
 

Journal of Progress in Civil Engineering                                 ISSN: 2322-0856

www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                          Volume 6 Issue 6, 2024Volume 6 Issue 7, 2024 

  
  

  

  
  

  

  
 

  

Strain Prediction for High-Speed Rail Canopies  

in Cold Regions Based on LSTM Models 
  

Changxin Guo1,*, Xin Gao1, Chunguang Lan2 
 

1College of Construction Engineering, Jilin University, Changchun 130021, Jilin, China 
2Beijing Construction Engineering Research Institute Co., LTD, Beijing 100039, China 

*Correspondence Author, cxguo22@mails.jlu.edu.cn 

 

Abstract: With the rapid development of high-speed rail (HSR) in China, the platform canopies of HSR stations have become crucial 

structures for ensuring operational safety and providing sheltered waiting areas for passengers. Temperature variations, being the primary 

factor affecting structural strain, lead to internal temperature responses that significantly impact the health of these structures. Modern 

Structural Health Monitoring (SHM) systems collect structural response data to evaluate health status and detect anomalies in real time. 

With the advancement of data-driven models, machine learning, particularly deep learning, is increasingly applied in civil engineering. 

This study employs Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks to handle time series data, 

establishing a health monitoring and early warning system for HSR station canopies. The results demonstrate that deep learning models 

effectively capture the complex relationship between temperature and strain, enhancing the accuracy of strain variation predictions. This 

provides strong support for the safe operation of HSR station canopies.  
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1. Introduction 
 

With the continuous development of Chinese high-speed rail 

(HSR), it has increasingly become an essential means of 

transportation for people. The platform awning of HSR 

stations serves as a crucial structure that ensures operational 

safety and provides sheltered waiting areas for passengers. 

Understanding the internal force variations within the awning 

structure is of paramount importance to managers. Therefore, 

it is imperative to establish an effective structural health 

monitoring and early warning system for HSR station 

canopies to ensure the safe operation of HSR [1]. Temperature 

is the primary factor causing strain variations in awning 

structures. Changes in external temperature affect the 

structure's internal temperature, leading to temperature 

responses within the structure. Over prolonged service periods, 

these temperature responses can have significant impacts [2-

4]. 

 

Structural Health Monitoring (SHM) systems are capable of 

collecting data on structural responses, which are essential for 

evaluating the health status of structures and for the real-time 

detection of abnormal events. Consequently, there is a 

growing trend in installing advanced health monitoring 

systems in large-scale or critical civil infrastructure [5-6]. 

Additionally, numerous innovative detection techniques are 

being implemented in awning structures. Monitoring systems 

have accumulated vast amounts of environmental information 

and response data, shifting engineering research towards a 

data-driven model. Based on this extensive data, machine 

learning has gradually been applied in the field of civil 

engineering [7-10]. 

 

Deep learning technology, a pivotal subfield of machine 

learning, employs sophisticated neural network algorithms, 

particularly those associated with deep learning networks 

characterized by intricate architectures and refined cellular 

structures. These advancements endow deep learning 

networks with heightened generalization capacities for 

resolving complex input-output modeling challenges 

prevalent in highly nonlinear projects. To ameliorate the 

nonlinear fitting performance of neural networks concerning 

time series data, the deep learning Recurrent Neural Network 

(RNN) has emerged, specifically tailored to accommodate the 

temporal dependencies inherent in such data sequences. 

However, despite these advancements, the efficacy of RNNs 

remains constrained in scenarios demanding extensive data 

assimilation [11]. In response to challenges such as gradient 

vanishing and explosion encountered during neural network 

training, Long Short-Term Memory (LSTM) networks have 

been developed as an evolution of RNNs [12].  

