Research Content and Methodology 

This study explores the impact of 13 independent variables on 

the dependent variable, the average carbon trading price in 

Shenzhen, from four dimensions: domestic and international 

economies, domestic and international energy prices, 

international carbon prices, and the exchange rate between 

major international currencies and the Chinese yuan. Firstly, 

the study employs the Lasso regression method for model 

building, selecting the 𝜆  that minimizes the mean squared 

error (MSE). The model resulted in the exclusion of five 

features, with the remaining features showing that the CSI 300 

index has a significant positive effect on Shenzhen's carbon 

trading price, while the SSE 50 index has a notable negative 

effect. Secondly, to prevent Lasso from shrinking the model 

coefficients too much, the study uses the Elastic Net model to 

fit the data. The fitting results essentially resemble a ridge 

regression model. However, the prediction MSE for the test 

set from the Elastic Net model is higher than that from the 

Lasso model. Finally, taking all features into account, the 

study uses the Random Forest algorithm for modeling. The 

model reveals that the European Union Emission Allowance 

and Guangdong carbon trading prices are significant 

contributors to Shenzhen's carbon trading prices. Moreover, 

the prediction MSE for the test set from the Random Forest 

model is the smallest among the three models, yielding the 

best predictive performance. 

 

This study applies statistical methods, specifically regression 

analysis, and utilizes R language for modeling and data 

analysis. The main techniques used include comparative 

analysis and panel data analysis. In the comparative analysis 

approach, the study selects 13 independent variables related to 

carbon trading prices for analysis. The Lasso regression 

method is employed to filter variables, and models are 

constructed using Lasso, an Elastic Net model combining 

ridge regression and Lasso, and the Random Forest algorithm. 

These models are compared to identify the most effective one. 

For panel data analysis, the study focuses on evaluating model 

performance by examining the monthly average carbon 

trading prices in Shenzhen from 2017 to February 2022, along 

with the 13 related variables. Different models are used to fit 

the data, and the best-performing model is selected, ensuring 

that the identified factors influencing carbon trading prices are 

more reliable. 

 

2. Methodology 
 

2.1 Prerequisite Knowledge 

 

2.1.1 Overfitting 

 

Overfitting occurs when a model fits the training data too well, 

capturing not only the underlying patterns but also the noise or 

random fluctuations in the data. While this leads to excellent 

performance on the training set, the model's ability to 

generalize to new, unseen data is poor. In other words, the 

model has learned details specific to the training data that 

don't hold in broader contexts, resulting in poor predictive 

performance on new datasets. 

 

2.1.2 Structural Risk Minimization 

 

The average loss of a model on the training set is called 

empirical risk (Remp). 

                      Journal of Research in Science and Engineering (JRSE)
                       ISSN: 1656-1996 Volume-6, Issue-12, December 2024

32



  
  

  

  
 

  

 𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁

𝑖=1  (1) 

A loss function measures the difference between the predicted 

and actual values after training. The most common types of 

loss functions include: 

 

(1) 0-1 Loss Function 

 𝐿(𝑦, 𝑓(𝑥)) = 𝐼{𝑦 = 𝑓(𝑥)} (2) 

(2) Absolute Loss Function 

 𝐿(𝑦, 𝑓(𝑥)) = |𝑦 − 𝑓(𝑥)| (3) 

(3) Squared Loss Function 

 𝐿(𝑦, 𝑓(𝑥)) = (𝑦 − 𝑓(𝑥))
2
 (4) 

(4) Logarithmic Loss Function 

 𝐿(𝑦, 𝑃(𝑌|𝑋)) = −𝑙𝑜𝑔𝑃(𝑌|𝑋) (5) 

During the process of minimizing empirical risk, overfitting is 

likely to occur. To avoid this issue, we introduce a penalty 

term on top of the empirical risk. 

