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Abstract:With the rapid development of high-speed trains, local rolling contact fatigue caused by special local defect damage forms has
become more prominent. This article takes circular defects as the research object, adopts the Jiang Sehitoglu multi-axis fatigue damage
criterion based on the critical plane method, establishes a finite element model of wheel tread circular defects, and studies the influence of
wheel tread circular defects on wheel rail rolling contact fatigue. Based on finite element analysis to obtain fatigue damage parameters, an
improved PSO-BP neural network was used to establish a neural network prediction model for fatigue damage parameters, and the
feasibility of the model was demonstrated. The research results show that the main influencing factors on the rolling contact fatigue life of
wheel tread defects are shear stress and shear strain; The fatigue damage parameter is maximum at the edge of the wheel tread defect; As
the defect distribution moves from the center to both sides, the contact stress and damage parameters gradually decrease; As the depth of
the defect increases to the size of the radius, the contact stress and damage parameters first increase and then decrease; As the diameter of
the defect increases, the contact stress and damage parameters increase, but the amplitude change gradually tends to stabilize with the
increase of the defect diameter. The neural network prediction results indicate that all predicted samples are within a reasonable range,
and this neural network model can provide a reference for predicting fatigue damage of wheel tread.

Keywords:Wheel tread defects, Rolling contact fatigue, Defective geometric structure, BP neural network.

1. Introduction

With the rapid development of the economy, railway
transportation has become one of the indispensable modes of
transportation in China. The wheel-rail system, as a key
component in railways, is subjected to a very complex
mechanical environment in its contact area. The rolling of the
wheels causes the contact area to be subjected to repeated
cyclic forces, ultimately leading to material fatigue damage
and failure [1-3]. As a key component of maintaining smooth
train operation, the appearance of surface defects on the
wheel-rail can accelerate the formation and expansion of
nearby cracks, which may lead to damage, instability, and
even accidents in the train wheel-rail system, seriously
threatening the safety of high-speed trains.

With the development of production technology and the
improvement of material fatigue performance, the RCF
caused by material performance defects and wear of the
wheel-rail itself has been effectively suppressed, while the
local rolling contact fatigue caused by special local defect
damage forms appears more prominent and random [4-6]. The
generation of defects will have a significant impact on the
performance of wheel-rail usage, including the impact
strengthening of the microstructure of the materials around
the defects, changes in the wheel-rail contact state, and
changes in the distribution of contact stress. Therefore, it is
necessary to establish and improve the theoretical and
technical support for the fatigue damage problem of
wheel-rail surface defects based on the size and morphology
of the defects [7]. Zeng et al. [8] used FS damage parameters
combined with the critical plane method to study the initiation
of fatigue cracks and found that pre-rolling is more likely to
cause the initiation of surface defect RCF cracks in wheel
steel. They determined the critical defect size for the initiation
of RCF cracks in pre-rolled wheel discs. An et al. [9]

established a three-dimensional finite element model to
simulate the transient rolling behavior of wheelsets on a
straight track, explored the influencing factors of plastic
deformation of wheel tracks, and obtained the conditions for
different scratch morphologies. Zhao and others [10-11] used
a self-made pendulum impact mechanism to prepare surface
damage pits of different shapes and sizes. By comparing
macroscopic experimental data such as sample wear and
hardness, as well as microscopic perspectives such as surface
damage morphology and profile fatigue damage, the influence
of the size of circular damage pits on the propagation behavior
of rolling contact fatigue cracks in steel rails was analyzed.
Establish wear damage mechanism diagrams and fatigue
damage mechanism diagrams for two types of defects, and
propose the critical defect size that causes severe fatigue
cracks on the surface of the rail. Jungwon et al. [12] used
double disc tests and finite element analysis to introduce
artificial defects to study the rolling contact fatigue damage
on the surface of steel rails. They found that when the defect
diameter is shorter than a certain length, it will disappear due
to wear, and large-sized dents and cracks, will initiate and
propagate, ultimately leading to the detachment of large
blocks.