 

Notably, LSTM networks have been shown through empirical 

studies and engineering applications to exhibit robust 

inferential capabilities, particularly in modeling endeavors 

characterized by pronounced nonlinear input-output 

relationships. For instance, a real-time structural damage 

assessment methodology leveraging LSTM networks has 

been devised and validated for reliability on a physical bridge 

structure [7]. Furthermore, LSTM networks have 

demonstrated exceptional predictive accuracy in forecasting 

wind-induced vibration responses in lightning rod structures 

[10]. Additionally, an LSTM-based digital regression model, 

leveraging temperature data as input and deflection data as the 

response variable, has been proficiently tailored to capture 

intricate temperature-deflection relationships, surpassing the 

performance of conventional linear regression and multiple 

linear regression models [13]. Furthermore, the incorporation 

of an attention mechanism into a Bi-LSTM model has enabled 

the effective capture of spatial correlation features and 

temporal non-stationary response processes, thereby 

enhancing the predictive capabilities of the model [14]. 

Therefore, deep learning undoubtedly stands as a potent tool 

for addressing intricate engineering challenges. 

 

2. Characteristics Analysis of Temperature and 

Strain Data  
 

2.1 The Introduction of Platform Awning and Monitoring 

System of High-speed Railway 
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(a) Fuyu North Station (b) Sensor layout diagram 

Figure 1: Fuyu North Station and Monitoring System 

This study focuses on the canopy structure of a high-speed rail 

station situated in a cold region, as illustrated in Figure 1(a). 

The structure is located in an area characterized by substantial 

seasonal temperature fluctuations and significant diurnal 

temperature variations. To comprehensively understand the 

static and dynamic properties as well as the long-term 

performance of the structure, and to facilitate effective long-

term operation and maintenance management, a monitoring 

system has been implemented at Fuyu North Station. 

 

This monitoring system collects data from the three trusses of 

Platform 1. As shown in Figure 1(b), a total of 30 strain and 

temperature sensors are installed at the specified measurement 

points on the trusses, labeled from P1-S1 to P3-S10. Sensors 

S1, S2, S4, S6, S8, and S9 are positioned on the upper chords 

of the structure, where they are more significantly affected by 

sunlight. In contrast, sensors S3, S5, S7, and S10 are located 

on the lower chords, where the influence of sunlight is less 

pronounced. Additionally, sensors S1 to S5 are situated on the 

shaded side of the structure, while sensors S6 to S10 are on 

the sunlit side. 

 

For structural strain monitoring, the MOS-6301 vibrating wire 

surface strain gauge was chosen. This strain gauge is 

composed of flanges at both ends, a stainless steel pipe, and a 

steel wire passing through the pipe, all constructed from 

stainless steel. With a standard range of 3000με and a 

sensitivity of 1με, it operates within a temperature range of -

20℃ to 80℃, perfectly meeting the requirements of 

monitoring systems. To ensure the reliability of long-term 

monitoring, it's essential to weld the sensor onto the structure 

being measured. To prevent sensor damage, the installation 

end block of the sensor should be welded to the structure under 

test prior to sensor installation. Once the sensor is installed, 

initial readings can be taken.  

To monitor environmental variables, an integrated weather 

monitoring station is deployed outside the canopy. This 

station system integrates the collection, storage, transmission, 

and management of meteorological data, serving as an 

unattended meteorological collection system. Comprising 

meteorological sensors, meteorological data collectors, and 

computer meteorological software, the system can 

concurrently monitor atmospheric temperature, humidity, 

rainfall, wind speed, wind direction, air pressure, snow depth, 

and other meteorological parameters. In this study, the 

primarily utilized data are the monitored atmospheric 

temperature readings. 

 
Figure 2: MOS-6301 Vibrating wire surface strain gauge 

2.2 Analysis of the Correlation between Strain and 

Temperature 

 

The atmospheric temperature measured by the monitoring 

system, also known as ambient temperature, undergoes 

periodic changes due to the movement of the sun. 

Consequently, there will be a maximum and a minimum value 

recorded each day, with the daily change trend generally 

consistent. Simultaneously, temperature sensors affixed to the 

structure capture the temperature of each component's surface. 