 𝑅𝑠𝑟𝑚(𝑓) =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁

𝑖=1 + 𝜆𝐽(𝑓) (6) 

𝐽(𝑓): Model complexity: The more complex the model, the 

larger the 𝐽(𝑓) 

 

𝜆: A coefficient that measures the trade-off between empirical 

risk and model complexity, where 𝜆 ≥ 0 

 

Therefore, the Structural Risk Minimization we aim to 

achieve is: 

 𝑚𝑖𝑛(𝑓) =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁

𝑖=1  (7) 

2.1.3 Regularization 

 

Regularization is the implementation of the strategy of 

Structural Risk Minimization. The added penalty term is also 

known as the regularization term. Therefore, the strategy of 

adding a regularization term to the empirical risk is called 

regularization. The penalty term is proportional to the model 

complexity, meaning the higher the model complexity, the 

higher the value of the penalty term. 

 

In regression problems, the penalty term is typically referred 

to as the norm. The 𝐿𝑝 norm is defined as: 

 ‖𝑤‖𝑝 = (∑ |𝑥𝑖|𝑝𝑛
𝑖=1 )

1

𝑝 (8) 

2.2 Ridge Regression 

 

Ridge regression improves upon the least squares estimation 

by adding the L2 norm ||𝑤||
2
 to the residual sum of squares, 

which minimizes the residual sum of squares while avoiding 

overly large coefficients. Assuming the independent variables 

are standardized and the dependent variable is centered, the 

objective function is: 

 𝑄 = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 𝜆 ∑ 𝛽𝑗
2𝑛

𝑗=1  (9) 

where 𝜆(≥ 0) is the ridge parameter. 

 

For the objective function with the penalty term, we can 

always find a 𝜆 such that (𝑋𝑇𝑋 + 𝜆𝐼) is invertible. Therefore, 

we can take the partial derivative with respect to 𝛽, set it equal 

to zero, and obtain the ridge regression estimate of 𝛽: 

 𝛽𝑇 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (10) 

Clearly, when 𝜆 = 0, the above equation is equivalent to the 

ordinary least squares estimate of the multivariate linear 

regression coefficients 𝛽. When 𝜆 → ∞, 𝛽𝑇 → 0. 

 

The value of 𝜆 can be determined through cross-validation, by 

using the Cp criterion, or by examining the ridge trace plot; 

however, the ridge trace plot can be relatively subjective. 

When multicollinearity exists in the data, ridge regression 

often yields better results. Ridge regression can mitigate the 

effects of multicollinearity to some extent. Compared to 

ordinary multivariate linear regression, although ridge 

regression sacrifices the unbiasedness of the parameter 

estimates and introduces some bias, it effectively reduces the 

variance of the estimated parameters. 

 

2.3 Lasso 

 

Lasso (Least Absolute Shrinkage and Selection Operator) is 

an improvement upon least squares estimation by adding the 

L1 norm ‖𝑤‖1 . Compared to ordinary multivariate linear 

regression, like ridge regression, Lasso provides biased 

estimates, but it also makes the model more stable and 

prevents overfitting. The key difference between Lasso and 

ridge regression is that Lasso can produce sparse solutions. 

For independent variables that have little impact on 𝑦, Lasso 

will quickly shrink their coefficients to zero, whereas ridge 

regression only drives the coefficients toward zero but does 

not exactly make them zero. 

 

As shown in Figure 1, this behavior is illustrated with two 

independent variables as an example: 

 
Figure 1: Illustration of Lasso and Ridge Regression 

Solutions 

In the figure, the blue points represent the regression 

coefficients obtained from the least squares estimate, while 

the orange elliptical contour lines indicate the contours for 

different values of 𝜆 . The green region represents the 

constraint space for both Ridge and Lasso regression. The 

orange dots mark the points where the contour lines 

(representing the L1 or L2 penalty) are tangent to the 

constraint space, which correspond to the estimated values of 

Ridge and Lasso regression. 

 

It is easy to observe that Lasso can shrink some coefficients to 

exactly zero, whereas Ridge regression cannot. In 
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high-dimensional cases, Lasso can easily shrink many 

parameters to zero, leading to a sparse solution where only the 

most relevant variables remain, while Ridge regression 

generally keeps all parameters non-zero but shrinks them 

towards smaller values. 