As a powerful machine learning model, neural networks can
handle complex nonlinear relationships and have unique
advantages in fatigue life prediction. In recent years, they
have been applied by more scholars in the field of fatigue. Xu
et al. [13] proposed a fatigue life prediction method based on
the RBF neural network, which improved the model accuracy
by optimizing the target and diffusion values of the neural
network. Wang [14] constructed different neural network
algorithms and found that it is feasible to convert the
theoretical stress concentration coefficients of different
standard components under various load conditions into
sequential data as the size ratio changes. Zhang [15]
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constructed a multi-axis fatigue life prediction model for
metal materials based on fully connected neural networks.
Compared with traditional prediction models, it can achieve
higher prediction accuracy. Dou et al. [16] proposed three
algorithms to optimize the BP neural network model and
found that the quasi-Newton algorithm had the highest
prediction accuracy. Based on this, they proposed a
continuous pipe life interval prediction, and the prediction
structure met the accuracy requirements.

In recent years, domestic and foreign scholars have conducted
in-depth research on different types of surface defects through
experimental methods, but there is little analysis of wheel-rail
rolling fatigue through neural networks. This article is based
on the multi-axis fatigue criterion of the critical plane method
and establishes a finite element model of wheel-rail rolling
fatigue with wheel tread defects. Using sub-model technology,
the influence of changes in defect distribution position, depth,
and diameter on contact state and damage parameters is
discussed. A fatigue damage prediction model is established
based on the BP neural network, and the model accuracy can
meet the requirements of fatigue damage prediction.

2. Multiaxial Fatigue Criterion

In rolling contact fatigue problems, the contact surface is not
only affected by contact pressure and cyclic load but also by
frictional shear force. This complex stress state makes it
difficult to predict the location and direction of crack
initiation, and the critical plane method is one of the methods
for studying multi-axis fatigue crack initiation. It is believed
that cracks will initiate on a specific dangerous plane, which is
called the maximum damage plane, and the parameters used
to evaluate this plane are called fatigue damage parameters.
By calculating fatigue damage parameters, the key factors
affecting the fatigue life of materials under multiaxial loads
can be determined [17]. In rolling contact fatigue, the tensor
directions of stress and strain will change over time. The
critical plane method can quickly search for this dangerous
plane at a critical location, and rolling fatigue failure often
occurs on this plane [18-20].

Obtain the stress and strain values of all nodes under all
incremental steps through finite element analysis. In
three-dimensional coordinates, the stress and strain
components at any point can be written in the following form:

� =
��� ��� ���
��� ��� ���
��� ��� ���

(1)

� =
��� ��� ���
��� ��� ���
��� ��� ���

(2)

Where � and � are matrices of stress and strain components.
���, ���, and ��� are normal stress components. ���, ���, and
��� are the shear stress components. ��� , ��� , and ��� are
positive strain components. ��� , ��� , and ��� are the shear
strain components.

By rotating coordinates, the stress and strain components on
any cross-section can be obtained. The new coordinate system
after rotation is obtained by rotating the original coordinate

system counterclockwise around the X-axis, Y-axis, and
Z-axis by angles of �, �, and �. In a three-dimensional stress
state, the phase of any material plane can be determined by the
normal vector of that material plane. The stress tensor on the
material plane can be calculated using the following formula:

�' = � �� � (3)

�' = � �� � (4)

Where MT is the transpose of the transformation matrix M.
The expression for M is as follows:

� =
cos � 0 sin �

sin � sin � cos � − sin � cos �
− cos � sin � sin � cos � cos �

(5)

In engineering practice, to more accurately predict the fatigue
life of materials, many fatigue life prediction models based on
the critical plane method have been proposed. According to
the different parameters defining the maximum damage plane,
they can be divided into the following types:

Jiang and Sehitioglu [21-22] improved the critical plane
definition method proposed by Findley, stating that the
critical interface is not only affected by normal stress but also
by shear stress and average normal stress. Based on this, an
improved FP damage parameter model was proposed:

�� = ��,���
∆��
2

+ �∆�∆� (6)

In the formula:〈〉represents MacCauley parentheses,〈x〉
=0.5 (| x |+x); ��,��� is the maximum normal stress, ∆�� is the
full amplitude of normal strain; ∆� and ∆� are the full
amplitude of maximum shear stress; J is the material constant
measured experimentally.