These sensors accurately depict temperature fluctuations on 

the structure's surface. Influenced by sunlight and 

environmental factors, the temperature change trend observed 

by these sensors closely mirrors that of the ambient 

temperature but lags behind it. As structures at different 

locations are exposed to varying degrees of sunlight, the 

temperature changes recorded by sensors exhibit slight 

variations throughout the day. Given the excellent thermal 

conductivity of steel and its swift heat transfer capabilities, the 

temperature monitoring data from the steel structure canopy 

indicates minimal temperature differences between adjacent 

measuring points and a consistent change trend, as illustrated 
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in Figure 3. 

 
Figure 3: Sensor temperature and ambient temperature 

The strain of the awning structure is influenced by various 

factors, with temperature change being the most critical. As 

depicted in Figure 4, sensors P1-S6, P1-S7, and P1-S8 at 

different positions exhibit different responses to temperature 

variations, resulting in changes in the measured strain. It was 

observed that the temperature and strain of sensors P1-S6 and 

P1-S7 are approximately positively correlated, with consistent 

trends, while the strain and temperature of P1-S8 are 

approximately negatively correlated. According to the 

mechanism of temperature-strain change, the effect of 

temperature on structural strain should be linear [15]. 

Therefore, we attempt to utilize a linear regression method to 

fit linear equations of sensor temperature and strain, as 

illustrated in Figure 5. 

 
Figure 4: Changes in temperature and strain 

 

  
Figure 5: Linear regression analysis of sensor temperature and strain

Through analysis, we have obtained the regression equations 

for sensor temperature and strain. To assess the fitting effect 

of the regression model, we employ the goodness of fit R2. R2 

is a dimensionless value between 0 and 1. The closer the value 

is to 1, the better the fitting effect of the model and the more 

reliable the output result. The calculation formula of R2is as 

shown in formula (1): 

 R2 = 1 −
∑ (yi−yî)2n

i=1

∑ (yi−yi̅)2n
i=1

 (1) 

Among them, n is the number of data points,yi represents the 

actual measured value of a certain sensor,yi̅  represents the 

average value of the actual measured values of a certain sensor, 

and yî represents the regression value of a certain sensor. 

 

The regression line equation for P1-S6 is y=0.2x-4.36, with 

R2=0.51. Some points fall on both sides of the fitting line, 

indicating a poor fitting effect. The regression line equation 

for P1-S7 is y=0.31x-6.82, with R2= 0.36. It can be observed 

that most of the measuring points do not satisfy the equation 

of the one-variable linear fitting straight line, indicating the 

worst fitting effect. The regression line for P1-S8 is y=-0.54x-

1.81, with R2=0.93. Most measuring points fall near the fitting 

straight line, demonstrating an obvious negative correlation 

between temperature and strain. It can be inferred that for the 

temperature-strain relationship of the steel structure canopy 

structure, some measuring points can be better expressed 

through linear regression. However, there are still a 

considerable number of measurement points that cannot be 

represented by a simple linear regression equation. 

 

The strain at a specific location within the structure is 

influenced not only by the temperature fluctuations in that 

area but also by the deformation of the surrounding structure. 

Moreover, the deformation of the surrounding structure is 

impacted by the temperature at that particular location. 

Therefore, it is prudent to utilize temperature data collected 

from multiple sensors to construct a multiple linear regression 

analysis model. The principle of multiple linear regression is 

outlined as follows: 

 

Assuming a certain sensor M has monitoring data 

{xy1, xy2, xy3, . . . , xyn}  collected by n sensors during time 

period t. Additionally, there are k related sensors, and the 

monitoring values of these k sensors during time period t are 

represented as: 
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{x11, x12, x13, . . . , x1n}. . . {xk1, xk2, xk3, . . . , xkn}, Subsequently, 

the multiple linear regression prediction result can be 

expressed as: 

 xyi = b0 + b1x1i + b2x2i+. . . +bkxki + ε    i = (1,2,3, ⋯ , n)
 (2) 