 

2.4 Elastic Net 

 

The Elastic Net is based on least squares estimation and 

simultaneously incorporates both the L1 norm and L2 norm. 

The objective function for Elastic Net is: 

 𝐽𝐸(𝑤) =
1

𝑛
‖𝑦 − 𝑋𝑤‖2 + 𝜆[𝑝‖𝑤‖1 + (1 − 𝑝)‖𝑤‖2] (11) 

where:  

 �̂�𝐸𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑎𝑟𝑔 min
𝛽∈𝑅𝑑

{‖𝑌 − 𝑋𝛽‖2 + 𝜆 [𝑝 ∑ |𝛽𝑗| +𝑑
𝑗=1

(1 − 𝑝) ∑ |𝛽𝑗|
2𝑑

𝑗=1 ]} (12) 

2.5 Random Forest 

 

2.5.1 Regression Tree 

 

A regression tree is similar to an additive model, as both 

represent a compromise between linear models and fully 

non-parametric methods. Suppose 𝑋 and 𝑌 are the input and 

output variables, respectively, and 𝑌 is a continuous variable. 

Given a training dataset 𝐷 =
 {(𝑥_1, 𝑦_1), (𝑥_2, 𝑦_2), … , (𝑥_𝑁, 𝑦_𝑁)}  , a regression tree 

corresponds to a partition of the input space (i.e., the feature 

space) and assigns an output value within each partition. 

Assuming the input space is divided into 𝑀  regions 

𝑅1, 𝑅2, … , 𝑅𝑀, and each region 𝑅𝑚 has a fixed output value 

𝑐𝑚, the regression tree model can be expressed as: 

 𝑓(𝑥) = ∑ 𝑐𝑚𝐼(𝑥 ∈ 𝑅𝑚)𝑀
𝑚=1  (13) 

When the partition of the input space is determined, the 

regression tree's prediction error for the training data can be 

represented by the squared error: 

 ∑ [𝑦𝑖 − 𝑓(𝑥𝑖)]2
𝑥𝑖∈𝑅𝑚  (14) 

The optimal output value for each region is found by 

minimizing the squared error criterion. It is easy to see that the 

optimal value of 𝑐𝑚  for the region 𝑅𝑚  is the mean of the 

output values 𝑦𝑖  corresponding to all input instances 𝑥𝑖 in 𝑅𝑚, 

that is: 

 𝑐�̂� =
1

|𝑅𝑚|
∑ 𝑦𝑖𝑥𝑖∈𝑅𝑚  (15) 

Therefore, the problem is how to partition the input space. We 

can use a heuristic method, and the steps are as follows: 

 

a) Choose the 𝑗 − 𝑡ℎ  variable 𝑥(𝑗)  and its value 𝑠  as the 

splitting variable and splitting point, and define two regions: 

 𝑅1(𝑗,𝑠) = {𝑥 ∣ 𝑥(𝑗) ≤ 𝑠}, 𝑅2(𝑗,𝑠) = {𝑥 ∣ 𝑥(𝑗) > 𝑠} (16) 

Then, find the optimal splitting variable 𝑗 and the optimal 

splitting point 𝑠. Specifically, solve: 

 min
𝑗,𝑠

[min
𝑐1

∑ (𝑦𝑖 − 𝑐1)2
𝑥𝑖∈𝑅1(𝑗,𝑠) + min

𝑐2

∑ (𝑦𝑖 − 𝑐2)2
𝑥𝑖∈𝑅2(𝑗,𝑠) ]

 (17) 

For a fixed input variable 𝑗, the optimal splitting point 𝑠 can 

be found: 

 𝑐1 = ave( 𝑦𝑖 ∣∣ 𝑥𝑖 ∈ 𝑅1(𝑗, 𝑠) ), 𝑐2 = ave( 𝑦𝑖 ∣∣ 𝑥𝑖 ∈ 𝑅2(𝑗, 𝑠) )

 (18) 

By iterating over all input variables, the optimal splitting 

variable 𝑗 can be found, resulting in a pair (𝑗, 𝑠). 