Fatemi and Society [23] proposed a correction parameter
based on linear cumulative damage theory, which takes into
account amplitude and average stress. The components of this
correction parameter are composed of the maximum shear
strain amplitude and the maximum normal stress on the
maximum shear strain amplitude plane. The expression for
the FS parameter is:

�� = ∆�
2

1 + ��,���
��

(7)

�� is the yield strength of the material, k is the material
constant.

Smith and Watson [24] proposed a stress-strain function,
which demonstrated a simple relationship between the fatigue
life of the specimen and the proposed stress-strain parameter
by testing the correlation between the stress-strain function
and the fatigue life of different materials. This parameter can
be defined as the product of the maximum normal stress
��,��� and the maximum normal strain amplitude ∆����/2 ,
and its expression is:

��� = ��,���
∆����

2
(8)

3. Finite Element Model

3.1 Model

The dimensions of the wheel model follow the relevant design
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criteria of TB/T 1010-2016. The tread diameter is 950 mm,
and the center hole diameter is 170 mm. The dimensions of
the rail model are determined according to the relevant design
criteria of TB/T 3276-2011.

Using ABAQUS finite element software for modeling. The
wheels are made of ER8 steel, and the rails are made of
U71MnG steel, both of which are isotropic materials. The
properties of wheel-rail materials are shown in Table 1. The
contact surface adopts universal contact, and the penalty
function is used to define the friction coefficient in the
tangential direction. The friction coefficient is 0.3[25], and
hard contact is used in the normal direction. An RP reference
point is established at the center of the wheel, which is

coupled with the center of the wheel through coupling
constraints. All external loads and boundary conditions are
applied to this reference point. To improve computational
efficiency, precise stress analysis is only performed using fine
grids in the contact area, with a minimum grid size of 2 mm x
2 mm x 2 mm. The rail model is fixed at both ends and bottom.
Figure 1 shows a three-dimensional wheel rail model and its
mesh division established using UG software. The entire
model adopts a hexahedral mesh, and the mesh element type
is the C3D8R element.

Table 1:Main Material Properties of Wheel Rail
Compone

nt Material Elastic
modulus/GPa

Poisson's
ratio

Density/kg/
m3

Wheel ER8 210 0.3 7.80×103
Rail U71MnG 208 0.27 7.85×103

Figure 1:Mesh division of finite element model for wheel rail rolling contact

The model analysis is divided into two steps. The first step is
the axle-to-wheel compression condition, and the second step
is the wheel linear rolling condition. To ensure the
convergence of the calculation results, geometric nonlinearity
is enabled and the initial incremental step time is set as small
as possible to reduce the difficulty of convergence.

Perform finite element analysis on the entire model mentioned

above and obtain the finite element analysis results for each
step. Considering that the wheel is a centrally symmetrical
component and the contact area is relatively small compared
to other areas, a 20° range is divided above the wheel to form
a sub model as shown in Figure 2. In this sub-model, typical
dimensions of the wheel tread defects were selected and the
defects were designed on the submodel.

Figure 2:Mesh division of finite element submodel for wheel rail defects
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This article takes circular defects as the research object.
Without considering residual stress, circular defects with
different distribution positions, depths, and diameters are
introduced on the road tread to analyze the contact stress and

FP fatigue damage parameters under the influence of different
geometric parameters.

3.2 Model Validation

Figure 3: Changes in the position of wheel tread contact spots

Write user subroutines in Fortran language to calculate FP
damage parameters. Considering a defect depth of 0.5mm, a
defect diameter of 3mm, and a defect distribution position
located at the center of the tread, analyze the changes in the FP
damage criterion parameters during the rolling process, and
determine the critical plane to obtain the crack initiation
position and angle. Figure 3 shows the variation of contact
stress on the wheel tread during the rolling process. When the
wheel rolls without passing through the defect area, the

contact stress is consistent with the analysis results of the
defect-free finite element model. However, when the wheel
tread passes through the defect area, there is a significant
concentration of contact stress. Especially when the wheel
rolls just past the middle position of the defect area, the
contact stress is most concentrated, reaching a maximum
value of 4958MPa. As the wheel gradually moves away from
the defect area, the contact stress gradually returns to its
original state and ultimately remains stable, with little change.