In formula (2), xyi  is the monitoring data of sensor 

M, x1i, x2i, . . . , xki  represent the monitoring data of related 

sensors,b signifies the partial correlation coefficient, and ε is 

a random variable. Use the least squares method to obtain the 

values of b0, b1, . . . , bk to minimize the sum of square errors 

between all measured values xyi  and regression values, In 

other words, Q = [xyi − (b0 + b1x1i + b2x2i+. . . +bkxki)]² 

has a minimum value, then the partial regression coefficient 

can be expressed as: 

 (b0, b1, . . . , bk)T = (XTX)−1(XTY) (3) 

In formula (3)X = [1, x1i, x2i, . . . , xki],Y = xy 

 

The prediction accuracy of the multiple linear regression 

model is evaluated by the goodness of fit R2. All temperature 

sensors of the first truss are used to conduct multiple linear 

regression analyses on P1-S6, P1-S7, and P1-S8. The results 

are presented as Figure 6: 

 
Figure 6: Multiple linear regression results

Multiple linear regression significantly improves the fitting 

accuracy for temperatures and strains such as P1-S6 and P1-

S7 that cannot be analyzed using simple linear regression 

equations, and the goodness of fit R2 reaches 0.74 and 0.82 

respectively. Although the correlation between temperature 

and strain of P1-S8 can already be expressed using a linear 

regression equation, multiple linear regression still improves 

the fitting accuracy of P1-S8, with R2 reaching 0.97. To assess 

the generalization ability of the multiple linear regression 

model, the equations of P1-S7 and P1-S8 with better fitting 

effects are utilized to predict 100 data other than the fitted data. 

The results indicate a significant reduction in prediction 

accuracy, with R2 decreasing to 0.67 and 0.95 respectively. 

The prediction results are shown in Figure 7.

 
Figure 7: Prediction results 

 
Figure 8: prediction error of P1-S7 
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Comparing the predicted values and measured values of P1-

S7, and drawing the error image as shown in Figure 8, it's 

observed that the maximum error reaches 2.18 and the 

absolute average error is 0.5. Although the multiple linear 

regression model can improve the accuracy of predicting 

strain based on sensor temperature compared to a single linear 

regression model, its generalization ability is weak, resulting 

in low prediction accuracy for unknown data. To address this 

issue, existing literature suggests that neural networks, with 

their unique network structure, possess strong mapping 

capabilities for nonlinear models and robust generalization 

abilities [7,9,13]. Therefore, this paper aims to construct an 

LSTM neural network model for Fuyu Station based on the 

available data. 

2.3 Data Preprocessing and Sample Set Data Selection 

 

This paper selects actual measured data from January 2023 to 

October 2023. These data were collected every half hour in 

high-speed rail canopies in cold areas, covering the transition 

from winter to summer. Consequently, they are influenced by 

both low and high temperature environments, making them 

representative of temperature and strain changes at Buyeo 

Station under various environmental conditions. Additionally, 

the collected data underwent classification, cleaning, and 

preprocessing operations. For instance, the improved 3σ 

principle was applied to perform jump filtering of data, and 

the multiple regression model was utilized to address missing 

and abnormal data, as shown in Figure 9. 

 
Figure 9: Data preprocessing 

3. Construction of Neural Network Model 
 

3.1 LSTM Network Model 

 

Strain changes in a structure are influenced not only by the 

current temperature but also by temperature variations over 

time. Therefore, the regression method described earlier is not 

well-suited to the structural strain characteristics of Buyeo 

Station. Recurrent Neural Networks (RNNs) are designed to 

handle such sequential data, performing tasks repeatedly over 

sequences and forming loops over time. As illustrated in 

Figure 10, the output at any time step is influenced not only 

by the current input but also by the inputs from the previous 

t−1 time steps. This information is stored in the hidden layer 

h, which facilitates the self-renewal of the cell [11]. However, 

RNNs face challenges such as gradient disappearance and 

gradient explosion during backpropagation due to their 

network characteristics and iterative nature. To address the 

long-term dependency problem inherent in RNNs, the Long 

Short-Term Memory (LSTM) network model was developed 

based on the basic RNN structure. LSTM utilizes a unique 

memory cell to store and transmit information over long-term 

dependencies. The structure of the LSTM network is shown 

in Figure 11. 