 

b) Use the selected pair (𝑗, 𝑠)  to partition the region and 

determine the corresponding output values: 

 𝑅1(𝑗,𝑠) = {𝑥 ∣ 𝑥(𝑗) ≤ 𝑠}, 𝑅2(𝑗,𝑠) = {𝑥 ∣ 𝑥(𝑗) > 𝑠} (19) 

 𝑐𝑚 =
1

𝑁𝑚
∑ 𝑦𝑖𝑥𝑖∈𝑅𝑚

, 𝑥 ∈ 𝑅𝑚  (𝑚 = 1,2) (20) 

c) Continue applying steps a and b to the two sub-regions until 

the stopping criteria are met. 

 

d) Partition the input space into 𝑀 regions 𝑅1, 𝑅2, … , 𝑅𝑀, and 

generate the regression tree: 

 𝑓(𝑥) = ∑ 𝑐�̂�
𝑀
𝑚=1 𝐼(𝑥 ∈ 𝑅𝑚) (21) 

This type of regression tree is typically called a Least Squares 

Regression Tree. 

 

2.5.2 Classification Tree 

 

Trees can be used for various types of response data. We can 

extend tree methods to other types of response variables by 

fitting an appropriate zero model in each partition. For 

example, we can extend trees to binomial, multinomial, 

Poisson, and survival data by using a deviance instead of RSS 

(Residual Sum of Squares). Classification trees are similar to 

regression trees, except that the sum of squared residuals is no 

longer the appropriate criterion for choosing split points. 

 

We can measure the purity of a node in several ways. Let 𝑛𝑖𝑘 

be the number of observations of type 𝑘 in terminal node 𝑖, 
and 𝑝𝑖𝑘  be the proportion of type 𝑘 in node 𝑖. Let 𝐷𝑖  be the 

metric at node 𝑖, so the total metric is ∑ 𝐷𝑖𝑖 . There are several 

choices for 𝐷𝑖: 

 

a) Deviance: 𝐷𝑖 = −2 ∑ 𝑛𝑖𝑘𝑘 log 𝑝𝑖𝑘  

b) Entropy: 𝐷𝑖 = −2 ∑ 𝑝𝑖𝑘𝑘 log 𝑝𝑖𝑘  

c) Gini index: 𝐷𝑖 = 1 − ∑ 𝑝𝑖𝑘
2

𝑘  

 

All of these metrics have the same property: they are 

minimized when all members of the node are of the same type. 

 

2.5.3 Tree Pruning 

 

For determining the optimal size of a tree, one strategy is to 

keep partitioning until the reduction in the total cost (the 

Residual Sum of Squares, RSS) is less than a threshold 𝜖. 

However, setting 𝜖 reasonably can be difficult. Additionally, 

this strategy might stop early, as each expansion of the tree 

may not always reduce RSS. Moreover, RSS tends to 

underestimate the predictive power of the tree, which is a 

common phenomenon in most models.  

 

To obtain a regression tree with better predictive power, a 

common method is cross-validation (CV). For a given tree, 

leave out one case, rebuild the tree with the remaining cases, 

and use the tree to predict the left-out case. For regression 

                      Journal of Research in Science and Engineering (JRSE)
                       ISSN: 1656-1996 Volume-6, Issue-12, December 2024

34



  
  

  

  
 

  

trees, the optimization criterion is: 

 ∑ [𝑦𝑗 − 𝑓(𝑗)̂(𝑥𝑗)]
2𝑛

𝑗=1  (22) 

where 𝑓(𝑗)̂(𝑥𝑗) represents the output of the tree for input 𝑥_𝑗 

when case 𝑗 is not in the tree construction. For other types of 

trees, a different criterion is used. For example, for 

classification problems, deviance can be used as the 

optimization criterion. 

 

For trees, leave-one-out cross-validation can be expensive, so 

k-fold cross-validation is often used. The data is randomly 

split into 𝑘 roughly equal parts, with (𝑘 − 1) parts used to 

train the regression tree and the remaining part used to predict. 