Figure 4: Distribution of wheel rail contact stress: (a) Short axis direction; (b) Long axis direction

The literature [19] points out that when two elastic bodies
come into contact, the contact area should have an elliptical
contact stress distribution and meet the Hertz contact theory.
Figure 4 shows the contact stress distribution obtained from
finite element analysis and the contact stress distribution
calculated based on Hertz contact theory. As shown in the
figure, the contact spot obtained from finite element analysis
has a long axis radius of about 7.8 mm and a short axis radius
of about 5.8 mm. The distribution pattern is that the pressure
gradually decreases from the middle to the surrounding areas.
Compared with the distribution solutions calculated by Hertz
contact theory, it can be found that although the two
distribution shapes are similar, the results obtained by finite
element calculation may be slightly larger at certain positions.
This is because Hertz contact theory is a distribution law
under ideal stress conditions, and the complex structure of the
wheel-rail and the imbalance of stress can lead to differences.

3.3 Result Analysis

Figure 5: Damage parameters of target surface nodes at
different angles

Extracting data from finite element analysis results, combined
with the critical plane method and FP damage criterion, can
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determine the plane corresponding to the maximum value of
FP damage parameters, which is the plane where fatigue
cracks originate. After extracting the force and strain data of
each unit in the calculation area over time, the fatigue
parameters of each unit at different rotation angles can be
calculated. Based on Figure 5, it can be seen that when the FP
damage parameter is less than 0.05, a small portion of the FP
damage parameters at element nodes are jointly affected by
tensile and shear stresses. When the FP damage parameter is
greater than 0.05, the unit is mainly subjected to shear stress,
and the influence of tensile stress on the FP damage parameter
can be almost ignored. This phenomenon occurs because
during the calculation process, the maximum normal stress is
negative, and the result of the normal stress-strain part
calculated using MacCauley parentheses is 0. This indicates
that shear stress and shear strain �∆�∆� are the main factors
affecting fatigue crack initiation.

4. Factors Affecting Rolling Contact Fatigue of
Wheel Tread Defects

4.1 Defect Distribution Location

Based on the center position of the circular defect, set the
Y-axis as the axial direction of the wheel, and the center
position of the wheel tread as the coordinate origin. The given
defect distribution range is -7mm ≤ y0 ≤ 7mm, with positive
values on the outer side of the wheel and negative values on
the inner side. Take a distance increment Δy=1mm in the axial
direction to study the effect of defect distribution position on
rolling contact fatigue. Apply other identical boundary
conditions to the model and ensure that the defect diameter D
is 3mm and the depth d is 0.5mm.

Figure 6 shows the variation of contact stress with the analysis
step time. As shown in the figure, when the defect area of the
wheel tread is not in contact with the steel rail, the contact
stress is maintained within a stable range; When rolling
through the defect area, the contact stress rapidly increases.
Figure 7 shows that as the defect position moves towards both
sides of the centerline, the maximum contact stress gradually
decreases, and when moving the same distance, the contact
stress on the inner side is slightly greater than that on the outer
side, which is due to the wheel structure. The closer the defect
distribution is to the center of the tread, The larger the FP
damage parameter, and the shorter the fatigue life.

Figure 6: Changes in Contact Stress with Analysis Steps

Figure 7: Changes of Different Parameters with Distribution
Positions

4.2 Defect Depth

The measure of defect depth is defined as the distance from
the surface of the wheel tread to the deepest point of the defect
along the radial direction of the wheel, which is d. When the
same boundary conditions are applied to the model, the
maximum depth that can be produced by different defect
diameters will also vary. Assuming the defect diameter D is
3mm, the distance from the center position of the tread y0 is
0mm, and the range of defect depth d is 0mm ≤ d ≤ 1.5mm,
with an increment of Δd=0.1mm.