 
Figure 10: RNN network 

 
Figure 11: LSTM network 

The LSTM cell inherits the characteristics of RNN. The input 

at the current moment t includes not only the information xt 

at the current moment, but also the information ht−1 of the 

hidden layer at the previous moment and the long-term 

memory Ct−1  flowing in the cell. The flow of information 

within the LSTM cell is controlled through a unique structural 

"gate". Through a series of operations on these gates, the input 

information is integrated to obtain the output information of 

the LSTM. 

 

The initial gate is termed the "forget gate". Its primary 

function is to determine which information the cell ought to 

discard, consequently influencing the value of the long-term 

memoryCt−1 .The operational mechanism of the forget gate 

can be succinctly captured by the formula as follow: 

 ft=σ(Ufht−1+ Wfxt+ bf) (4) 

where Uf and Wfare the weight matrices in the forget gate;bfis  
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the bias vector in the forget gate; σ(z) is a logistic sigmoid 

function used to map values to the [0,1] interval. The σ(z) 

function is defined by the formula as follow: 

 σ(z) = 
1

1+e−z (5) 

The second gate is termed the "input gate". Its primary 

function is to assimilate incoming information into the cell. 

The operational mechanism of the input gate can be succinctly 

expressed through the following formula: 

 it=σ(Uiht−1+ Wixt+ bi) (6) 

 Ct̃=tanh(Ucht−1+ Wcxt+ bc) (7) 

where Ui,Wi, Uc and Wc are the weight matrices in the input 

gate; bi and bc are the bias vectors in the input gate; tanh(z) 

is the hyperbolic tangent function used to map values to the [-

1,1] interval. The tanh(z) function is defined as follows: 

 tanh(z) = 
ez−e−z

ez+e−z
 (8) 

The third gate, known as the output gate, serves to regulate the 

information output from the cell. The operational mechanism 

of the output gate can be represented by the following formula: 

 ot=σ(Uoht−1+ Woxt+ bo) (9) 

where Uo and Woare the weight matrices in the output gate, 

and bo is the bias vector in the output gate. 

 

The flow and storage of information in LSTM cells can be 

regulated by the values of the gate parameters. Specifically, 

the parameter ft in the forget gate can adjust the long−term 

memory state of the cell by controlling the retention of the 

memory cell Ct−1.Their product represents the retained long-

term information. Similarly, the product of the parameters it 

and Ct̃in the input gate controls the retention of the current 

input information. The memory cell Ct can thus be updated in 

this manner. The update process can be expressed by the 

following formula: 

 Ct= ft ∙ ct−1+ it ∙ Ct̃ (10) 

The result ot of the output gate and the updated memory cell 

Ct jointly determine the output value ht at the current moment. 

This process is expressed by the following formula: 

 ht= ot ∙ tanh(ct) (11) 

3.2 The Establishment Process of LSTM Model 

 

This article presents the development of an LSTM neural 

network model using Pytorch. Considering the thermal 

conductivity characteristics of the steel structure canopy, the 

input data comprises ambient temperature readings collected 

by weather monitoring stations, rather than the temperature 

data from each sensor. This approach reduces the volume of 

input data and minimizes data redundancy in practical 

applications. For the output data, sensors that are in good 

condition and effectively represent the canopy's service status 

were selected. These include P1-S6, P1-S7, P1-S8, P2-S6, P2-

S7, and P2-S8. Consequently, a multi-output LSTM neural 

network model based on ambient temperature and sensor 

strain was constructed. 

 

Firstly, data preprocessing is necessary to acquire a well-

conditioned dataset. Secondly, to enhance the network's 

learning capability and accelerate convergence, normalization 

of both input and output data is required. The normalization 

formula for input and output data is as follows: 

 Xt =
Xt−Xmin

Xmax−Xmin
 (12) 

 Yt =
Yt−Ymin

Ymax−Ymin
 (13) 

Among them,Xt and Yt  represent the real values at time t; 

Xmax and Ymaxdenote the maximum values of the input and 

output data, respectively; Xmin  and Ymin  represent the 

minimum values of the input and output data, respectively. 