In addition to being more computationally efficient than 

leave-one-out cross-validation, it may even be more effective. 

However, its drawback is that the data partitioning is random, 

so repeating the method gives different numerical results. 

Moreover, if we consider all subsets of a large tree, there can 

be many possible trees. This makes k-fold cross-validation 

too expensive. 

 

Similar to shrinkage methods, it can be useful to consider a 

balance of cost and complexity when pruning a regression tree, 

as this can reduce the set of trees to those that are valuable. 

We define the cost-complexity function of the tree as: 

 𝐶𝐶(𝑡𝑟𝑒𝑒) = ∑ 𝑅𝑆𝑆𝑖𝑖 + 𝜆 × |𝑇| (23) 

where |𝑇| is the number of nodes. If 𝜆 is large, the tree will be 

smaller to minimize this cost, and vice versa. We can train a 

large tree to determine the optimal tree for any given size and 

then prune it. Given a tree of size 𝑛, we can determine the best 

tree of size 𝑛 − 1 by considering possible combinations of 

adjacent nodes. We choose the tree that increases the fit by the 

least amount. This strategy is similar to backward elimination 

in linear regression variable selection, and it can be proven to 

generate the best tree of the given size. 

 

2.5.4 Random forest 

 

Random Forests are essentially a combination of 

classification decision trees, where randomization is applied 

both in terms of the variables used and the data samples. This 

results in the generation of many classification trees, and the 

results from these trees are then aggregated. Random Forests 

improve predictive accuracy without significantly increasing 

computation time. They are insensitive to multicollinearity 

and can perform well in making predictions even with a large 

number of explanatory variables (up to thousands). 

 

Random Forests use the bootstrap method with repeated 

sampling. From the original training sample set, 𝑘 samples 

are randomly selected with replacement to form a new 

training set. Then, 𝑘 decision tree models are learned from 

these samples. Finally, the results of the 𝑘 decision trees are 

aggregated to form the final prediction. For classification 

problems, the aggregation method is majority voting, and for 

regression problems, it is simple averaging. In the process of 

generating decision trees, if there are 𝑀  input variables, 𝐹 

variables are randomly selected for each split at each internal 

node. The splitting criterion at each internal node is based on 

the best split of these 𝐹 variables. The value of 𝐹 is a constant 

throughout the construction of the random forest model. 

3. Shenzhen Carbon Trading Price Influencing 

Factors Analysis 
 

3.1 Selection of Variables 

 

First, this study selects appropriate dependent and 

independent variables: The dependent variable is the carbon 

trading price of the Shenzhen Emissions Trading Center, 

which is one of the seven most representative carbon 

exchanges in China. From the perspectives of domestic and 

international economics, energy, and foreign exchange, this 

study selects 13 independent variables to analyze the factors 

influencing China's carbon trading prices. 

 

3.1.1 Dependent Variable 

 

The Shenzhen Carbon Trading Center, established in 2010, is 

a market-oriented comprehensive platform for emissions 

reduction and trading services. It is the first Chinese exchange 

to introduce foreign investment and has led the country in 

carbon financial innovation, with its indicators in spot trading 

volume reaching over 100 million and 1 billion yuan. The 

turnover rate has ranked first nationwide for six consecutive 

years, making it the most influential carbon exchange in the 

domestic green and low-carbon environmental sector. To 

ensure data accuracy, this study focuses on the Shenzhen 

carbon trading market price (SZA), which, despite its late start 

and large trading volume, serves as the object of analysis for 

the study of the factors influencing carbon prices in China's 

regional markets. 

 

3.1.2 Independent Variables 

 

In order to comprehensively include the factors influencing 

domestic regional carbon prices in the research model, this 

study considers 13 indicators based on four aspects: domestic 

and international economic trends, domestic and international 

energy prices, international carbon prices, and exchange rates. 