Figure 8: Changes in Contact Stress with Analysis Steps

Figure 9: Changes in different parameters with defect depth

Figure 8 and Figure 9 show the parameter changes at different
defect depths d under the condition of defect diameter
D=3mm and distribution position y0=0mm. Figure 8 shows
the variation of contact stress with the analysis step. As the
depth d increases, the contact stress remains unchanged when
the wheel tread defect does not come into contact with the rail;
When in contact with the steel rail, the contact stress reaches
its maximum value. Figure 9 shows the trend of the maximum
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contact stress and FP damage parameter gradually increasing
with the increase of depth d when the defect diameter D is 3
mm. As the depth approaches the defect radius, the maximum
value gradually decreases.

4.3 Defect Diameter

The defect diameter is defined as the distance between a
circular defect and the center of the defect sphere. Apply the
same boundary conditions in the model, set the defect
distribution position y0=0mm, and the defect depth d=0.5mm.
The defect diameter range is set to 1.5mm ≤ D ≤ 4.0mm, with
a diameter increment of ΔD=0.25mm.

Figure 10 and Figure 11 show the parameter changes for
different defect diameters D under the condition of defect
depth d of 0.5mm and defect distribution position y0 of 0mm.
As shown in Figure 11, keeping other conditions constant, as
the defect diameter increases, the contact stress remains
unchanged when the wheel tread defect does not come into
contact with the rail; When in contact with the steel rail, the
contact stress reaches its maximum value. From Figure 12, it
can be seen that as the defect diameter increases, the contact
stress and FP damage parameters gradually increase. As the
ratio of defect diameter to depth gradually increases, the
amplitude of change in FP damage parameters is almost zero.
This is because as the defect diameter increases, the impact on
the model structure becomes smaller, leading to a gradual
decrease in the variation of FP damage parameters. It can be
inferred that the defect diameter has a certain impact on
fatigue damage, but as the diameter increases, its effect
gradually weakens.

Figure 10: Changes in contact stress with analysis steps

Figure 11: Changes in different parameters with defect
diameter

5. Rolling Contact Fatigue Prediction based on
Neural Networks

Neural networks can simulate the connectivity and
information transmission process between neurons in the
human brain, and establish models by learning a large number
of data samples, thereby revealing the complex linear
relationship between input variables and output variables.
This article uses Matlab software to write a program and
explores the relationship between defect distribution position,
depth, and diameter with rolling contact damage based on an
improved PSO-BP neural network.

5.1 Construction of BP Neural Network Model

BP neural network is a multi-layer forward neural network
that calculates the error between output and reality,
propagates this error back along the network, adjusts weights
layer by layer to reduce the error, and repeats until the
network converges to a certain error threshold or reaches the
maximum number of iterations [26]. Neural networks are
divided into input layer, hidden layer, and output layer. Based
on the finite element model, determine the defect distribution
location, depth, and diameter as input layers, the FP damage
parameter is the output layer. The number of hidden layer
nodes is determined based on empirical formulas [27]:

�� = � + � + � (9)

In the formula, Nf is the number of hidden layer nodes; n and
m are the number of nodes in the input and output layers; a is
an integer with a value range of [0,10].

Figure 12: Trend of MSE with the number of hidden layer
nodes

Figure 12 shows the trend of mean square error with the
number of hidden layer nodes. As shown in the figure, when
the number of hidden layer nodes is 6, the BP neural network
prediction model has high accuracy. The structure of the
neural network model is 3-6-1.

Table 2: Results of tread defect parameters and FP damage
parameters

Sample number y0/mm d/mm D/mm FP parameters/MPa
1 0 0.5 1.5 1.098
2 0 0.5 1.8 1.453
3 0 0.5 2 1.771
4 0 0.5 2.3 2.306
5 0 0.5 2.5 2.453
6 0 0.3 1.5 1.236
7 0 0.3 1.8 1.529
8 0 0.3 2 1.534
9 0 0.3 2.3 1.59
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10 0 0.3 2.5 1.592
11 -2 0.5 1.5 0.862
12 -2 0.5 1.8 1.14
13 -2 0.5 2 1.39
14 -2 0.5 2.3 1.811
15 -2 0.5 2.5 1.926
16 2 0.5 1.5 1.018
17 2 0.5 1.8 1.347
18 2 0.5 2 1.641
19 2 0.5 2.3 2.137
20 2 0.5 2.5 2.273

To ensure prediction accuracy and neural network
convergence speed, it is necessary to normalize the data
obtained from finite element analysis. Use the randperm
function to create a random array to partition the training and
testing sets, with a ratio of 4:1 between the training and testing
sets. Set the maximum training frequency to 1000 times, with
a target error of 10-6 and a learning rate of 0.01. Partial finite
element analysis data is shown in the table below.