 

The training process of the neural network is conducted using 

the iterative optimization method of multiple epochs. In each 

epoch, the loss calculated from the regression value and the 

true value serves as the basis for gradient descent. The 

parameters in the network are continuously optimized during 

the gradient descent process, which constitutes the 

backpropagation process of the neural network. The 

calculation of loss and the process of backpropagation are 

closely related to the choice of loss function. The LSTM 

network model constructed in this article utilizes mean square 

error (MSE) as the loss function to participate in the 

backpropagation of gradients. The calculation formula of 

MSE is as follows: 

 MSE =
1

n
∑ (yi − yî

N
n=1 )2 (14) 

where N is the number of samples,yiis the measured value, 

and yî is the regression value. 

 

This article selects actual measured data collected every half 

hour from high-speed rail canopies in cold areas from 0:00 on 

January 1, 2023, to 15:30 on October 19, 2023. The dataset is 

divided as follows: the first 11,000 data points are designated 

as the training set, while data points 11,001 to 12,000 are 

allocated to the validation set, used to assess the model's 

performance on unseen data during the training process. The 

last 2,000 data points constitute the test set, utilized to evaluate 

the predictive performance of the model. 

 

The hyperparameters of neural networks play a crucial role in 

determining model performance, necessitating a balance 

between training time and accuracy. In this article, the 

selected hyperparameters are as follows: the model adopts a 

two-layer LSTM hidden layer structure, with each layer 

containing 128 neurons. To prevent overfitting, a dropout 

layer is incorporated with a dropout rate of 0.1. The batch size 

is set to 32, and the Adam optimizer is utilized during 

backpropagation. Time steps significantly influence model 

accuracy, with an increase in time steps leading to longer 

training times. After conducting numerous experiments, this 

article ultimately establishes the time step as 30, wherein a 

temperature sequence comprising 30 time steps is input, and 

each sensor outputs the corresponding temperature-induced 

strain. 

 

The number of iterations is set to 200. Upon reaching 200 

iterations, the training concludes, and the model exhibiting the 

best performance on the validation set is saved to enhance the 

model's generalization ability. 

 

3.3 Prediction Results based on LSTM Model 
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The prediction accuracy of the model is evaluated using the 

root mean square error (RMSE) and the coefficient of 

determination (R2). The prediction results are presented in the 

following table: 

 

 

 

Table 1: The prediction results 
Sensor 

id 
P1-S6 P1-S7 P1-S8 P2-S6 P2-S7 P2-S8 

RMSE 0.3945 0.6450 0.5144 0.3939 0.6958 0.6044 

R2 0.8907 0.8995 0.9699 0.9349 0.8477 0.8944 

For instance, considering P1-S6 and P1-S7, the prediction 

outcomes for these sensors are illustrated in the figure below: 

  
                                   P1-S6 P1-S7 

Figure 12: Prediction results of P1-S6 and P1-S7 

The capabilities of LSTM in capturing the intricate mapping 

relationship between ambient temperature and strain, as 

demonstrated in the examples presented in this article, 

underscore its potential for predicting structural strain changes 

effectively. Leveraging this, it becomes feasible to forecast 

strain at multiple measurement points within the structure. By 

comparing real values with the predicted values generated by 

the network, real-time warnings can be issued.  

 

4. Conclusion 
 

1) The stress-strain relationship of the structure is not a simple 

linear relationship and cannot be expressed simply by linear 

equation. 

 

2) Deep learning models excel at capturing intricate 

temperature-strain relationships, facilitating the prediction of 

strain variations based on temperature fluctuations. 

 

3) LSTM neural network can predict the strain change of 

structure with remarkable effect, which is of great significance 

to the prediction and early warning of practical engineering 
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