Table 1: Variable Symbols and Descriptions of Variables 
Symbols Explanation of Symbols 

SZA Shenzhen Carbon Trading Price 

EUA 
Futures Settlement Price (Continuous): EU Emission 

Allowances (𝐸𝑈𝐴) 

SHEA Shanghai Carbon Trading Price 

BEA Beijing Carbon Trading Price 
GDEA Guangdong Carbon Trading Price 

HS300 CSI 300 Index 

SZ50 SSE 50 Index 
WTI Futures Settlement Price (Continuous): WTI Crude Oil 

DCOAL Futures Closing Price (Active Contract): Coking Coal 

NYMEX 
Futures Closing Price (Continuous): NYMEX Natural 

Gas 

CNYtoUSD USD to RMB Exchange Rate 

CNYtoEURO EUR to RMB Exchange Rate 
SP500 US: S&P 500 Index 

DAX30 Frankfurt DAX Index 

3.2 Descriptive Statistics 

 

The data selected in this study ranges from January 2017 to 

February 2022, sourced from Kaggle. The daily data for the 

same indicator are averaged to obtain monthly data, and 

missing values are filled using the average of the preceding 

and following values.  

 

3.2.1 Shenzhen Carbon Trading Price Trend 
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Figure 2: Shenzhen Carbon Trading Price Trend 

From the line chart of carbon trading prices in Shenzhen from 

January 2017 to June 2021, it can be seen that China's carbon 

emission allowance prices are unstable and do not exhibit 

seasonal or cyclical characteristics. 

 

To provide a clearer display of the relationships between the 

independent variables and the dependent variable, a heatmap 

was created: 

 
Figure 3: Heatmap of Variables 

From the heatmap, we can observe that most of the 13 

independent variables are negatively correlated with the 

dependent variable, Shenzhen Carbon Trading Price (SZA). 

The only variables that show a positive correlation are the 

exchange rates of USD to RMB (CNYtoUSD) and EUR to 

RMB (CNYtoEURO), but the correlation is weak. The 

strongest correlations are observed with the EU Emission 

Allowances (EUA), Shanghai Carbon Trading Price (SHEA), 

and the S&P 500 Index (SP500). 

 

3.3 Model Construction 

 

3.3.1 Lasso Regression Model 

 

Using the Lasso method, as 𝜆 increases, some variables are 

eliminated. If 𝜆  is too large, too many variables will be 

removed, and if 𝜆 is too small, the sparsity of the solution may 

not be achieved. In this case, we use the mean squared error 

(MSE) of the model as the criterion. To find an appropriate 𝜆, 

we let the program automatically generate 1000 𝜆 values for 

fitting. The coefficient variation of each regression variable 

under these 1000 λ values is shown in the following plot: 

 
Figure 4: Lasso Plot 

The two vertical dashed lines in the plot correspond to the 𝜆 

value at which the MSE is minimized and the 𝜆  value 

obtained by adding one standard deviation to the 𝜆 value at 

the minimum MSE. This 𝜆 value represents a more sparse 

solution, where more variables are shrunk to zero without 

significantly increasing the mean squared error. Here, we 

select the 𝜆  value that minimizes the model's MSE and 

substitute it into the model to obtain the sparse solution and 

the corresponding parameters as follows: 

Table 2: Lasso Regression Coefficients for Independent 

Variables 
Variable Regression Coefficient 

BEA 0.21150578 

GDEA -0.03381008 

HS300 2.01272733 

SZ50 -1.93900319 

DCOAL -0.03045600 
CNYtoUSD -0.28782294 

CNYtoEURO 0.30055745 

SP500 -0.70996402 

Lasso shrinks the five variables—EU Emission Allowances 

(EUA), Shanghai Carbon Trading Price (SHEA), Crude Oil 

(WTI), Natural Gas (NYMEX), and Frankfurt DAX Index 

(DAX30)—to zero, indicating that, from the perspective of 

lasso, these variables are insignificant. Using this regression 

model, the mean squared error between the predicted values 

and actual values for the test set is 50.179833. 