Create a neural network using the newff function, with the
hidden layer activation function using the tansig function,
which is expressed as:

tan ��� � = 2
1+�−2� − 1 (10)

Use the Levenberg-Marquardt algorithm to train neural
network models. To further verify the accuracy and reliability
of the model calculation, mean square error and correlation
coefficient (R2) were used to evaluate the prediction
performance. The smaller the MSE, the closer the correlation
coefficient is to 1, and the better the training performance of
the neural network:

��� = 1
� �=1

� �� − ��
2� (11)

�2 = 1 − �=1
� ��−�� 2�

�=1
� ��−��

2
�

(12)

Yi is the true value of the i-th sample, YP is the predicted value
of the model for the i-th sample, n is the number of samples.

5.2 Rolling Fatigue Prediction of Wheel Tread Defects

Based on the finite element analysis results, the total number
of samples is 103, with the first 82 groups of analysis results
used as the training set for the neural network and the last 21
groups used as the testing set. Based on the determined neural
network parameters, considering the defect distribution
location, depth, and diameter as the main influencing factors,
a BP neural network model is constructed. Figure 13 shows
the curve of model iteration times. It is found that when the
model iteration times reach 25, the iteration error is the lowest,
indicating that the model training has reached the allowed
optimal state.

Figure 13: Iteration error varies with the number of iterations

To verify the predictive performance of the trained neural
network model on FP damage parameters, two indicators
were used to evaluate the predictive performance. Figure 14
and Figure 15 show the comparison curves between the
predicted values and finite element values in the training and
testing sets. By comparing the training results of the neural
network, it can be seen that the numerical values of the
predicted values and finite element values are similar, with
only a few values showing significant differences. The value
of the training set evaluation parameter MSE is approximately
0.0092 and the value of R2 is approximately 0.9898. The value
of the evaluation parameter MSE in the test set is
approximately 0.0082 and the value of R2 is approximately
0.987. This indicates that the established BP neural network
model can effectively predict fatigue damage parameters with
different defect structures, and the predicted results can
maintain good consistency with the finite element results.

Figure 14: Comparison between predicted and true values in
the training set
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Figure 15: Comparison between predicted and true values in
the test set

6. Conclusion

This article explores the effects of different distribution
positions y0, defect depth d, and defect diameter D on rolling
contact fatigue by establishing a finite element model of
wheel-rail rolling contact. Analyzed the trend of changes in
contact stress and FP damage parameters, proposed a design
method for predicting fatigue damage based on the PSO-BP
neural network, and established a prediction model through
this neural network. The main results are as follows:

(1) The occurrence of defects can lead to stress concentration
in the contact stress between the wheel and rail, mainly
concentrated at the edge of the defect. The predicted crack
initiation location of the wheel tread based on the FP damage
criterion is mainly concentrated on the outer edge of the defect.
Combining the critical plane method and FP damage criterion,
it is found that the main influencing factors on the rolling
contact fatigue life of wheel tread defects are shear stress and
shear strain.

(2) When the defect is located at the center of the tread, the
peak stress and damage parameters reach their maximum
values. As the defect moves towards both sides of the wheel,
the stress peak and damage parameters will gradually
decrease, and the inner peak will be slightly higher than the
outer peak, but the peak position will appear on the side near
the center; As the depth of the defect gradually increases to
the size of the radius, the peak stress and damage parameters
will first increase and then decrease, but the peak position will
remain unchanged; Increasing the defect diameter will lead to
an increase in stress peaks and damage parameters, but as the
defect diameter increases, its amplitude gradually approaches
zero.

(3) Using the BP neural network to establish a fatigue damage
prediction model, the minimum mean square error for
prediction is 0.0082, and the maximum correlation coefficient
is 0.9898. The BP neural network can achieve the prediction
of fatigue damage and meet the accuracy requirements.
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