 

3.3.2 Elastic Net Regression Model 

 

To find the optimal 𝜆 and 𝛼, we use the expand. grid function 

to combine different 𝜆 and α values and then use the train 

function to identify the best combination. The optimal model 

parameters are as follows: 

Table 3: Elastic Net Regression Variable Coefficients 
Variable Regression Coefficient 

EUA -0.08602606 

BEA 0.18426177 

GDEA -0.01955947 
HS300 1.35121597 

SZ50 -1.40069592 

WTI -0.05351832 
CNYtoUSD -0.32748007 

CNYtoEURO 0.23874202 

SP500 -0.52258987 
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Using this regression model, we obtained a mean squared 

error (MSE) of 58.604037 for the predicted values compared 

to the actual values in the test set. This is smaller than the 

MSE for Lasso, which is not difficult to explain. Compared to 

Lasso, the Elastic Net model includes the Beijing carbon 

trading price (BEA), Guangdong carbon trading price 

(GDEA), the HS300 index, the SZ50 index, the USD/RMB 

exchange rate (CNYtoUSD), and the EUR/RMB exchange 

rate (CNYtoEURO). However, the Elastic Net model does not 

include coal (DCOAL) but instead includes the EU Emissions 

Allowances (EUA), crude oil (WTI), and the S&P 500 index 

(SP500). By appropriately increasing the model's complexity, 

the Elastic Net model achieved a smaller prediction error. 

 

3.3.3 Random forest Model 

 

In the establishment of the Random Forest model, an 

important parameter is the number of features randomly 

selected for each tree, which is reflected in the value of mtry. 

We set up a loop where the number of trees in the random 

forest is fixed at 500, and mtry varies from 1 to 13, 

representing the number of features from 1 to all 13 features 

being randomly selected for each tree. We calculate the 

residuals of the random forest model on the training set under 

these conditions. The value of mtry that minimizes the 

residuals on the training set is found to be 8, meaning the 

optimal value is when 8 features are randomly selected for 

each tree. 

 

Next, we use this optimal mtry value of 8 and input it into the 

Random Forest model, setting ntree to 1000. The curve of the 

mean squared error (MSE) change with the increasing number 

of trees is shown below: 

 
Figure 5: The relationship between the number of trees and 

the error in the Random Forest model. 

From the figure, we can see that the error is minimized when 

the number of trees in the random forest is approximately 770. 

With the optimal parameters mtry = 8 and ntree = 770, we 

apply them to the final random forest model. We then use this 

model to predict the test set and obtain a prediction Mean 

Squared Error (MSE) of 27.73. This shows a significant 

improvement in prediction error compared to the models built 

using Lasso and Elastic Net. Finally, we examine the 

importance of each feature in the random forest model, which 

is shown in the following figure: 

 
Figure 6: Feature Importance in Random Forest 

From the figure, we can roughly categorize all the features 

into three groups. The most important features are the EU 

Emissions Allowances (EUA) and Guangdong Carbon 

Trading Price (GDEA). The second group includes the Euro 

to RMB exchange rate (CNYtoEURO), the Frankfurt DAX 

Index (DAX30), Shanghai Carbon Trading Price (SHEA), and 

Crude Oil (WTI). The remaining features have the weakest 

impact on the dependent variable, Shenzhen Carbon Trading 

Price (SZA). 

 

4. Conclusion 
 

In this study, we first used Lasso and Elastic Net for modeling. 

The modeling results show that the test set prediction mean 

squared error (MSE) using Elastic Net is larger than the one 

using Lasso alone. This is because Elastic Net performed 

poorly on this dataset, essentially behaving like Ridge 

Regression. To account for all the features, we then used the 

Random Forest algorithm for modeling. The Random Forest 

model, considering all features, achieved the lowest MSE on 

the test set.Through the above models, we can conclude that 

the factors that significantly impact Shenzhen's carbon trading 

price are: EU Emissions Allowances (EUA) and Guangdong 

Carbon Trading Price (GDEA), both of which are domestic 

and international energy factors, as well as the influence of the 

exchange rates between the RMB and international 

currencies. 
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